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ПРЕДИКТИВНИ ТЕРМИЧКИ МОДЕЛИ ПОТРОШАЧА У СИСТЕМИМА 

ДАЉИНСКОГ ГРЕЈАЊА 

Резиме 

Данас системи даљинског грејања (СДГ) у развијеним земљама ЕУ, а нарочито 

скандинавским земљама, представљају један од најефикаснијих начина снабдевања 

становништва топлотном енергијом у урбаним срединама. Тренутно у Европи постоји 

више од 6.000 СДГ. У Србији СДГ постоје у 53 града, са укупно инсталисаном снагом 

од 6.180 MW. Оптимизацијом било ког сегмента рада СДГ могу се остварити значајне 

уштеде. 

 Иако су СДГ у Европи у експанзији, последњих година рад СДГ, у великом броју 

градова у Србији, повезан је са бројним проблемима. Проблеми се односе на 

неефикасан и неекономичан рад СДГ који се компензује повећањем цене испоручене 

топлотне енергије, што се консеквентно одражава на незадовољство корисника. 

Проблеми су постали евидентни када је престало субвенционирање СДГ од стране 

локалних самоуправа, а нарочито након либерализације тржишта гаса. Неекономичан 

рад СДГ је у највећој мери последица: начина производње топлотне енергије и 

неефикасног управљања.  

 Промену начина производње топлотне енергије у СДГ могуће је реализовати кроз 

замену постојећих топлотних извора јефтинијим, попут когенеративних постројења на 

фосилна горива, биомасу или увођењем инсинерационих, соларних и геотермалних 

постројења. Међутим, промена извора топлоте у тренутној констелацији СДГ 

представља дуготрајан процес и захтева велика улагања.  Са друге стране унапређењем 

постојећег неефикасног начина управљања, уз релативно мале инвестиције, могуће је 

значајно унапредити функционисање СДГ. Управо тај аспект унапређења рада СДГ 

представља централну тему ове дисертације. 

 Спроведено истраживање било је засновано на три полазна става: (1) Системи 

даљинског грејања у хладним и умереним климатским поднебљима представљају један 

од најефикаснијих и најекономичнијих начина топлотног снабдевања становништва у 

урбаним срединама; (2) Инсталисана снага и тренутно енергетски неефикасан и 

неекономичан рад СДГ у Србији дају оправдање за истраживање у области 

оптимизације ових система и коначно; (3) Развојем робустних и кредибилних 



предиктивних термичких модела потрошача и њиховом интеграцијом у управљачке 

стратегије СДГ може се значајно допринети ефикаснијој и економичнијој производњи 

и дистрибуцији топлотне енергије. 

 Из претходно формулисаних ставова произилази главни циљ истраживања: Развој и 

верификација предиктивних термичких модела потрошача у системима даљинског 

грејања којима ће се створити могућност за енергетски ефикасније и економичније 

управљање процесом производње и дистрибуције топлотне енергије. 

 Истраживање је спроведено на теоријском и практичном нивоу. У истраживању су 

примењене методе анализе, синтезе, експеримента и верификације резултата 

истраживања. Теоријско истраживање је реализовано прегледом и консултовањем 

иностране и домаће актуелне и компетентне литературе док је синтезом наведених 

сазнања дефинисан најпогоднији приступ за практично решење идентификованих 

проблема. У првом делу практичног сегмента истраживања реализована је 

експериментална инсталација у топлотној подстаници нишког СДГ са којом је 

створена могућност за узорковање релевантних података који су искоришћени за 

израду предиктивних термичких модела. У другом делу су примењене три методе 

статистичког учења (неуронске мреже са директним простирањем сигнала и 

бајесовском регуларизацијом, метод потпорних вектора и boosting метод) за израду 

предиктивних модела. Добијени резултати верификовани су делом података који није 

коришћен за израду модела. Додатно, потенцијал развијених модела проверен је и на 

сету података из новосадског СДГ. 

 Главни доприноси дисретације: (1) Сагледане су предности система даљинског 

грејања као одрживог и енергетски ефикасног начина топлотног стабдевања 

становништва у урбаним срединама са посебним освртом на могућност употребе 

обновљивих извора енергије; (2) Систематизована су досадашња истраживања у 

области израде предиктивних термичких модела потрошача у СДГ; (3) Израђена је 

експериментална инсталација и извршено је континуално мерење и узорковање 

релевантних величина из топлотне подстанице у нишком СДГ; (4) Развијено је и 

тестирано више типова предиктивних модела топлотног оптерећења, за различите 

хоризонте предикције заснованих на методама статистичког учења: неуронским 

мрежама са директним простирањем сигнала и бајесовском регуларизацијом, методи 

потпорних вектора и boosting методи коришћењем експериментално добијених 



података; (5) Анализирана је могућност примене изабраних метода за израду 

предиктивних модела и у функционално другачије организованом, новосадском СДГ; 

(6) Развијени су краткорочни предиктивни модели спољне температуре и (7) Утврђено 

је да се развијени предиктивни модели топлотног оптерећења могу значајно 

унапредити увођењем предиктивних модела климатских параметара, посебно спољне 

температуре. 

 Добијени резултати упућују на то да је применом метода статистичког учења, 

посебно методом потпорних вектора, могуће израдити предиктивне термичке моделе 

потрошача задовољавајућих перформанси. На тај начин су остварени потребни услови 

за њихову интеграцију у напредно управљачко окружење, а самим тим и оптималније и 

економичније функционисање СДГ.   

Кључне речи: системи даљинског грејања, унапређење управљања, предиктивни 

термички модели, неуронске мреже, метод потпорних вектора, boosting метод 
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PREDICTIVE THERMAL MODELS OF CONSUMERS IN DISTRICT 

HEATING SYSTEMS 

Summary 

Today, district heating systems (DHS) in developed EU countries, especially in Scandinavia, 

are among the most efficient ways of providing citizens with heat in urban areas. Currently 

there are more than 6,000 DHS in Europe. In Serbia, there are DHS in 53 cities and towns, 

with the total installed capacity of 6,180 MW. Significant amounts of energy could be 

conserved by optimization of any segment in DHS operation. 

Despite the expansion of DHS in Europe, the operation of DHS in Serbia has been facing 

numerous issues in recent years. The issues pertain to inefficient and uneconomical DHS 

operations, which are compensated by raised prices of distributed heat, consequently causing 

consumer dissatisfaction. The issues became evident when DHS stopped being subsidised by 

the local governments, and especially after gas market liberalization. Uneconomical operation 

of DHS is mostly the result of the way thermal energy is produced and of inefficient 

management. 

It is possible to change the method of thermal energy production in DHS by replacing the 

existing heat sources with less costly ones, such as cogeneration facilities running on fossil 

fuels or biomass, or by introducing incineration, solar, and geothermal plants. However, any 

change of heat sources in the current DHS constellation is a long-lasting process that requires 

considerable investment. On the other hand, by improving the existing inefficient 

management method, it is possible to significantly enhance DHS operations with relatively 

small investment and it is this aspect of DHS operation improvement that is the focus of this 

dissertation. 

The conducted research was based on three initial assumptions: (1) DHS in cold and moderate 

climate regions are among the most efficient and most economical ways of providing heat to 

citizens in urban areas; (2) The installed capacity and the currently energy-inefficient and 

uneconomical DHS operation in Serbia justify research aimed at optimizing these systems; 

and (3) Development of robust and credible predictive thermal models of consumers and their 

integration into management strategies of DHS can immensely contribute to more efficient 

and more economical production and distribution of thermal energy. 



The abovementioned assumptions converge into the aim of this research: development and 

verification of predictive thermal models of consumers in district heating systems, which will 

enable more energy-efficient and economical management of thermal energy production and 

distribution. 

The research includes a theoretical and a practical segment. The methods used are analysis, 

synthesis, experiment, and result verification. Theoretical research involves a review and 

referencing of foreign and domestic current and competent literature, while the synthesis of 

the listed information is used to determine the most suitable approach to resolving the 

identified issues. The first part of the practical segment involves the setup of an experimental 

installation in the substation of the Niš DHS in order to sample relevant data, which are then 

used for the development of predictive thermal models. The second part involves the 

application of three methods of statistical learning (neural networks with direct signal 

propagation and Bayesian regularization, support vector machines, and a boosting method) for 

the creation of predictive models. The obtained results were verified by means of the data that 

were not used for predictive modelling. Additionally, the potential of the developed models 

was also verified against the data obtained from the Novi Sad DHS. 

The following are the key contributions of this dissertation: (1) It analyzes the benefits of 

DHS as a sustainable and energy-efficient method of providing heat to people living in urban 

areas, with a special focus on the possible use of renewable energy sources; (2) It 

systematizes previous research regarding predictive thermal modelling of consumers in DHS; 

(3) It involves a setup of an experimental installation, which conducted continuous 

measurement and sampling of relevant quantities from a Niš DHS substation; (4) It involves 

development and testing of several types of predictive models of heating load for different 

prediction horizons based on statistical learning methods: neural networks with direct signal 

propagation and Bayesian regularization, support vector machines, and a boosting method 

using the experimentally obtained data; (5) It analyzes the possibility of applying the selected 

methods to predictive modelling in the differently operationally organized DHS in Novi Sad, 

as well; (6) It develops short-term predictive models of outdoor temperature; and (7) It 

establishes that the developed predictive models of heating load can be considerably 

improved by introduction of predictive models of climatic parameters, in particular of the 

outdoor temperature. 



The obtained results indicate that the application of statistical learning methods, especially the 

support vector machines, allows the development of predictive thermal models of consumers 

with satisfactory performance. This creates the necessary conditions for their integration into 

an advanced managerial environment and thus for optimal and more economical operation of 

DHS.   

Key words: district heating systems, improvement of management, predictive thermal 

models, neural networks, support vector machines, boosting method 

Scientific field: Environmental and Occupational Engineering 

Narrow scientific field: Energy Processes and Safety 

UDC: 620.9:697.34:681.5 
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1. УВОД 

 

1.1 ПРЕГЛЕД ОБЛАСТИ ИСТРАЖИВАЊА  

Системи даљинског грејања (СДГ) се заснивају на једноставној идеји о централној 

производњи топлотне енергије и њеној дистрибуцији до крајњих потрошача. На тај 

начин се стварају могућности за употребу: отпадне топлоте (из индустријских 

постројења) и топлотних извора које је тешко или неекономично користити 

локализовано (когенеративни системи, сагоревање биомасе, геотермални системи и 

инсинерациони системи). Одатле произилази низ економских и еколошких предности 

СДГ у односу на локалне загревне уређаје. Главне предности СДГ се односе на 

економичније и ефикасније коришћење примарне енергије па самим тим и нижу цену 

испоручене топлотне енергије у односу на друге опције грејања, на смањење 

инвестиционих трошкова потрошача, могућност коришћења когенеративних система и 

локално доступних горива као и могућност централизованог праћења емисије штетних 

гасова. 

 Сваки СДГ се састоји из три основна конститутивна елемента: топлотног извора, 

дистрибутивне мреже и потрошача, који могу бити директно или индиректно 

прикључени на дистрибутивну мрежу. Конфигурација СДГ, а самим тим и начин 

производње, дистрибуције и предаје топлотне енергије потрошачима се временом 

значајно мењао. Од првих система са паром као носиоцем топлоте, СДГ у развијеним 

земљама ЕУ су еволуирали у високоефикасне топловодне системе који омогућавају 

интеграцију концепцијски и функционално различитих извора топлотне енергије. 

Данас је фокус на даљем развоју и унапређењу СДГ и њиховој трансформацији у 

одрживе системе за дистрибуцију топлотне енергије. То потврђују и резултати 

најновијих енергетских студија и истраживања у водећим истраживачким 

институцијама ЕУ у којима се недвосмислено потврђује значајна улога СДГ у будућим 

декарбонизованим енергетским системима у којима ће доминирати производња 

финалне енергије из обновљивих извора [Connolly et al., 2012; Connolly et al., 2013]. 

Ови закључци се односе и на сценарио развоја енергетике  ЕУ до 2050. године у коме 

се рачуна на 100% снабдевања из обновљивих извора и са 25% смањењем потреба за 

грејањем, као последицом глобалног загревања [Lund et al., 2010] 
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 Иако су СДГ у великом броју земаља у Европи у експанзији (нарочито у 

скандинавским земљама), последњих година рад СДГ, у великом броју градова у 

Србији, повезан је са бројним проблемима. Проблеми у СДГ у Србији постоје у сва три 

кључна сегмента њиховог рада: топлотним изворима, дистрибутивној мрежи и 

подстаницама. 

 Топлотни извори су предимензионисани и изведени тенденциозно за производњу 

топлотне енергије (као топлане, без когенерације) коришћењем фосилних горива, 

најчешће природног гаса. Дистрибутивна мрежа у већини СДГ у Србији је дотрајала 

јер је изведена пре више деценија. Иако је у више градова било пројеката 

ревитализације мреже, овај процес је дуготрајан и одвија се селективно. Такође, у 

највећем броју СДГ у Србији још увек постоји велики број подстаница без савремене 

аутоматике.  

 Ови проблеми, само глобално побројани, непосредно утичу на неeфикасан и 

неекономичан рад СДГ. Иако су присутни дуги низ година, они су постали евидентни 

тек након престанка субвенционирања СДГ од стране локалних самоуправа и одредби 

о наплати грејања према потрошњи и дерегулацији тржишта гаса. То је довело до 

повећања цене грејања, великог незадовољства код потрошача и парадоксалне 

ситуације да цена топлотне енергије из СДГ буде знатно виша у односу на остале 

конкурентне опције загревања, попут грејања на гас у локалним загревним уређајима, 

угаљ, огревно дрво па чак и грејање на струју.  

 Централни проблем у раду СДГ у Србији представља скуп и неодржив начин 

производње топлотне енергије. Потребна је хитна миграција ка економичнијим и 

еколошки прихватљивијим опцијама. Међутим, иако неопходан, процес супституције 

топлотних извора  је дуготрајан, захтева енормно велика улагања  као и учешће 

великог броја актера (на локалном и националном нивоу). Због тога је потребно 

потражити алтернативне начине за остварење економичнијег рада СДГ. Један од 

потенцијалних начина за унапређење односи се на аспект управљања. Унапређењем 

постојећег начина управљања, уз релативно мала улагања, могуће је функционисање 

СДГ учинити знатно ефикаснијим. Управо је тај аспект централна тема ове 

дисертације. 
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 Управљање произведеном топлотном енергијом се у свим СДГ у Србији и даље 

врши према „криви клизања“ где се топлота производи према тренутно измереној 

спољној температури - без повратне информације о стварној потрошњи са стране 

корисника. Међутим, СДГ су комплексни динамички системи са израженом инерцијом 

и великом хетерогеношћу корисника тако да предуслов о линеарној зависности између 

спољне температуре и количине произведене топлоте не важи. Као последица оваквог 

начина управљања у СДГ, температуре напојног и повратног вода примара су најчешће 

знатно више у односу на оптималне што је посебно изражено током периода умерено 

хладног времена. То се консеквентно одражава на повећање трошкова производње и 

дистрибуције топлотне енергије. Због тога је потребно стратегију управљања у СДГ 

реализовати тако да се у сваком тренутку што приближније усклади потребна (оне коју 

захтевају потрошачи) и произведена количина топлоте. На тај начин могуће је смањити 

температурске нивое у дистрибутивној мрежи и остварити значајне уштеде. Величина 

уштеде зависи од начина функционисања СДГ (величине система, врсте топлотног 

извора, да ли има когенерације и сл.) али се може проценити на 0.05 to 0.5 eur/MWh за 

сваки 0C редуковане температуре [Frederiksen et al., 2013]. Треба напоменути да је 

ефекат уштеде посебно изражен код когенеративних постројења и котловских 

постројења која раде у кондензационом режиму. 

 Оптималан рад СДГ, који подразумева усаглашавање произведене и потребне 

количине топлоте у систему, може се остварити једино уколико постоје кредибилни 

предиктивни модели топлотног оптерећења свих, или бар кључних, потрошача 

система. Истраживање на пољу израде предиктивних термичких модела датирају још 

од седамдесетих година прошлог века. Почетна истраживања била су углавном 

базирана на детерминистичком моделирању, ослањајући се пре свега на основне 

физичке законитости које карактеришу процес одавања топлоте. Међутим, убрзо су 

уочени први проблеми који су се односили на немогућност сагледавања свих аспеката 

одавања топлоте код зграда, комплексност узајамних односа величина којe 

карактеришу термичко понашање објеката као и изразиту нелинеарност процеса 

преноса топлоте коју је јако тешко аналитички описати. Ови проблеми су делимично 

превазиђени развојем процесора и рачунара задњих година, који су знатно убрзали 

процес решавања сложених математичких модела, али је и даље домен њихове 

примене, најпре због сложености, ограничен на аспект симулације термичког 

понашања зграда без значајније примене у области управљања.  
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 Са друге стране напредак на пољу примене метода статистичког учења омогућио је 

развој кредибилних предиктивних модела базираних искључиво на подацима 

добијеним узорковањем релевантних величина посматраног процеса. Потенцијал 

оваквог, статистичког, приступа демонстриран је у литератури у великом броју радова. 

Додатна предност је што се већина утицајних величина може измерити релативно лако 

и по прихватљивој цени у подстаницама СДГ.  Међутим, данас постоји велики број 

метода статистичког учења и израда модела коришћењем сваке од њих била би врло 

непрактична и тешко изводљива. Због тога је, у оквиру овог истраживања, после 

подробне литературне анализе извршена селекција метода које су касније коришћене 

за израду предиктивних модела. Избор метода је извршен након што су утврђени 

потенцијали појединих метода у решавању практичних проблема чији је домен сличан 

разматраном.  

1.2 ЦИЉЕВИ И ДОПРИНОС 

Основни циљ спроведеног истраживања, у оквиру ове дисертације, је развој и 

верификација предиктивних термичких модела потрошача у системима даљинског 

грејања са којима ће се створити могућност за енергетски ефикасније и економичније 

управљање процесом производње и дистрибуције топлотне енергије у системима 

даљинског грејања.  

 Главни доприноси могу се систематизовати на следећи начин: 

 Сагледане су предности система даљинског грејања као одрживог и енергетски 

ефикасног начина топлотног стабдевања становништва у урбаним срединама са 

посебним освртом на могућност употребе обновљивих извора енергије;  

 Систематизована су досадашња истраживања у области израде предиктивних 

термичких модела потрошача у СДГ;  

 Израђена је експериментална инсталација и извршено је континуално мерење 

и узорковање релевантних величина из топлотне подстанице у нишком СДГ; 

 Развијено је и тестирано више типова предиктивних модела топлотног 

оптерећења, за различите хоризонте предикције заснованих на методама 

статистичког учења: неуронским мрежама са директним простирањем сигнала и 
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бајесовском регуларизацијом, методи потпорних вектора и boosting методи 

коришћењем експериментално добијених података; 

 Анализирана је могућност примене изабраних метода за израду предиктивних 

модела и у функционално другачије организованом, новосадском СДГ;  

 Развијени су краткорочни предиктивни модели спољне температуре и 

 Утврђено је да се развијени предиктивни модели топлотног оптерећења могу 

значајно унапредити увођењем предиктивних модела климатских параметара, 

посебно спољне температуре. 

1.3 МЕТОД ИСТРАЖИВАЊА 

Због сложености проблема који се разматра у овој дисертацији било је потребно 

употребити неколико истраживачких метода. Овај рад се заснива на теоретском и 

практичном истраживању, а у његовој изради су примењене следеће научне методе: 

 Анализа, 

 Синтеза, 

 Експеримент и 

 Верификација резултата истраживања. 

 Први, теоретски део истраживања, има шири контекст. У почетном делу је извршена 

анализа значаја и перспектива СДГ са посебним освртом на проблеме у њиховом раду 

и потенцијалне начине за превазилажење тих проблема. Потенцирана је важност 

унапређења начина управљања у СДГ као једне од могућности за брзу и релативно 

јефтину оптимизацију њиховог рада. Методом анализе сагледана су истраживања у 

области управљања СДГ, израде предиктивних термичких модела као и краткорочних 

предиктивних модела климатских величина. У теоријском делу је такође извршена 

анализа метода статистичког учења са посебним освртом на њихов потенцијал у 

решавању практичних проблема. Наведено теоријско истраживање је реализовано 

прегледом и консултовањем иностране и домаће актуелне и компетентне литературе. 

Синтезом наведених сазнања дефинисан је најпогоднији приступ за практично решење 

идентификованих проблема.  



6 

 

 Други, практични део истраживања, организован је из два дела. Најпре је кроз 

реализацију експерименталне инсталације на месту топлотне подстанице у нишком 

СДГ омогућено континуално мерење и узорковање релевантних величина. 

Инсталацијом експерименталне опреме није се утицало на било који аспект нормалног 

и неометаног функционисања топлотне подстанице. Потом су добијени подаци 

искоришћени за израду и верификацију предиктивних термичких модела. У циљу 

потврде примењених метода, паралелно са израдом предиктивних модела за нишки 

СДГ, израђени су и статистички предиктивни модели потрошача у новосадском СДГ 

који је функционално другачије организован у односу на нишки СДГ.  

1.4 ПОЛАЗНЕ ХИПОТЕЗЕ 

У оквиру ове дисертације могу се издвојити три кључна полазна става која су дала 

оправдање за спроведено истраживање: 

 Системи даљинског грејања у хладним и умереним климатским поднебљима 

представљају један од најефикаснијих и најекономичнијих начина топлотног 

снабдевања становништва у урбаним срединама, 

 Инсталисана снага и тренутно енергетски неефикасан и неекономичан рад 

СДГ у Србији дају оправдање за истраживање у области оптимизације ових 

система и коначно 

 Развојем робустних и кредибилних предиктивних термичких модела 

потрошача и њиховом интеграцијом у управљачке стратегије СДГ може се 

значајно допринети ефикаснијој и економичнијој производњи и дистрибуцији 

топлотне енергије. 

 Истраживање се базирало на следећим хипотезама: 

 Предиктивни модели засновани на методама статистичког учења могу се са 

успехом применити за предвиђање термичког понашања потрошача у СДГ, 

 Климатски фактори кључно детерминишу карактер и величину топлотног 

оптерећења потрошача, 

 Спољна температура има најдоминантнији утицај на величину конзума 

топлоте и по значају превазилази остале климатске факторе, 
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 Једноставни предиктивни модели засновани на методама статистичког учења 

могу се применити за краткорочно (до 24 h) предвиђање спољне температуре са 

задовољавајућом тачношћу и 

 Инкорпорирањем краткорочних предиктивних  модела климатских величина 

(посебно спољне температуре) у предиктивне моделе топлотног оптерећења 

значајно се могу побољшати њихове предиктивне перформансе. 

1.5 СТРУКТУРА ДИСЕРТАЦИЈЕ 

Дисертација се састоји из четири основна дела, увода и закључка. 

 Прво, уводно, поглавље садржи преглед области истраживања, циљеве и доприносе, 

метод истраживања, полазне хипотезе и објављене радове.  

 У другом поглављу разматра се значај СДГ, као и основне предности и неодостаци 

оваквог начина снабдевања топлотном енергијом становништва у урбаним подручјима. 

Дат је историјски преглед развоја СДГ као и низа активности које се данас спроводе у 

развијеним земљама ЕУ у циљу трансформације СДГ у одрживе системе који ће 

задржати компетитивност и у будућем декарбонизованом енергетском сектору ЕУ. 

Потом је дат концизан приказ тржишта топлотне енергије и удела СДГ у снабдевању 

топлотном енергијом у ЕУ28 и Србији. У последњем делу тог одељка закључује се да 

се оптимизација рада СДГ у Србији може остварити кроз супституцију постојећих 

извора топлоте стратешким и промену начина рада СДГ кроз увођење савремених, 

интелигентних стратегија управљања које ће бити усмерене ка усклађивању 

произведене и утрошене топлотне енергије. У наставку се детаљно разматрају 

конвенционални и стратешки топлотни извори. Након тога дат је преглед тренутног 

начина управљања у СДГ као и предлог за унапређење кроз увођење интелигентног 

управљања којим би се ускладила произведена и захтевана количина топлотне 

енергије. У даљем тексту је потенцирана потреба израде предиктивних модела 

топлотног оптерећења потрошача. Поглавље се завршава прегледом литературе из 

области израде предиктивних термичких модела у СДГ и низом закључака који су 

искоришћени за формулисање даљег правца истраживања. 

 У трећем поглављу су дате математичке основе за израду предиктивних модела 

топлотног оптерећења потрошача у СДГ. Најпре је указано на предности израде 
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статистичких модела потрошача у СДГ у односу на детерминистичке моделе засноване 

искључиво на законитостима који произилазе из теорије о преносу топлоте. Потом су 

објашњене разлике између предиктивних и експланаторних модела. Након тога је 

приказан поступак израде предиктивних модела. У наставку је најпре дато 

образложење избора примењених метода (неуронских мрежа са директним 

простирањем сигнала и бајесовском регуларизацијом, методе потпорних вектора и 

boosting метода) док су у даљем тексту детаљно изложене математичке основе 

потребне за њихово разумевање.  

 У четвртом поглављу је детаљно описана експериментална инсталација коришћена 

за узорковање релевантних величина потребних за израду предиктивних модела. 

Најпре су дати основни подаци о нишком и новосадском СДГ а потом и прикази 

подстаница у којима је вршено мерење и аквизиција података.    

 У петом поглављу су приказани резултати израде предиктивних термичких модела 

потрошача у нишком и новосадском СДГ. Најпре је дат приказ архивираних 

временских серија заједно са прегледом њихових најзначајнијих статистика. Потом је 

извршена прелиминарна валидација развијених алгоритама на McKey-Glass временској 

серији.  Додатно су изложени критеријуми за рангирање и избор модела као и поступак 

естимације параметара модела. Након тога је дат поступак израде  већег броја 

предиктивних модела топлотног оптерећења заснованих на методама које су описане у 

трећем поглављу. Најпре су развијани ауторегресиони модели а потом су анализирани 

модели код којих се поред претходних вредности топлотног оптерећења као улази 

користе и температература повратног вода примара и спољна температура.  Након тога 

су разматране могућности унапређења најбољих модела кроз увођење прогнозираних 

вредности спољне температуре. Из тог разлога се у наставку разматра потупак израде 

предиктивних модела спољне температуре. Такође је разматрана могућност 

унапређења модела кроз увођење индикаторске величине којом се описује статус 

функционисања система. Коначно се разматра могућност унапређења најбољих модела 

кроз алтернацију вредности регуларизационог параметра. Поглавље се завршава 

закључним разматрањем у коме су синтетисани остварени резултати. 

 У закључку су анализирани добијени резултати, изведени су закључци и 

дефинисани су смерови будућег истраживања.   
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2. СИСТЕМИ ДАЉИНСКОГ ГРЕЈАЊА – ОСНОВНА РАЗМАТРАЊА  

 

 

2.1 УВОД - ФУНКЦИЈА И ЗНАЧАЈ СИСТЕМА ДАЉИНСКОГ ГРЕЈАЊА 

 

Системи даљинског грејања (СДГ) представљају комуналне системе од посебног 

значаја којима се врши снабдевање топлотном енергијом становништва у урбаним 

срединама и индустрије. Технолошким развојем оваквог вида снабдевања топлотом 

урбаних целина и индустријских зона створене су могућности за рационално 

коришћење примарне енергије, будући да је могуће коришћење извора које је тешко 

или неизводљиво користити у индивидуалним системима грејања. 

 Основна идеја система даљинског грејања је у коришћењу локалног горива, или 

извора топлоте које би на други начин били неискоришћени, како би се задовољила 

потреба за топлотом локалних потрошача коришћењем централног извора топлоте и 

дистрибутивне мреже којима се топлота допрема до крајњих потрошача.  

 Ефикасан и економичан рад СДГ суштински је повезан са могућношћу остварења 

три основна предуслова [Werner, 2004]:  

 постојањем одговарајућих економичних и еколошки прихватљивих топлотних 

извора, 

 концентрацијом потрошача топлоте и 

 могућношћу изградње ефикасне дистрибутивне мреже између топлотног 

извора и потрошача.  

 Економичност производње топлотне енергије директно је повезана са врстом 

енергента који се користи и начином његове трансформације у топлотну енергију. Како 

би СДГ били конкурентни у односу на уређаје за локалну производњу топлотне 

енергије, потребно је да се базно испорука топлотне енергије остварује из једног или 

више стратешких извора топлоте [Persson et. al, 2012]: 

 когенеративних постројења, 

 инсинерационих постројења, 
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 котловских постројења за сагоревање „кабастих“ биогорива са којима је тешко 

руковати и која је непрактично или немогуће користити у локалним уређајима за 

сагоревање (нпр. дрвни отпад), 

 соларних и геотермалних извора енергије и 

 индустријских постројења у којима се јавља отпадна топлота. 

 Горњој групи потенцијалних извора топлоте у СДГ треба додати и нуклеарне 

електране код којих постоји велика количина отпадне топлоте. Међутим, након 

озбиљних акцидената из прошлости (Three Miles Island и Чернобил), као и недавног у 

Јапану (Фукушими) из 2011. (овај акцидент је према скали међународне агенције за 

нуклеарну енергију сврстан у исту групу као и акцидент из Чернобила), опција 

искоришћења отпадне топлоте из нуклеарних електрана се готово и не разматра. 

 Концентрација потрошача је други важан фактор за реализацију СДГ. Она се 

изражава преко густине топлоте (eng. heat density) која се најчешће исказује преко 

линеарне густине топлоте. Фактор линеарне густине топлоте је увео немачки инжењер 

Shulz [Schulz, 1933] тридесетих година двадесетог века. Линеарна густина топлоте 

представља годишњу количину испоручене топлоте потрошачима подељену са 

укупном дужином двоцевне дистрибутивне мреже. Густина топлоте је полазни фактор 

који се утврђује у студијама изводљивости за реализацију пројеката СДГ. 

Економичност система расте са повећањем ове вредности, а практични подаци указују 

да су СДГ исплативи уколико је ова вредност у распону од 12-25 GJ/m god [Werner, 

2004]. Наравно, вредности су знатно веће у градским језгрима у којима неретко могу да 

буду и до 40 -50 GJ/m год. Са друге стране, иако има истраживања [Nilsson et al., 2008] 

која упућују на могућност реализације СДГ и у оним областима где је линеарна густина 

топлоте мала (у питању су тзв. „проређени“ СДГ – eng. sparse district heating systems), 

без значајних подстицајних мера локалних самоуправа, рад оваквих СДГ је 

неекономичан. 

 Могућност изградње ефикасне дистрибутивне мреже између топлотног извора и 

потрошача се везује за урбанистичка ограничења као и цену реализације пројеката 

полагања цеви. Додатни, важан елемент је и величина губитака топлоте у 

дистрибутивној мрежи.  
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 Снабдевање потрошача топлотном енергијом преко СДГ има низ предности [Protić, 

2008; Lund et al., 2010; Rezaie et al., 2012]: 

 рационалније и ефикасније коришћење примарне енергије, 

 економичнија производња топлотне енергије (уколико се као топлотни извор 

користи један или више стратешких топлотних извора), 

 мањи инвестициони трошкови потрошача (посебно изражено у објектима 

вишеспратног становања), 

 могућност избора места лоцирања топлотног извора (еколошки и урбанистички 

аспекти), 

 централизовање топлотног извора смањује и ствара могућност за контролисање 

емисије штетних гасова, 

 отварају се могућности за коришћење комбинованих енергетских система за 

истовремену производњу топлотне и електричне енергије који имају знатно већи 

степен корисности, 

 омогућава се континуално праћење климатских фактора и прилагођење 

укупног топлотног оптерећења спољним климатским условима и 

 флексибилност код избора енергената уз могућност употребе обновљивих 

извора енергије. 

 Са ширег, националног аспекта развој и унапређење СДГ може имати низ повољних 

ефеката. Најпре, са развијеном мрежом система даљинског грејања посредно се утиче 

на повећање националне енергетске сигурности. Уколико се у СДГ користе локално 

досупни извори енергије попут биомасе, соларне енергије, геотермалне енергије и 

комуналног отпада, умањује се зависност од увозних фосилних горива. Додатни, врло 

важни аспект је и утицај на животну средину. У СДГ врши се контролисано сагоревање 

горива при чему се посебна пажња посвећује емисији полутаната. Контролисање 

емисије је законска обавеза свих СДГ. На тај начин СДГ имају позитиван утицај на 

животну средину како на локалном тако и на ширем националном/државном нивоу.  

 Наравно, постоје и недостаци СДГ. Најосновнији недостатак односи се на чињеницу 

да СДГ у основи представљају природне монополе. Дерегулација која већ дужи низ 

година постоји на тржишту електричне енергије није применљива на СДГ због 
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специфичности система и значајних губитака приликом транспорта топлоте на велике 

раздаљине. Иако постоје студије изводљивости регионалних топлотних мрежа, којима 

се утврђује економска оправданост повезивања више произвођача топлотне енергије и 

индустријских постројења на ширем подручју изван урбаних језгара, те студије су 

локалног карактера а генерализација и репликација на друге системе није могућа због 

специфичности сваког појединачног система. Због тога у СДГ најчешће нема 

производње и испоруке топлотне енергије истој групи корисника од стране више 

произвођача, па се недостатак конкуренције одражава на квалитет пружених услуга 

потрошачима топлотне енергије. Додатни проблем се односи на цену испоручене 

топлотне енергије. Потрошачи немају могућност да о висини цене и условима плаћања 

преговарају са произвођачем. Даље, прикључење потрошача на СДГ је скупо а и 

искључење са мреже доноси низ нежељених консеквенци потрошачу. Такође, проблеми 

у раду топлотних извора се тренутно преносе на све прикључене потрошаче. 

 Додатни проблем је што СДГ најчешће нису обухваћени кључним енергетским 

документима ЕУ [Connolly et al., 2014]. Ова маргинализација се не односи 

тенденциозно на СДГ већ на свеукупан аспект употребе топлотне енергије, што је 

неприхватљиво имајући у виду величину финансијских средстава која се издвајају за 

производњу топлотне енергије.  

 Разлози за овакав став су вероватно последица чињенице да се грејање у стратешким 

енергетским документима ЕУ разматра као проблем од локалног значаја. Додатни 

разлози су последица погрешног мишљења да су СДГ искључиво везани за употребу 

фосилних горива и да се употребом „зграда са нултом енергетском потрошњом“ 

проблем обезбеђивања топлотне енергије може у потпуности елиминисати [Lund et al., 

2014]. Такође, тежиште ових студија је у ставу да се остваривање амбицозних 

еколошких и енергетских циљева може постићи искључиво кроз увећање 

електрификације и штедњу.   

 Коначно, приметно је непознавање адекватних метода за анализу СДГ што је 

вероватно последица чињенице да се моделирање у оквиру ових студија изводи 

искључиво за електроенергетски сектор у којима се значај СДГ готово у потпуности 

маргинализује.  
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 Овакво погрешно разматрање проблема је делимично ублажено студијама експерaта 

са Aalborg i Halmstad универзитета који се баве проблемима енергетског планирања. 

Две кључне студије у којима се анализирају потенцијали СДГ у остварењу енергетских 

стратегија ЕУ су Heat Roadmap Europe (HRE I) (2012) i Heat Roadmap Europe (HRE II) 

(2013) [Connolly et al., 2012; Connolly et al., 2013]. У овим студијама, аргументовано се 

указује на значај и потенцијал СДГ за економичније снабдевање становништва 

топлотном енергијом. Додатно, указује се и на могућност даље експанзије постојеће 

мреже система даљинског грејања у ЕУ. Такође у најновијој студији   UNEP-a (United 

Nations Environment Programme) промовише се даљинско грејање као најекомоничнија 

и еколошки најприхватљивија опција за обезбеђење грејања у урбаним срединама  

[UNEP, 2015].   

 Потенцијал СДГ је препознат не само од стране истраживачких центара и 

универзитета, већ и од стране комерцијалног сектора. У овом тренутку постоји низ 

нових пројеката који се реализују, а у наредном периоду очекују се додатна улагања у 

сектор СДГ. Један од најновијих примера је одлука локалне самоуправе у Амстердаму 

из априла 2015. године о почетку реализације амбициозног пројекта, са фирмом AEB, о 

проширењу постојеће мреже СДГ. Овим пројектом је предвиђена експанзија мреже 

СДГ, тако да се очекује да ће број корисника СДГ са постојећих 10% бити повећан на 

чак 40% за наредних 25 година [Amsterdam]. У плану је да се сваке године минимално 

7.000 нових корисника прикључи на СДГ. Као извор топлоте тренутно се користи 

велико инсинерационо постројење у Амстердаму, па ће се са ширењем мреже и 

повећањем броја корисника прикључених на систем повећати укупан степен 

искоришћења који тренутно износи 30%. Будући да се за грејање користи отпадна 

топлота цена предате количине топлоте ће бити компетитивна са ценом грејања на гас. 
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2.2 СИСТЕМИ ДАЉИНСКОГ ГРЕЈАЊА – ИСТОРИЈСКИ ПРЕГЛЕД 

У наставку ће бити дат историјски преглед развоја СДГ. Преглед се у највећој мери 

заснива на радовима [Werner, 1984; Werner, 2004]. 

 Системи даљинског грејања нису нова технологија. Један од најстаријих СДГ се 

налази у Chaudes-Aigues у Француској. Овај СДГ је био базиран на геотермалном 

топлотном извору температуре 82 0C и у функцији је од 14. века. У општинској архиви 

сачуван је документ у коме се наводи да два становника нису редовно плаћала накнаду 

за грејање 1332. године. Топла вода је дистрибуирана кроз издубљене дрвене балване, 

који су коришћени као дистрибутивни систем. 

 Идеја о савременим системима даљинског грејања иницијално је настала у САД. 

Творцем првог, једноставног система даљинског грејања у осамнаестом веку у 

Филаделфији, који је снабдевао неколико индивидуалних стамбених објеката из 

централног извора, сматра се Бенџамин Френклин. Први комерцијални СДГ 

пројектовао је 1877. године у Lockport-u, у САД, Birdsill Holly амерички проналазач и 

хидраулички инжењер. Систем је користио пару. Већ до деведесетих година 19. века у 

Северној Америци је било у функцији неколико таквих система (у Чикагу, Питсбургу и 

Балтимору). Гориво у топлотним изворима је био угаљ а носилац топлоте пара. У 

Њујорку, тачније Менхетну, први систем даљинског грејања почео је са радом 1882. 

године. Овај систем постоји и данас,  ради у склопу ConEdison компаније и има три 

милиона прикључених корисника.  

 Према [Werner, 1984] први комерцијални систем даљинског грејања, налик на 

данашње, конструисан је у Европи, у Хамбургу 1921. године. Главни покретач развоја 

СДГ била је висока цена фосилних горива након I Светског рата. Након система у 

Хамбургу изведени су и системи у Киелу 1922., Лајпцигу 1925. и Берлину 1927. године. 

Изван Немачке, системи даљинског грејања су почели са радом 1925. у Копенхагену, 

1930. у Паризу, 1927. у Утрехту, 1933. у Цириху и Стокхолму и Хелсинкију 1953. 

године. У Рејкјавику, систем даљинског грејања са геотермалним топлотним извором 

почео је са радом 1930.  године који данас снабдева готово цео град са 160.000 

становника. У Русији, први СДГ је направљен 1902. године по угледу на СДГ из New 

Yorka. Међутим, експанзија СДГ у Русији започиње са Лењиновим великим планом 

електрификације земље који је почео да се реализује двадесетих година прошлог века. 
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Данас московски СДГ представља највећи СДГ у свету. Други по величини је 

петровградски. 

 Први СДГ у Србији изведен је 1901 године [Todorović, 2005]. Фирма "Pohlmann & 

Kurz" из Будимпеште почела је са извођењем пројекта парног централног грејања у 

кухиње, перионице и павиљоне Опште државне болнице на Врачару. Постројење је 

пуштено у рад 5. августа 1906. године.  

 Код анализе развоја СДГ могуће је историјски издвојити четири фазе или генерације 

СДГ [Lund et al, 2014]. Графичка илустрација и упоређење четири генерације система 

дата је на Слици 2.1. 

 

Слика 2.1 Графичка илустрација основних карактеристика четири генерације СДГ  

[Lund et al., 2014] 

 У наставку су изложене основне карактеристике све четири генерације СДГ.  
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2.2.1 Прва генерација СДГ 

Прва генерација се везује за настанак савремених СДГ. Ови системи су први пут 

изграђени у Америци 1880. године. Почетком двадесетог века започиње њихова 

изградња и у Европи.  СДГ прве генерације везују се за временски период између 1880. 

и 1930. године [Lund et al., 2014]. Код СДГ прве генерације пара је коришћена као 

носилац топлоте због чињенице да је у то време била доступна у индустријским 

енерганама. У том периоду почиње и интензивно разматрање могућности  реализације 

когенеративних постројења, односно система са једновременом производњом 

електричне и топлотне енергије.  

 Код ових система водена пара, која се користи као носилац топлоте, се директно 

одузима из турбина у склопу термоелектрана или когенеративних постројења. 

Притисак паре може бити у распону од 2 до 20 bar уз температуру од 3000C. Ово 

одузимање се директно одражава на смањење ефикасности при производњи електричне 

енергије, у когенеративним постројењима са парним циклусом, јер је могућ губитак од 

чак 50% у произведеној ел. енергији. Губици су знатно мањи уколико се одузета пара 

користи за загревање топле воде.  

 Одузета пара из топлотног извора се дистрибутивном мрежом транспортује до 

грејних тела потрошача.  Дистрибутивна мрежа је најчешће реализована као двоцевна, 

са једном напојном дебелозидном цеви која је изолована слојем минералне вуне и 

једном цеви мањег пречника која се користи за повраћај кондензата од потрошача до 

топлотног извора. Дистрибутивна мрежа код појединих СДГ (нпр. СДГ на Menhetn-u, 

USA) је реализована као једноцевна, без цеви за поврат кондензата.  

 Цеви се, без обзира на то да ли је мрежа двоцевна или једноцевна, полажу преко 

челичних носача у бетонске канале. Пара из дистрибутивне мреже се директно доводи 

до грејних тела која су пројектована за високе температуре > 900C. Мерење утрошене 

топлотне енергије се врши индиректно, преко количине кондензата.  

 Главна предност СДГ са паром као носиоцем топлоте односи се на њен виши 

енергетски ниво у односу на топлу/врелу воду. Додатна предност је што се пара може 

користити за рад апсорпционих чилера што је од значаја у областима где постоји 

велика потреба за хлађењем.  
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Слика 2.2 Графичка илустрација дистрибутивног система за пару у Њујорку [ConEd] 

 Међутим, убрзо након почетка експлоатације ових СДГ (са паром као носиоцем 

топлоте) постало је јасно да они  имају низ недостатака. Ови недостаци се односе на сва 

три, кључна, сегмента СДГ: топлотне изворе, дистрибутивну мрежу и потрошаче.  

 Проблеми у топлотним изворима се односе на значајно умањење степена корисности 

когенеративних постројења због одузимања паре високог притиска и температуре из 

парних турбина. Други проблем у топлотним изворима односи се на чињеницу да 

кондензат  изазива корозију и садржи нечистоће из дистрибутивне мреже које директно 

враћа у систем.  

 При дистрибуцији паре од топлотног извора до потрошача јавља се низ проблема. 

Главни проблем су велики губици топлоте због високе температуре паре која се 

дистрибуира. Други проблем се односи на безбедан траспорт паре. У прошлости је било 

више акцидентних ситуација, чак и са смртним исходима, након прскања цеви за 

дистрибуцију паре. Такође, јављају се и проблеми са формирањем наслага у цевима 

дистрибутивне мреже. Ови проблеми се само делимично могу решити полагањем цеви 

под нагибом. Са друге стране, у повратној цеви којом се кондензат враћа до топлотног 
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извора  циркулише вода која садржи велике концентрације раствореног кисеоника и 

угљен диоксида што је чини јако корозивном. Једно од потенцијалних решења је 

употреба цеви од нерђајућег челика, али је ово решење јако скупо. Друго решење је 

коришћење једноцевне дистрибутивне мреже, без цеви за враћање кондензата. Такво 

решење, са једноцевном мрежом, је примењено у New York-u. Код оваквих СДГ 

умањена је величина инвестиционих трошкова али  су трошкови везани за 

компензацију утрошене воде велики.  

 Коначно, код СДГ са паром постоји и низ проблема са стране потрошача. Ови 

проблеми се односе на потребу уградње масивних грејних тела и специјалне 

регулационе арматуре која је пројектована за високе температуре (преко 900C). 

Додатни проблем је висока температура површине грејних тела па самим тим и 

могућност повређивања приликом случајног контакта са грејним телом.  

 Због изложених проблема, већина СДГ у Европи са паром као носиоцем топлоте је  

преведена у вреловодне системе. У Европи има пуно примера успешно реализованих 

реконструкција парних система у вреловодне. Неке од тих реконструкција изведене су 

у Минхену, Салзбургу, Хамбургу и ускоро у Копенхагену. Међутим СДГ са паром као 

носиоцем топлоте и даље постоје у New Yоrk-у и Паризу без тенденције да се ускоро 

трансформишу у вреловодне СДГ. Слична ситуација је и у индустријским системима у 

Европи, тако да ће у наредном периоду, највероватније, један део СДГ и даље 

користити пару као медијум за пренос топлоте.   

2.2.2 Друга генерација СДГ 

Након што су уочени проблеми са употребом паре, као носиоцем топлоте, било је 

потребно наћи неко друго решење. Алтернатива је пронађена у употреби вреле воде 

температуре преко 100 0C. Први овакви системи су почели да се јављају тридесетих 

година прошлог века. Они имају много сличности са СДГ прве генерације. То се пре 

свега односи на дистрибутивну мрежу. Цеви се израђују од челика и облажу 

минералном вуном in situ. Слично као и код СДГ прве генерације цеви се полажу на 

металне носаче у бетонске канале. Додатно, уводи се низ додатних механичких 

елемената у дистрибутивну мрежу са којима се остварује еластичнија конструкција 

цевног дистрибутивног система као последица цикличних загревања и хлађења.  
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 За дистрибуцију воде кроз систем и одржавање притиска у мрежи уводе се пумпе 

које се лоцирају на месту топлотног извора. Уводе се топлотне подстанице које се 

изграђују на местима предаје топлоте из дистрибутивне мреже ка корисницима и уводи 

хидрауличко раздвајање дистрибутивне мреже (примара) и инсталације корисника 

(секундара). Хидрауличко раздвајање код ових система се врши најчешће цевним 

измењивачима топлоте. Димензије радијатора се смањују и прилагођавају нижој 

температури из секундарне инсталације. Унапређења у овој фази су била суштинска јер 

су определила правце даљег развоја СДГ. Ова фаза се везује за период до осамдесетих 

година.  

2.2.3 Трећа генерација СДГ 

У трећој генерација СДГ уводе се додатна унапређења у све сегменте СДГ. Ова фаза 

почиње осамдесетих година. Увећава се удео когенеративних постројења за 

производњу топлотне енергије у односу на оне које се користе само за производњу 

топлоте. Започиње промовисање и реализација првих система у којима се производња 

топлоте заснива на обновљивим изворима. Ту се пре свега мисли на системе за 

сагоревање биомасе (Шведска – остаци дрвне биомасе и Данска – употреба сламе), 

геотермалне системе (предњачи Исланд у коме се готово 100% топлотне енергије 

добија из геотермалних извора) и соларне (скоријег датума). 

 У дистрибутивне мреже се уводе значајна унапређења. Уместо цеви код којих се 

изолација постављала у моменту полагања у бетонске канале, почиње производња 

такозваних предизолованих цеви. Оне имају концентричну изведбу са челичном цеви у 

средини и низом различитих изолационих слојева преко цеви. 

 Додатно, због робустне конструкције отвара се могућност директног полагања цеви 

у земљу, што драстично умањује трошкове израде дистрибутивне мреже. Овај тип цеви 

преузима превагу на тржишту и крајем седамдесетих година у Европи започињу 

програми масовне замене цеви у дистрибутивним мрежама. Са значајним кашњењем 

програм замене започет је и у Србији. 
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Слика 2.3 Предизоловане цеви за СДГ [Rohre] 

 Конкретна изведба предизолованих цеви се разликује у зависности од произвођача 

али се најчешће цеви израђују од угљеничног челика, полиуретан се користи као 

изолатор док се спољни омотач израђује од полиетилена високе густине. Често се у 

полиуретан, целом дужином цеви полажу две бакарне жице које се користе за детекцију 

цурења. Употребом предизолованих цеви избегава се коришћење компликованих 

система за учврћивање и компензацију, који су били обавезан елемент дистрибутивних 

система у СДГ друге генерације. У системима треће генерације снижавају се и 

температурски нивои носиоца топлоте, при чему се користе температуре потиса испод 

100 0C.  

 Унапређења у СДГ треће генерације односи се и на топлотне подстанице. Кабасти 

цевни измењивачи топлоте се замењују плочастим чиме се значајно смањује потребан 

грађевински  простор за смештање елемената подстанице. Додатно, повећава се 

флексибилност у раду подстаница уз значајно умањење топлотних губитака. 

Постављају се додатни сензори за мерење параметара на месту предаје топлоте што уз 

напредне системе аутоматике омогућава централно праћење и надзор рада система. 

Турбински мерачи протока воде се замењују ултразвучним калориметрима високе 

тачности за одређивање утрошка топлотне енергије. Уводи се и низ измена и 

унапређења у секундарној инсталацији – инсталацији потрошача топлотне енергије. 

Ливени радијатори се замењују алуминијумским и челичним. Уводе се и термостатски 
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регулациони вентили за грејна тела као и пумпе са фреквентном регулацијом чиме се 

стварају могућности за додатне уштеде.  

2.2.4 Четврта генерација СДГ 

Четврта генерација представља напредни концепт у коме се СДГ посматрају као 

саставни и нераздвојиви део будућих одрживих енергетских система. По овом концепту 

СДГ треба сагледавати као део будућих, интелигентних, енергетских система у којима 

се комбинују интелигентне електричне, топлотне и гасне мреже а у циљу добијања 

најоптималнијих решења, како за сваки индивидуални сектор, тако и за енергетски 

систем у целини [Lund, 2009]. Основна карактеристика будућих СДГ четврте 

генерације је драстично снижавање температурских нивоа преносиоца  топлоте на 30-

700C, па се ови системи још називају ниско температурним СДГ. 

 Фокус код експлоатације СДГ историјски се врло често мењао. Код првих СДГ 

(система прве генерације), циљ је био превасходно комфорно снабдевање топлотном 

енергијом, без детаљне анализе о ефикасности и потенцијалним уштедама. Након тога 

се од тенденције за смањењем трошкова (друга генерација СДГ) и осигурањем 

испоруке топлотне енергије (трећа генерација СДГ) долази до СДГ четврте генерације 

од којих се очекује да постану интегрални део будућих, одрживих енергетских система 

(eng. sustainable energy systems).  

 

Слика 2.4 Флексибилне цеви у СДГ најновије генерације [PipeSys] 
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 Поред даљег унапређења дистрибутивног система, кроз увођење флексибилних цеви 

којима се значајно снижавају трошкови изградње дистрибутивне мреже (видети Слику 

2.4) четврта генерација СДГ подразумева низ других, суштинских трансформација које 

предстоје како би ови системи у будућности задржали компетитивност.  

 Ти услови се могу систематизовати на следећи начин [Lund et al., 2014]: 

 могућност испоруке носиоца топлотне енергије ниске температуре за 

загревање простора и производњу санитарне топле воде за: постојеће зграде, 

енергетски ревитализоване зграде и нове, нискоенергетске зграде, 

 могућност минимизације топлотних губитака приликом дистрибуције топлотне 

енергије до потрошача,  

 могућност интегрисања обновљивих извора енергије (соларне и геотермалне) и 

нискотемпературних извора рециклиране топлоте у СДГ и 

 могућност интегрисања СДГ у будуће интелигентне и одрживе енергетске 

системе. 

 Овде је потребно  додатно објашњење. Према сценарију EU 20-20-20 очекивања су 

да ће, између осталог, до 2020. године доћи до смањења потреба за грејањем за 20% у 

односу на базни период из 1990. године [EU policy]. Ово смањење је последица са једне 

стране климатских промена (глобалног загревања) а са друге стране низа мера које се 

предузимају у циљу смањења потрошње и повећања ефикасности конверзије и 

дистрибуције енергије [Lund et al., 2014]. Компетитивност СДГ у новонасталим 

околностима могуће је једино уз даље смањење температурских нивоа носилаца 

топлоте (топле воде). Ове промене у СДГ морају да се одвијају упоредо са променама 

код самих потрошача које треба да буду усмерене ка смањењу утрошка финалне 

енергије, а кроз реализацију низа мера у циљу повећања енергетске ефикасности.  

 Са примењеним мерама енергетске ефикасности постоји могућност за значајно 

снижавање температура у СДГ, до нивоа који одговара температурама санитарне топле 

воде, чиме се: 

 стварају могућности за прикључење већег броја корисника на постојећи 

систем,  

 смањује дисипација топлоте у дистрибутивној мрежи и 
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 стварају могућности за интеграцију нискотемпературских извора топлоте 

(обновљивих извора енергије и рециклиране топлоте из индустријских 

постројења). 

 Додатна рационализација потрошње може се постићи унапређењем постојећих 

система управљања увођењем интелигентних система управљања [Lund et al., 2014]. 

Овде се пре свега мисли на системе за предвиђање потрошње, почевши од 

појединачних потрошача до дела или целог конзума.  На тај начин могуће је ускладити 

производњу и потрошњу и минимизирати губитке топлоте. 

 Могућност минимизације топлотних губитака приликом дистрибуције топлотне 

енергије до потрошача је од посебног значаја, будући да се значајан део топлотне 

енергије у постојећим системима губи у дистрибуцији (од 10% (западна Европа) – 30% 

(Источна Европа и Русија)). Снижавањем температурског нивоа преносиоца топлоте 

одражава се на смањење губитака топлоте са два аспекта. Са једне стране, снижавањем 

температуре смањује се и разлика између преносиоца топлоте и околине чиме се 

директно смањује предата (изгубљена) топлота. Са друге стране, са смањењем протока 

у дистрибутивној мрежи могуће је користити цеви мањег пречника чима се ствара 

могућност употребе двојних предизолованих цеви. Код ових цеви потисна цев се 

поставља централно, облаже полиуретаном  великог пречника док се повратна цев 

поставља у полиуретански прстен на месту изотерме која одговара пројектованој 

температури поврата. Снижавањем температурских нивоа и употребом двојних цеви 

могуће је губитке топлоте смањити четири пута у односу на СДГ треће генерације 

[Lund et al., 2014]. 

 Могућност интегрисања обновљивих извора енергије и нискотемпературних извора 

рециклиране топлоте у СДГ представља једну од кључних карактеристика будућих 

система. Низом субвенционих мера, а као одговор на антропогено глобално загревање, 

владе земаља подстичу изградњу система обновљивих извора енергије. Већина ових 

система изграђује се тенденциозно за добијање електричне енергије при чему у 

одређеним системима има отпадне топлоте која се може интегрисати у СДГ. Уз 

снижавање трошкова набавке и полагања цеви које се користе код нових СДГ, као и уз 

чињеницу да је код нових дистрибутивних система значајно умањен губитака топлоте, 

стварају се могућности за коришћење топлотних извора који су значајно удаљени у 

односу на потрошаче. То се пре свега односи на инсинерациона постројења која су 
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најчешће значајно просторно измештена у односу на урбана језгра. Слично, уз 

могућност коришћења топлоте знатно ниже температуре у односу на СДГ треће 

генерације значајно се увећава број могућих индустријских система који се могу 

искористити као потенцијални топлотни извори. За обезбеђење топлоте могу се 

искористити и велики соларни системи са сезонским складиштењем топлоте као и мали 

соларни системи са краткорочним складиштењем за обезбеђење топлоте у периферним 

деловима мреже [Lund et al., 2014]. Додатно, ниже температуре преносиоца топлоте 

пружају могућност увођења нискотемпературних геотермалних система,  које није било 

могуће користити у СДГ треће генерације. Коначно, део нискотемпературне топлоте се 

може добити и из постојећих когенеративних система, кондензацијом продуката 

сагоревања.   Упоредни приказ СДГ све четири генерације дат је у Табели 2.1. 

 

Табела 2.1 Упоредни приказ карактеристика различитих генерација СДГ (адаптирано 

из [Lund et al., 2014]) 

  

Прва генерација 
СДГ 

 

 

Друга генерација 

СДГ 

 

Трећа 
генерација 

СДГ 

 

Четврта 
генерација 

СДГ 

 

Временски период 

 

1880-1930 1930-1980 1980-2020 2020-2050 

Топлотни извор 
Парни котлови и 
когенерациона 
постројења на угаљ 

Когенерациона 
постројења и 
котлови на угаљ и 
мазут 

Велика 
когенерациона 
постројења на 
биомасу, отпад и 
фосилна горива 

Рециклирана 
топлота и 
обновљиви 
извори енергије 

 

Носилац топлоте 

 

Водена пара 
Врела вода  

(t > 1000C) 
Топла вода  

t < 1000 C) 

Вода ниске 
температуре 

 

 

Дистрибутивни 
систем 

 

Изоловане челичне 
цеви (in situ) 

Изоловане челичне 
цеви (in situ) 

Предизоловане 
челичне цеви 

Предизоловане 
флексибилне 
цеви 

 

Циркулациони 
систем 

 

Притисак паре Централне пумпе 
Централне 
пумпе 

Централне и 
децентрализоване 
пумпе 

 

Измењивачи 
топлоте у 
подстаници 

 

Нема 

Цевни 

измењивачи 
топлоте 

Без измењивача 
или плочасти 
измењивачи 
топлоте 

Плочасти 
измењивачи 
топлоте 
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Мерење предате 
количине топлоте 

 

Мерење количине 
кондензата 

Мерачи протока 
воде. Касније 
мерачи утрошене 
топлоте енергије 

Мерење предате 
количине 
топлоте 
ултразвучним 
мерачима. 
Увођење 
делитеља 
топлоте и 
бежично 
очитавање. 

Континуално 
мерење у циљу 
предузимања 
адекватних мера 

Грејна тела 

Радијатори за 
високе 
температуре  

(t > 900 C) 

Радијатори за 
високе температуре  

( 900 C) и 
коришћење воде из 
СДГ директно или 
индиректно 

Радијатори (700 
C), системи 
подног грејања 

Подно грејање, 
радијатори за 
ниске 
температуре (500 
C), подно грејање   

 

 Глобално, перспективе СДГ у највећој мери зависе од њихове флексибилности и  

могућности инкорпорирања у будуће интелигентне и одрживе енергетске системе. 

Према [Münster et al., 2012], у коме је приказана свеобухватна енергетска анализа за 

Данску, потенциран је значај когенеративних система у будућим енергетским 

системима. Имајући у виду да се ефикасност когенеративних система управо огледа у 

могућности једновремене производње електричне и топлотне енергије, и да се 

закључци из ове студије могу применити и на друге земље, будућност СДГ у таквој 

констелацији је осигурана. 
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2.3 ТРЖИШТЕ ТОПЛОТНЕ ЕНЕРГИЈЕ И СИСТЕМИ ДАЉИНСКОГ ГРЕЈАЊА 

– ЕУ28 И СРБИЈА 

 

2.3.1 Тржиште топлотне енергије у ЕУ28 

Према подацима1 [Eurostat] укупна потрошња топлотне енергије у ЕУ28 у 2013. години 

износила је око 2 милиона TJ. За разлику од потрошње електричне енергије која је 

драстично порасла током деведесетих година прошлог века да би се стабилизовала у 

последњих десетак година, потрошња топлотне енергије је врло мало флуктуирала. На 

Слици 2.5 приказан је тренд промене потрошње топлотне енергије у ЕУ28 у период од 

1990. до 2013. године. 

 

Слика 2.5 Потрошња топлотне енергије (у PЈ) у ЕУ28 од 1990. до 2013. године  

 Потрошња топлотне енергије по земљама ЕУ се драстично разликује. На Cлици 2.6 

приказана је потрошња топлотне енергије за 2013. годину за земље ЕУ28 и Србију 

[Eurostat]. По потрошњи топлотне енергије предњачи Немачка, а потом следи Пољска, 

Шведска и Финска. Може се уочити да у неким земљама попут Грчке, Шпаније, Кипра, 

Луксембурга и Малте готово и нема евидентиране потрошње топлотне енергије.   

                                                 
1 Подаци у наставку се заснивају на годишњим извештајима које достављају земље чланице. 
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Слика2.6 Потрошња топлотне енергије по земљама у ЕУ28 за 2013. годину 

 У употреби је било више енергената али доминирају природни гас и чврста фосилна 

горива. Приказ удела потрошње појединих енергената за производњу топлотне енергије 

у ЕУ28 у 2013. години дат је на Слици 2.7.  

 

Слика 2.7 Удели појединих енергената у укупној потрошњи топлотне енергије у 2013. 

години 

 Према подацима [Eurostat] у периоду између 1990. и 2011. године, више од 70% 

добијене топлотне енергије произведено је из природног гаса и чврстих фосилних 

горива. Иако су ова два енергента остала доминантна, њихов удео се у овом 
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временском периоду драстично променио, тако да је употреба природног гаса повећана 

са 22% на 41%  док се удео чврстих фосилних горива смањио са 59% на 28%. Тренд 

промене удела појединих енергената за производњу топлотне енергије приказан је на 

Слици 2.8. 

 

Слика 2.8 Произведена топлотна енергија према врсти горива у ТЈ за ЕУ28 за период 

од 1990-2012. године [Eurostat] 

 

 Важно је напоменути и да се удео обновљивих извора у производњи топлотне 

енергије значајно увећао са занемарљивих 3% из 1990. на 20% из 2012. године 

[Eurostat].  Највећи удео има биомаса из које је добијено готово 75% топлотне енергије 

из обновљивих извора енергије, док је на другом месту комунални отпад са 19%. 

 Структура потрошње, произведене топлотне енергије, у 2013. години у ЕУ28 дата је 

на Слици 2.9. 
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Слика 2.9 Удео појединих привредних сектора у потрошњи топлотне енергије у ЕУ28 

у 2013. години 

 Са слике се може видети да се највећи део  произведене топлотне енергије користи у 

домаћинствима. Један део те топлотне енергије се домаћинствима и индустрији 

дистрибуира преко СДГ.  

2.3.2 Системи даљинског грејања у ЕУ282 

По подацима организације Euroheat & Power, која се бави промоцијом СДГ у Европи у 

2011. години је удео СДГ у тржишту топлотне енергије за домаћинства у ЕУ28 износио 

12.4% [Euroheat & Power, 2015]. Удео СДГ у снабдевању становништва топлотном 

енергијом  значајно се разликује по земљама ЕУ. Док је код неких, посебно 

Скандинавских земаља тај удео 40-60%, у осталим земљама попут Велике Британије, 

Холадније, Италије и Француске он је знатно испод просека. Приказ удела укупног 

становништва које је прикључено на СДГ дат је на Слици 2.10. Највећи удео 

становништва прикључен на СДГ има Литванија са 67% домаћинстава, а потом следе 

Летонија са 64% и Данска са 61%. Највећи удео у свету има Исланд са 92% 

домаћинстава прикључених на СДГ. 

                                                 
2 Анализом нису обухваћене земље ЕУ28 у којима СДГ нису заступљени попут Грчке, Шпаније, Кипра, Велике 

Британије, Луксембурга и Малте 
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Слика 2.10 Удео укупног становништва прикључен на СДГ за земље ЕУ28 

 Ови системи у Европи обезбеђују несметано снабдевање топлотом за 62 милиона 

људи, дистрибутивном мрежом укупне дужине преко 140.000 km. У овим системима је 

у Европи 2011. године произведено 420 TWh топлотне енергије, при чему је вредност 

испоручене топлотне енергије процењена на 20 милијарди еура. 

 Тренутно у Европи постоји више од 6.000 СДГ. Локације ових система у ЕУ28 

приказане су на Слици 2.11. СДГ су најраспрострањенији у централној, источној и 

северној Европи. Развој СДГ у овим деловима Европе био је условљен првенствено 

оштрим климатским условима. Додатни подстицај су биле две енергетске кризе 

седамдесетих година прошлог века које су утицале на смањење утрошка финалне 

енергије и које су иницирале градњу првих когенеративних постројења.  

 У ЕУ28 у 2013. години је према подацима [Eurostat], кроз СДГ корисницима 

испоручено око седам милиона TJ топлотне енергије. Количина испоручене топлотне 

енергије у СДГ у ЕУ мењала се током година. 
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Слика 2.10 Локације СДГ у ЕУ28 [Connolly et al., 2012] 

 Производња топлотне енергије у СДГ у ЕУ28 од деведесетих година прошлог века 

до 2013. године приказана је на Слици 2.11.  

             Слика 2.11 Испоручена топлотна енергија у СДГ у ЕУ28 од 1990. до 2013. 

године 

 Са слике се може уочити да постоји одређени пад у количини испоручене топлотне 

енергије, нарочито након деведесетих година. Након овог периода дошло је до 
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стабилизације испоручене количине топлотне енергије, уз извесне флуктуације. Овај 

пад је последица са једне стране промене климе, а са друге стране резултат  низа мера 

које су предузете у ЕУ у циљу повећања енергетске ефикасности и смањења утрошка 

финалне енергије.  

 Испоручена количина топлоте у СДГ, по земљама ЕУ28 осетно флуктуира. 

Количина испоручене топлотне енергије у СДГ у ЕУ28 за 2013. годину приказана је на 

Слици 2.12. Највећа количина топлотне енергије из СДГ у ЕУ28 у 2013. години 

испоручена је у Немачкој (139,4 PJ), потом Пољској (110,9 PJ) и Великој Британији 

(60,8 PJ) [Eurostat]. Највећи светски произвођач топлотне енергије (из система 

даљинског грејања) је Русија са 6.891 PJ топлотне енергије испоручене током 2012. 

године.  

 

Слика 2.12 Количина испоручене топлотне енергије у СДГ у земљама ЕУ28 у 2013. 

години 

 Цена испоручене топлотне енергије такође значајно флуктуира са најнижом ценом у 

Мађарској (9.3 eur/GJ) и највишом у Данској (27.8 eur/GJ) (подаци за 2012. годину) 

[Euroheat & Power]. Средње цене GJ топлотне енергије из СДГ у eur за земље ЕУ28 у 

2012. години приказане су на Слици 2.13 
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Слика 2.13 Цена GJ топлотне енергије из СДГ у еur (подаци из 2012. године) 

 

 Најнижу цену топлотне енергије из СДГ на свету имају становници Исланда (3.14 

eur/GJ) a најскупљу Јапанци (57.73 eur/GJ).  

 При упоредној анализи врсте горива која се користе за добијање топлотне енергије у 

СДГ могу се такође уочити значајне разлике у земљама ЕУ. Начин добијања топлотне 

енергије у СДГ у ЕУ28 приказан је на Слици 2.14.  

 Рециклирана топлота са слике се односи на топлотну енергију у СДГ добијену из 

когенеративних система, инсинерационих постројења и индустријских процеса у 

којима је та топлота отпадна тј. у којима је настала независно од примарног 

производног процеса. Две трећине топлотне енергије добијено из топлотних пумпи 

сврстава се у део рециклиране топлоте. Под обновљивим изворима енергије 

подразумева се топлотна енергија добијена у СДГ њиховим директним коришћењем у 

системима који су тенденциозно пројектовани само за производњу топлотне енергије. 

Остало се односи на топлотну енергију произведену у котловским системима који се 

користе само за производњу топлоте и у којима нема производње електричне енергије. 

Овде се такође сврстава и једна трећина топлотне енергије добијена из топлотних 

пумпи. 
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Слика 2.14 Удео енергената при производњи топлотне енергије у СДГ у ЕУ28 У 2012 

 

2.3.3 Тржиште топлотне енергије у Србији 

 

Према подацима [RZS] у Србији, у 2013. години је произведено 34,3 PJ топлотне 

енергије. У структури потрошње, домаћинства су учествовала са 52.47%, индустрија са 

37.43%, и остали сектори са 10.1% (услуге, пољопривреда, саобраћај и грађевинарство) 

(Слика 2.15).  

 

Слика 2.15 Потрошња топлотне енергије по секторима у Србији за 2013 годину 

 

 Капацитети за производњу топлотне енергије у Републици Србији инсталисани су у:  

 топланама,  

 термоелектранама (ТЕ), 
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 термоелектранама - топланама (ТЕ-ТО)  

 индустријским енерганама у систему индустријске енергетике, 

 индивидуалним котларницама и 

 индивидуалним системима за грејање у домаћинствима у Србији. 

 Укупна инсталисана снага топлотних извора свих топлана у Србији износи око 6.100 

МW. Корисници су повезани са топлотним изворима преко 20.600 топлотних 

подстаница при чему је укупна дужина дистрибутивне мреже СДГ око 2.100 km. 

 У Србији постоје три термоелектране и то ТЕ Колубара, ТЕ Костолац и ТЕ Никола 

Тесла из којих се обезбеђује топлотна енергија за грејање Лазаревца, Обреновца, 

Костолца и Пожаревца. Термоелектране – топлане се налазе у Новом Саду, Зрењанину 

и Сремској Митровици. У индустријским енерганама налазе се топлотни извори снаге 

око 6.300 MW који су инсталисани у више стотина индустријских предузећа. Са друге 

стране, подаци везани за утрошак топлоте у индивидуалним системима за грејање у 

домаћинствима су оскудни, непотпуни и непоуздани.  

 Током 2013. године у Србији је у топланама произведено 20.453 ТЈ, у енерганама 

10.659 ТЈ, у термоелектранам 2.059 ТЈ и у термоелектранама-топланама 1.142 ТЈ 

топлотне енергије.  

 

 

 

 

 

 

Слика 2.16 Производња топлотне енергије по топлотном извору 

 У структури потрошње топлане су процентуално учествовале са 59.6%, енергане са 

31%, термоелектране са 6% и термоелектране-топлане са 3.4% (Слика 2.17).  
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Слика 2.17  Начин производње топлотне енергије у Србији 2013. године 

 Сопствена потрошња је износила 11 ТЈ за термоелектране, 1 ТЈ за термоелектране-

топлане и 1.211 ТЈ за топлане. Укупни губици у производњи и дистрибуцији топлотне 

енргије износили су 3.044 ТЈ. 

2.3.4 Системи даљинског грејања у Србији 

Према подацим пословног удружења Топлане Србије [PUTS] у Србији функционише 

53 СДГ. Укупно 609.955 домаћинстава је прикључено на СДГ. Дистрибуција санитарне 

топле воде из топлотних извора је слабо заступљена и постоји у СДГ у Београду, Новом 

Саду, Нишу, Бору, Панчеву и Мајданпеку. Највише корисника санитарне топле воде из 

СДГ има у Мајданпеку 65%, потом у Новом Саду 27%, Панчеву 11%, Бору 8.8%, 

Београду 6.8% и Нишу 1% од укупног броја потрошача прикључених на СДГ [PUTS]. 

 Удео појединих енергената у укупно произведеној топлотној енергији у СДГ у 

Србији за 2013. годину приказан је на Слици 2.18.  
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Слика 2.18 Удео појединих енергената у укупној производњи топлотне енергије у СДГ 

у Србији 

 Највише топлотне енергије у топланама у Србији произведено је из гаса (498.758.000 

Stm3), потом из деривата нафте (81.570 t мазута и 296 t лаког лож уља), угља  (183.197 t 

суб битуминозног угља, мрког угља и лигнита и 6.203 t брикета мрког угља и лигнита) 

и биомасе (4.054 t огревног дрвета, 1.390 t дрвених пелета и 1.131 t дрвених брикета). 

 Обављање делатности производње топлотне енергије у СДГ регулисано је бројним 

законима, уредбама и прописима Републике Србије и локалних самоуправа. Најважнији 

документи су: 

 закон о енергетици, “Службени гласник РС“ бр.57/2011 и 

 закон о ефикасном коришћењу енергије “Службени гласник РС“ бр.25/2013 

 Законом о енергетици овлашћења која укључују: 

 издавање и одузимање лиценце за производњу, дистрибуцију и снабдевање 

топлотном енергијом, 

 утврђивање услова и начина обезбеђивања континуитета у снабдевању 

топлотном енергијом купаца на одређеном подручју, 

 утврђивање права и обавезе дистрибутера топлотне енергије, 

 утврђивања права и обавезе купаца топлотне енергије, 

 доношење тарифних система и тарифних ставова, 
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 давање сагласности на цене топлотне енергије и 

 издавање енергетске дозволе за изградњу објеката за производњу топлотне 

енергије снаге 1MW и више, 

у надлежности су јединица локалне самоуправе на територији Републике Србије 

[AERS]. 

 Јавна комунална предузећа за дистрибуцију топлотне енергије и одговарајућа тела 

јединица локалне самоуправе заједнички ближе прописују начине рада појединачних 

система кроз: 

 одлуку о условима и начину снабдевања топлотном енергијом и 

 правила о раду дистрибутивног система топлотне енергије. 

 Правилником о раду дистрибутивног система утврђују се технички услови 

прикључења корисника на дистрибутивни систем, технички услови за повезивање са 

произвођачем, технички и други услови за безбедан погон дистрибутивног система и за 

обезбеђивање поузданог и континуираног снабдевања купаца топлотном енергијом, 

поступци у кризним ситуацијама, правила о мерењу са дефинисаном потребном мерном 

опремом итд. [AERS]. 

2.3.5 Проблеми у раду СДГ у Србији и потенцијални начини за њихово 

превазилажење 

Као шо је већ речено СДГ имају стратешки значај за локалну заједницу и државу у 

целини. Ово се најпре односи на ограничење емисије полутаната, енергетску сигурност 

и потенцијално редукцију трошкова потрошача. Имајући у виду ове предности СДГ 

потребно је формулисати сет мера којима ће се стимулисати развој СДГ, али на начин 

који ће бити економски прихватљив крајњим корисницима – потрошачима топлотне 

енергије. Другим речима, потребно је да цена топлотне енергије добијене из СДГ буде 

нижа у односу на цену топлотне енергије добијене из локалних загревних уређаја попут 

котлова на гас. Цена представља доминантан фактор будући да и у знатно еколошки 

„просвећенијим“ земљама одрживост и еколошки ефекат имају мањи утицај у односу 

на економски моменат.  

 Међутим, последњих година рад СДГ, у великом броју градова у Србији, повезан је 

са бројним проблемима. Неекономичан рад је директно повезан са начином производње 
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топлотне енергије и главним енергентом за њено добијање. Као што је већ напоменуто 

у претходном излагању, сви СДГ у Србији данас користе као енергент фосилна горива 

(најчешће природни гас) који се користи искључиво за производњу топлотне енергије. 

Овакав начин производње топлотне енергије готово и да не постоји у ЕУ, а и ако га 

има, ти системи се користе као резервна постројења (eng. backup) која се укључују само 

у изузетним приликама. Консеквентно цена произведене топлотне енергије, у СДГ у 

Србији, на овај начин превазилази  цену топлотне енергије добијене из локалних 

загревних уређаја који користе исти енергент, јер се у СДГ на трошкове енергената 

морају додати и трошкови који се односе на одржавање система и дистрибутивне 

мреже, плате запослених, режијске трошкове и сл. Додатно, цена произведене топлотне 

енергије у СДГ превазилази и цене осталих конкурентних опција (индивидуално 

грејање на гас, угаљ, дрва и струју - ТА пећ) и чини ове системе неодрживим. То 

доводи до парадоксалнe ситуације да цена испоручене топлотне енергије из СДГ 

вишеструко превазилази цену грејања индивидуалним загревним уређајима па чак и 

цену грејања на струју.  

 Ови проблеми постали су евидентни након што је применом привременог 

трговинског споразума са ЕУ од 1. фебруара 2013 онемогућено субвенционирање 

комуналних предузећа од стране локалне самоуправе. Додатно, одредбама Закона о 

ефикасном коришћењу енергије све топлане у Србији су биле у обавези да, од октобра 

2014. године, почну са наплатом грејања према потрошњи [JKP Grejanje Pančevo]. 

Такође, 1. јануара 2015. дошло је до измене прописа о слободном тржишту природног 

гаса што је директно условило поскупљење цене гаса. Све ове промене допринеле су 

повећању цене грејања што је довело СДГ у још неповољнији положај у односу на 

друге опције за обезбеђење грејања. 

 Поред проблема са енергентима, који су најевидентнији, у раду СДГ постоји и низ 

других проблема.  Сви топлотни извори су енормно предимензионисани.  

Дистрибутивна мрежа у већини СДГ у Србији је рађена фазно, без адекватне 

документације, па је хидраулички неуравнотежена чиме је онемогућена нормална 

испорука захтеване топлотне енергије свим потрошачима.  Додатно, у појединим СДГ у 

Србији опрема у топлотним подстаницама је застарела чиме је онемогућена регулација 

и мерење предате количине топлоте потрошачима. 
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 Поставља се питање да ли онда у таквој констелацији СДГ у Србији имају 

перспективу? 

 Будућност СДГ у Србији у великој мери зависиће од способности СДГ да се 

трансформишу у одрживе системе који ће корисницима испоручивати топлотну 

енергију на најекономичнији начин. То је могуће остварити једним делом кроз 

оптимизацију рада СДГ а другим кроз дефинисање јасне енергетске стратегије државе.  

 Оптимизацију рада СДГ у Србији, којом се могу значајно минимизирати трошкови 

производње и дистрибуције топлотне енергије, могуће је остварити на два кључна 

начина: 

 супституцијом постојећих извора топлоте стратешким  и  

 променом начина рада СДГ кроз увођење савремених, интелигентних, 

стратегија управљања које ће бити усмерене ка усклађивању произведене и 

утрошене топлотне енергије.  

 Управо се ова два кључна аспекта унапређења СДГ у наставку детаљно разматрају.  

2.4 КОНВЕНЦИОНАЛНИ И „СТРАТЕШКИ“ ТОПЛОТНИ ИЗВОРИ У СДГ 

Под топлотним извором подразумева се постројење за производњу топлотне енергије, 

која се дистрибутивном мрежом транспортује до потрошача. Код селекције топлотног 

извора потребно је размотрити следеће факторе [Vujović et al., 1984]: 

 максимално топлотно оптерећење, 

 врсту потрошача и њихових захтева за топлотном енергијом, 

 потенцијално потребну електричну енергију (односи се на когенеративна 

постројења), 

 однос потребне топлотне и електричне снаге, 

 намену топлотног извора (да ли је топлотни извор планиран за покривање 

базног или вршног оптерећења), 

 могућност лоцирања топлотног извора и 

 етапност изградње. 

 Као топлотни извори могу се користити: 
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 топлане са котловским системима заснованим на сагоревању течних, чврстих и 

гасовитих горива, 

 термоелектране-топлане (когенеративни системи), 

 инсинерациони системи, 

 геотермални системи и 

 соларни системи. 

 Топлане са котловским системима заснованим на сагоревању течних, чврстих и 

гасовитих горива спадају у групу конвенционалних топлотних извора. Оне су јако 

ретке у ЕУ јер је цена производње у оваквим постројењима неекономична и 

некомпетитивна у поређењу са осталим опцијама за производњу топлотне енергије. 

Топлане се у земљама ЕУ користе као резервна постројења и постројења за покривање 

вршног оптерећења. 

 Са друге стране когенеративна постројења (нарочито она заснована на употреби 

биогорива), инсинерациони, геотермални и соларни ситеми представљају „стратешке“ 

топлотне изворе који пружају могућност за реализацију одрживих и компетитивних 

СДГ. 

 Поред побројаних система у појединим земљама се примењују и топлотни извори 

који се заснивају на коришћењу „отпадне“ топлоте из индустријских процеса као и 

системи за производњу топлотне енергије из топлотних пумпи, полигенерационих 

постројења, електричних котлова и нуклеарних електрана.  

 Економичност рада СДГ у највећој мери зависи од правилног избора топлотног 

извора. Због тога се побројани топлотни извори у наставку детаљно разматрају. 

2.4.1 Топлане са котловским системима за сагоревање течних, гасовитих и 

чврстих горива 

Сагоревање горива у котловима и даље представља најосновни начин за добијање 

топлотне енергије у СДГ без обзира на то да ли се ради о топланама или 

когенеративним системима. У топланама се као погонско гориво могу користити разне 

врсте фосилних горива, биогорива као и њихова комбинација.  

 Од фосилних горива могу се користити разне врсте угља, течна горива (најчешће 

мазут и лож уље) као и гасовита горива (најчешће природни гас). 
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 Са друге стране, као последица низа политичких мера којима се подстиче употреба 

обновљивих извора енергије [Söder, 2013] употреба чврстих биогорива за производњу 

топлотне енергије последњих година добија на значају. Према [Söder, 2013] годишњи 

утрошак примарне енергије у постројењима за сагоревање биомасе у ЕУ у 2008. години 

процењен је на близу 4.000 PJ уз очекивани годишњи раст од 8.3%. По употреби 

биомасе у великим системима за производњу топлотне и електричне енергије предњаче 

Данска, Финска и Шведска док се у осталим земљама ЕУ чврста биогорива углавном 

користе у мањим постројењима. 

 Трећа опција је употреба технологија за косагоревање. Косагоревање се односи на 

мешање фосилних горива (различитих врста угљева) са чврстим биогоривима 

непосредно пре сагоревања. Косагоревање представља врло атрактивну опцију која се 

може применити код постојећих система у којима се врши сагоревање угљева. На тај 

начин је могуће искористити постојећу инфраструктуру уз минимална додатна улагања.  

 Избор горива суштински опредељује избор генератора топлоте, а самим тим и 

концепцију топлане. У наставку се разматрају генератори топлоте (котлови) за 

сагоревање гасовитих и чврстих горива са посебним акцентом на чврстим биогоривима. 

Системи за сагоревање течних горива (мазута) се не разматрају јер последњих година 

губе на значају, како из економских тако и из еколошких разлога. Употреба мазута у 

СДГ у ЕУ је данас готово избачена и овај енергент се користи само за погон бродских 

мотора. У Србији у СДГ мазут се и даље користи али знатно мање него раније јер је 

током претходне две деценије већина котлова која су користила мазут замањена или 

прилагођена сагоревању природног гаса. Додатно, генератори топлоте за сагоревање 

гасовитих горива конструкционо одговарају и за сагоревање течних горива. 

2.4.1.1 Котловски системи за сагоревање гасовитих и течних горива 

За сагоревање природног гаса у СДГ најчешће се примењују коморни генератори 

топлоте. Коморни системи се изводе са екранисаним зидовима који се састоје од 

непропусно заварених цеви. Код ових система потребно је обезбедити потпритисак у 

ложишту. Једна конструкција, заједно са зонама сагоревања приказана је на Слици 2.19. 
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Слика 2.19 Зоне сагоревања код једне од конструкција коморних генератора топлоте 

 Коморни генератори топлоте могу бити реализовани као вреловодни и парни. Парни 

се примењују код когенеративних система. Поред коморних генератора топлоте 

користе се још и котлови са пламеним и димним цевима као и котлови са водогрејним 

цевима, који се примењују за мање снаге. 

2.4.1.2 Котловски системи за сагоревање чврстих биогорива 

За сагоревање чврстих биогорива у СДГ могу се користити следеће технологије: 

 сагоревање у непокретном слоју, 

 сагоревање у мехурастом флуидизационом слоју, 

 сагоревање у циркулационом флуидизационом слоју и  

 сагоревање спрашених биогорива. 

 На избор технологије утиче велики број параметара попут инсталисане снаге, врсте и 

карактеристика биомасе која ће се користити (облик, хемијски састав, влажност итд.), 

цене и еколошких захтева. Принципијелне шеме за ове технологије приказане су на 

Слици 2.20. 
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Слика 2.20 Технологије сагоревања биомасе [Clements-Croome, 2010] 

 Ове технологије су детаљно описане у литератури [Clements-Croome, 2010, Koppejan, 

J. et al., 2012]. Технологије за сагоревање чврстих биогорива се базирају на провереним 

решењима за сагоревање фосилних горива, стим што су уведена додатна прилагођења у 

складу са специфичностима биогорива.  

2.4.2 Когенеративна постројења 

Когенерација представља најважнију технологију за производњу топлотне енергије у 

СДГ у ЕУ. У 2011. години 79% укупно произведене топлотне енергије у  СДГ у OECD 

земљама потицало је из когенеративних постројења [IEA, 2014]. 

 Когенерациона технологија омогућава истовремену производњу топлотне и 

електричне енергије. То се постиже коришћењем топлоте која настаје као нуспроизвод 

у процесу производње електричне енергије. Когенеративна постројења се још називају 

постројењима за комбиновану производњу топлотне и електричне енергије и 

термоелектранама-топланама. Поједини аутори [Vujović et al., 1984] праве разлику 

између термоелектрана-топлана и топлана-термоелектрана у зависности од тога да ли је 

примарни циљ производња електричне или топлотне енергије. 

 Увођењем когенерације значајно се увећава степен искоришћења у поређењу са 

конвенционалним процесима производње топлоте. Према [IEA, 2014], на глобалном 
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плану, степен искоришћења у термоелектранама у 2011. години је износио 36% 

насупрот степену искоришћења у когенеративним постројењима, који је био 58%. У 

савременим гасним когенерационим постројењима могуће је постићи и ефикасност у 

конверзији од чак 90% [IEA, 2014]. 

 Технологија когенерације није нова и везује се за зачетке производње електричне 

енергије. Први когенеративни системи су произведени крајем деветнаестог века у 

Америци где се топлота, која је настајала у процесу производње електричне енергије за 

осветљење, користила за грејање станова и канцеларија. Убрзо је започета и изградња 

првих когенеративних система у Европи, али до њихове експанзије долази тек након 

енергетске кризе седамдесетих година прошлог века што се поклапа са зачетком 

експанзије СДГ. 

 Степен интеграције когенеративних система у електроенергетске системе земаља 

Европе није једнак и он у највећој мери зависи од климатских услова као и нивоа 

перцепције технологије. Удео когенеративних постројења у производњи електричне 

енергије у ЕУ приказан је на Слици 2.21. Највећи удео произведене електричне 

енергије из когенеративних система има Данска. Ово се уједно поклапа са великим 

уделом становништва које се снабдева топлотном енергијом из СДГ.  

 

Слика 2.21 Удео когенеративних постројења у националној производњи електричне 

енергије [IEA 2009] 
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 Когенерациона постројења могу да имају кључну улогу у будућим ниско емисионим 

енергетским системима, али нажалост овај велики потенцијал није довољно 

искоришћен због недостатка адекватног енергетског планирања и одговарајућих 

подстицајних механизама. Главни проблем представља централизована производња 

електричне енергије која у великој мери отежава интеграцију мањих производних 

капацитета, јер се на тај начин утиче на развој ефикасног националног енергетског 

система који се базира на термоелектранама великих снага.  

 Имајући у виду низ предности когенеративних система који се огледају у повећању 

степена искоришћења горива, смањењу емисије CO2, повећању флексибилности у 

смислу искоришћења различитих енергетских ресурса и коначно повећању енергетске 

сигурности земље, интеграција когенерације у националне стратешке енергетске 

планoве је од примарног значаја.  

2.4.2.1 Когенеративни системи – општи принципи рада  

Код когенеративних постројења уобичајено се одвијају следећи процеси [Söder, 2013]: 

 конверзија хемијски везане енергије у топлотну, 

 конверзија топлотне у механичку енергију и 

 конверзија механичке у електричну енергију. 

 У већини когенеративних постројења конверзија хемијски везане енергије у 

топлотну одвија се сагоревањем. Сагоревање се најчешће обавља у котловима који су 

уједно и генератори паре. Поред котлова сагоревање у когенеративним постројењима 

може да се одвија у гасним турбинама и моторима са унутрашњим сагоревањем. 

 Код когенеративних система, сагоревање је део термодинамичког циклуса у коме 

радни медијум пролази кроз фазне промене између гасне и течне фазе и у којима се 

енергија додаје или одузима у одређеним деловима циклуса. Термодинамички циклуси 

могу бити отворени или затворени.  

 Код затворених циклуса процес сагоревања и процес производње електричне и 

топлотне енергије су физички раздвојени површинама за размену топлоте тако да се са 

једне стране налазе продукти сагоревања, а са друге радни (процесни) медијум. На тај 

начин продукти сагоревања не долазе у директни контакт са експанзионим машинама и 
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не постоји могућност њиховог оштећивања. Додатно, отвара се могућност за употребу 

најразличитијих врста горива, па се код затворених циклуса могу поред течних и 

гасовитих горива употребљавати и чврста фосилна горива, биогорива и комунални 

отпад. 

 Са друге стране, код отворених циклуса готово искључиво се примењују гасовита 

или течна горива. Ови циклуси се реализују у моторима са унутрашњим сагоревањем 

или гасним турбинама. Употреба чврстих биогорива, у било ком облику, у моторима са 

унутрашњим сагоревањем је технички неизводљива, док са друге стране има покушаја 

коришћења спрашене биомасе у турбинама. Међутим, тренутно добијени резултати 

нису охрабрујући и не указују на могућност даље експлоатације ове технологије. 

 Конверзија из топлотне у механичку енергију код когенеративних система се одвија 

у парним и гасним турбинама  и моторима.  

 Парне турбине  представљају турбомашине у којима се енергија процесног медијума 

транформише у механичку енергију вратила турбине. Механичка енергија са вратила 

турбине се предаје генератору у коме се електромагнетном идукцијом добија струја. 

Изглед МАN-ове парне турбине приказан је на Слици 2.22. 

 

Слика 2.22 Уградња ротора парне турбине у кућиште, произвођач MAN [MAN] 

 У парним турбинама се као медијум користи прегрејана пара или органски медијум 

уколико је процес изведен по органском Ранкиновом циклусу. Парну турбину 

дефинишу следећи параметри [Vujović et al., 1984]: 
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 врста турбине, 

 снага, 

 притисак свеже паре, 

 притисци одузимања паре, 

 противпритисак (код противпритисне турбине) и 

 притисак кондензације. 

 Турбине могу бити изведене за врло велики распон снага, почевши од 100 kW па све 

до више од 1.000 MW. Степен искоришћења у великој мери зависи од снаге турбине и 

креће се у распону од 78% (код мањих турбина снага од неколико МW до неколико 

десетина МW) до 92% (код постројења чија снага превазилази 100 МW). Парна турбина 

се састоји од кућишта, вратила, статора и радног кола. Статор и радно коло формирају 

један ступањ при чему се парне турбине најчешће састоје од више ступњева. У парној 

турбини радни медијум се најчешће простире аксијално мада постоје и решења код 

којих је струјање радијално. 

 У пракси се користе следећи типови парних турбина: 

 кондензационе и 

 противпритисне. 

 И кондензационе и противпритисне турбине могу бити изведене са или без 

одузимања паре. 

 Кондензационе турбине се користе у термоелектранама, где нема производње 

топлотне енергије. У овом случају се на излазу из турбине добија „израђена“ пара 

притиска који је врло често испод 0.1 bar. Израђена пара се потом уводи у кондензатор. 

На тај начин се максимизира продукција електричне енергије али се целокупна 

топлотна енергија предаје околини. Ове турбине се израђују за велике снаге почевши 

од 25 МWе, будући да је код мањих јединица степен искоришћења јако низак [Söder, 

2013]. 

 Код противпритисне турбине се у потпуности искоришћава топлота која настаје 

кондензацијом водене паре на излазу из турбине. Водена пара на излазу из ове турбине 

најчешће има температуру од 1000C и притисак од 1 bar. У овом случају се израђена 
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водена пара уводи у измењиваче у којима се топлота предаје најчешће носиоцу топлоте 

у СДГ. Ове турбине се израђују за мање снаге, најчешће до 5 МWе [Söder, 2013]. 

 Турбине са наменским одузимањем паре могу бити изведене на два начина. Као 

кондензационе турбине са одузимањем паре или као противпритисне са одузимањем 

паре. Код турбина са наменским одузимањем паре могуће је извести више одузимања 

на различитим притисцима при чему се ова пара може искористити за загревање док се 

остатак користи за рад турбина на нижим притисцима у кондезационом режиму. Ове 

турбине се израђују за снаге веће од 5МWе [Söder, 2013]. 

 Са друге стране, гасне турбине могу да раде по отвореном или затвореном циклусу. 

Код рада у отвореном циклусу продукти сагоревања, који настају или директним 

сагоревањем гаса у турбини или сагоревањем у комори изван гасне турбине, се уводе у 

турбину где експандирају. Продукти на излазу из гасне турбине се могу увести у 

измењивач топлоте где се њихова топлота може искористити за загревање воде у СДГ. 

Код гасних турбина које раде у затвореном циклусу продукти сагоревања у комори за 

сагоревање предају топлоту радном медијуму (ваздуху или хелијуму) који учествује у 

затвореном циклусу. 

 Коначно, мотори могу бити реализовани као парни клипни или Стирлингови. Парни 

клипни мотори функционишу на исти начин као и други клипни мотори стим што је 

код њих радни медијум пара а не продукти сагоревања. Степен искоришћења је до 20% 

за вишестепене машине. Код Стирлингових мотора као радни медијум се користи 

ваздух, хелијум или водоник. Стирлингови мотори раде при готово термодинамички 

идеалном Карноовом циклусу, али је због низа губитака (због трења, губитка притиска 

и ограничене предаје топлоте) степен искоришћења ограничен на 25%. 

 У наставку ће бити укратко приказан начин рада когенеративних система са гасним 

и парним турбинама као и когенеративни системи који раде у комбинованом циклусу.   

2.4.2.2 Когенеративни системи са гасним турбинама 

Гасне турбине имају велику примену у процесној и авио индустрији као и у 

производњи електричне (и топлотне) енергије. Гасне турбине имају низ предности у 

односу на парне турбине које се пре свега односе на њихову мању величину, масу и 
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цену. Додатна предност је краће време инсталације и пуштања у рад, изузетна 

поузданост као и могућност употребе различитих врста течних и гасовитих горива. 

 Гасне турбине се израђују у великом распону снага од неколико стотина kW до 

неколико стотина МW мада у последње време има и апликација знатно нижих 

капацитета. Основно гориво за погон гасних турбина је природни гас, мада код већине 

постоји могућност употребе алкохола, керозина, пропана и лаког лож уља.  

 Као што је већ речено оне могу да раде по отвореном или затвореном Брајтоновом 

циклусу. Отворени Брајтонов циклус се знатно чешћи сусреће у односу на затворени. 

 Главни недостатак код рада турбина по Брајтоновом циклусу је што се значајан део 

(40-60%) добијеног механичког рада из турбине троши на погон компресора. Додатни 

пад у степену искоришћења код практичних постројења је последица постојања 

неповратних процеса код компресора и турбине попут фрикционих губитака у 

лежајевима и пада притиска у спроводним деловима и комори за сагоревање.  

 Основни делови гасне турбине су: 

 компресор, 

 комора за сагоревање и 

 турбина. 

 У компресору се повећава притисак улазног ваздуха за 15-25 пута. Истовремено са 

увећањем притиска увећава се и температура улазног ваздуха која достиже вредност од 

400-4650C [Kiameh, 2003]. Један део компримованог ваздуха се доводи у комору за 

сагоревање, док се остатак користи за хлађење продуката сагоревања пре њиховог 

увођења у турбину. 

 Процес сагоревања у гасној турбини одвија се у комори за сагоревање. Она се може 

извести на више начина, али се код савремених гасних турбина великог капацитета 

користе ануларне коморе (eng. annular combustors) због компактније изведбе, бољих 

перформанси и издржљивости на високим температурама. Главни недостатак је 

релативно компликовано сервисирање.  

 Један од главних захтева који се поставља пред конструкторе гасних турбина односи 

се на минимизирање емисије. Овај захтев се пре свега односи на емисију NOx чија 

продукција се може минимизирати снижавањем максималног времена задржавања и 
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температуре сагоревања. Међутим, ови захтеви су у супротности са условима за 

минимизацију емисије CO и других органских полутаната. Једно од потенцијалних 

решења је употреба горионика са предмешањем мада и у том случају постоје проблеми 

у раду при парцијалним оптерећењима.  

 Као резултат сагоревања настају продукти на високој температури који се из гасне 

коморе уводе у турбину. Гасови у турбини експандирају при чему се један део њихове 

енергије претвара у механички рад. На излазу из турбине притисак и температура 

продуката сагоревања значајно опада.  

 Већина савремених гасних турбина изводи се са једним вратилом на коме се налазе 

радна кола и компресора и турбине.  

 Степен искоришћења код савремених гасних турбина је око 40% за случај када је 

температура унутар коморе за сагоревање до 14000C [Kiameh, 2003]. Увећање степена 

искоришћења је могуће постићи повећањем температуре у комори за сагоревање или 

повећањем притиска у компресору. У овом случају радне температуре и притисци су 

ограничени квалитетом примењених материјала. 

 Температуре излазних гасова из турбине су у распону од 482-6380C при чему горња 

граница одговара савременијим турбинама [Kiameh, 2003]. Гасна турбина може да ради 

у склопу когенеративног постројења при чему се продукти сагоревања могу 

искористити за загревање воде из СДГ. Хлађење продуката сагоревања се може извести 

до температура од око 500C, уколико је потребно избећи кондензацију или испод ове 

температуре уколико постоји интерес у искоришћењу латентне топлоте продуката 

сагоревања. 

 Уколико гасна турбина ради у склопу когенеративног постројења, притисак 

излазних гасова из турбине треба да буде довољан како би се савладао пад притиска у 

цевима размењивача топлоте у коме се топлота продуката сагоревања предаје води из 

СДГ. Због тога се добија нешто мање електричне енергије него што је то случај 

уколико се продукти сагоревања из турбине испуштају директно у атмосферу.  

2.4.2.3 Когенеративни системи са парним турбинама 

Когенеративни системи са парним турбинама у 90% случајева раде по Клаузијус-

Ранкиновом циклусу. У зависности од пројектних захтева који се односе на однос 
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између потребне топлотне и електричне енергије могућа су два концепта 

когенеративних постројења: 

 когенеративна постројења са противпритисним турбинама и  

 когенеративна постројења са кондензационим турбинама са наменским 

одузимањем паре. 

 У наставку ће бити принципијелно објашњен рад ових когенеративних система. 

2.4.2.3.1 Когенеративна постројења са противпритисним турбинама  

Упрошћена шема когенеративног постројења, без приказа котловског постројења, које 

ради са противпритисном турбином приказана је на Слици 2.23. 

 

Слика 2.23 Упрошћена шема когенеративног постројења са противпритисном 

турбином [Söder, 2013] 

 У котлу се вода из циклуса преводи у сувозасићену пару која се додатно загрева у 

конвективном делу котла. Ова пара се назива предгрејаном сувозасићеном паром или 

свежом паром (eng. live steam). Свежа пара се уводи у турбину где експандира до 

знатно нижег притиска, најчешће близу атмосферског. „Израђена“ пара из турбине се 

уводи у измењивач топлоте где се кондензује, до течног стања уз предају топлоте 
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систему даљинског грејања. Напојне пумпе подижу притисак воде која се уводи најпре 

у деаератор, за уклањање растворених гасова, а потом у котао на поновно испаравање и 

прегревање. На тај начин се термодинамички циклус затвара.   

 Когенеративна постројења са противпритисним турбинама се могу посматрати као 

термоелектране код којих је кондензатор замењен измењивачем топлоте у коме се 

топлота „израђене“ паре предаје СДГ. На тај начин се топлота која би се неповратно 

предала околини користи за загревање воде у СДГ, чиме се значајно повећава степен 

искоришћења постројења. Из Т-s дијаграм циклуса може се уочити да се због 

одузимања паре на нешто вишем притиску (1 bar) у односу на онај који је уобичајен код 

кондензационих постројења (0.01 bar), у противпритисном режиму добија нешто мање 

електричне енергије. Овај губитак добијене енергије зависи од величине 

противпритиска и уобичајено износи мање од 10%. Међутим, укупан степен 

искоришћења је знатно већи (достиже вредности и до 80%)  јер се поред електричне 

добија и топлотна енергија. 

 Потенцијални проблем са овим когенеративним концептом се јавља лети када 

потреба за топлотом опада (нема грејања али има захтева за санитарном топлом водом) 

или уопште не постоји (нема ни грејања ни захтева за санитарном топлом водом). Због 

тога је код ових постројења потребно поставити летње хладњаке у којима се кондензује 

израђена пара у случају када нема потребе за топлотном енергијом у СДГ. Инсталисани 

капацитет у СДГ дефинише да ли је исплатљивије инсталирати турбину са одузимањем 

са кондензатором или противпритисну турбину са хладњаком.   

 Рад когенеративног постројења са противпритисном турбином и одузимањем паре је 

у директној корелацији са флуктуацијама у потребама за грејањем у СДГ. Свака 

промена у виду повећања или смањења топлотног оптерећења директно се одражава на 

ниво температуре на излазу из турбине. Ове промене/осцилације се директно 

одражавају на степен искоришћења турбине који нелинеарно зависи од величине 

против-притиска. Уколико су промене противпритиска мале ефикасност се незнатно 

смањује али при већим осцилацијама степен искоришћења драстично опада. 

2.4.2.3.2 Кондензациона когенеративна постројења са одузимањем паре 

Код кондензационих когенеративних постројења оставља се могућност да пара на 

излазу из турбине високог притиска иде или у турбину ниског притиска или у 
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измењивач топлоте у коме се врши загревање воде из СДГ. Концептуална шема овог 

постројења дата је на Слици 2.24. 

 

Слика 2.24 Упрошћена шема когенеративног кондензационог постројења са 

одузимањем паре [Söder, 2013] 

 Вода из турбине ниског притиска се након експанзије уводи у кондензатор. Слично 

као и код когенеративних постројења са турбином са противпритиском и овде се 

уграђује регенеративни загрејач, деаератор за гасове и ступњевито пумпање воде. 

 Велика предност код кондензационих постројења је што се систем може лако 

адаптирати на промене (раст) топлотног оптерећења у СДГ, најчешће кроз прикључење 

нових потрошача. Такође постоји пуно примера термоелектрана које су преведене на 

когенеративна постројења управо на овај начин. Код ових постројења уграђују се 

пролазни вентили за пару који се аутоматски регулишу и преко којих се одређује удео 

паре који ће се усмерити у турбину ниског притиска, односно у измењивач за загревање 

воде у СДГ. Из сигурносних разлога потребно је да један, минимални део паре из 

турбине високог притиска буде усмерен у турбину ниског притиска како би се избегло  

њено прегревање.  
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2.4.2.4 Когенеративна постројења са комбинованим циклусом 

Ефикасност гасних турбина које раде у отвореном или затвореном циклусу је довољна 

за рад постројења којима се покривају вршна оптерећења. Међутим, за покривање 

основног, базног оптерећења потребна су унапређења којима се повећава степен 

искоришћења. Једно од најважнијих унапређења је увођење когенеративних постројења 

са комбинованим циклусом. 

 Когенеративна постројења са комбинованим циклусом подразумевају комбиновање 

отвореног гасног циклуса са парним циклусом (најчешће са парним противпритисним 

турбинама). Предности комбиновања ова два циклуса су у чињеници да је гасни циклус 

прилагођен раду са вишим температурама док су температуре продуката сагоревања на 

излазу из гасне турбине још довољно високе за рад парног циклуса.  

 Постоји много различитих начина на које је могуће реализовати комбиновани 

циклус. Међутим, код когенеративних комбинованих система уобичајно је да се вода из 

СДГ најпре загрева од продуката сагоревања из гасне турбине, а потом врши њено 

догревање  израђеном паром из (противпритисне) турбине.  

 Уколико се у постројењу производи само електрична енергија, могуће је достићи и 

степен искоришћења од 60% [Kehlhofer, 2009]. Уколико постројење ради као 

когенеративно, степен искоришћења за добијање електричне енергије је нешто нижи, 

али је пад нижи него што је то случај код парних постројења. Детаљан приказ 

различитих конфигурација као и фактора који потенцијално утичу на повећање степена 

искоришћења дат је у литератури [Kehlhofer, 2009; Bachmann, 1999; Boyce, 2011]. 

2.4.3 Инсинерациoна постројења 

Материјали за које човек не показује интересовање називају се отпадом [Ashby, 2012]. 

Чврст отпад се може класификовати као комунални (резиденцијални и комерцијали), 

индустријски, пољопривредни и грађевински [Söder, 2013]. 

 У поређењу са осталим врстама отпада, комунални отпад је најхетерогенији јер 

садржи све остатке након људске употребе материјала. У [Themelis et al., 2002] 

показано је да се са прихватљивом тачношћу хемијска структура комуналног отпада 

може приказати формулом: C6H10O4. Податке треба прихватити условно јер се 

структура отпада разликује од депоније до депоније чак и у оквиру истих земаља. 
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Индиректно следи и да вредности горње односно доње топлотне моћи значајно 

флуктуирају. 

 Код одрживог управљања отпадом улажу се максимални напори да се из тока отпада 

издвоје материје које се могу рециклирати или компостирати. У развијеним земљама 

улажу се велики напори да се отпад рециклира а остатак компостира или спаљује у 

циљу повратка енергије. На Слици 2.25 приказана је заступљеност различитих 

поступака третмана комуналног отпада у земљама ЕУ28 [Eurostat]. 

Слика 2.25 Третман отпада у земљама ЕУ28+, подаци за 2012  [Eurostat] 

 Претходна искуства показују да је најпрактичније селекцију материјала из отпада 

вршити директно, на месту његовог настанка [Söder, 2013]. Међутим, и са применом 

најбољих пракси није могуће постићи удео рециклирања већи од 70%. Један део отпада 

остаје неискоришћен при чему спаљивање, односно инсинерација, представља врло 

атрактивну опцију за његово енергетско искоришћење. 

Историјски, развој технологије инсинерације је могуће посматрати кроз четири 

раздобља [Söder, 2013]. У првом раздобљу, тежиште код изградње инсинерационих 

постројења било је на испуњењу санитарних и хигијенских захтева уз минимизирање 

количине отпада. У том периоду је недовољно пажње било усмерено ка испуњењу 

еколошких захтева. Тада се изграђују и прва инсинерациона постројења за екстракцију 

енергије из отпада. Углавном су прва постројења служила само за производњу 

топлотне енергије. 
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 У следећем периоду између шездесетих и деведесетих година, еколошки проблеми 

са инсинерационим постројењима постају уочљивији што је резултирало доношењем 

стриктнијих еколошких стандарда. То условљава промене на самим котоловским 

постројењима у која се уводе додатна побољшања у виду унапређене аутоматике за 

прецизнију контролу сагоревања. Додатно почиње уградња електрофилтера код којих 

се врши издвајање честица из димних гасова. У овом периоду интензивира се изградња 

когенерационих постројења за једновремену производњу електричне и топлотне 

енергије. Међутим, ова постројења због технолошких ограничења, раде са нижим 

температурама и притисцима што условљава нижи степен искоришћења у распону од 

14-18% [Söder, 2013]. 

 Седамдесетих година прошлог века је уочено да продукти сагоревања из 

инсинерационих постројења садрже алармантно високе концентрације диоксина и 

фурана. То је иницирало драстично пооштравање емисионих лимита и истовремено 

условило затварање великог броја инсинерационих постројења током осамдесетих 

година. Истовремено отварањем нових постројења и реконструкцијом постојећих, кроз 

увођење сегмената за хемијски третман, производња електричне и топлотне енергије из 

отпада постаје једна од најчистијих технологија. Ова трансформација технологије 

инсинерације везује се за период од деведесетих до 2005. године [Söder, 2013]. 

 Од 2005. године до данас инсинерација се додатно трансформише у одрживу 

технологију. Данас је фокус усмерен на повећању ефикасности у раду постројења кроз 

повишење радне температуре и притиска. Ово је омогућено применом нових, скупих 

инконел легура које задржавају механичка својства на повишеним температурама, 

притисцима и у агресивним срединама (висок садржај хлора). 

 Циљ рада инсинерационих постројења се може дефинисати на следећи начин [Söder, 

2013]: 

 смањење запремине комуналног отпада, 

 уништавање органских контаминаната, 

 повраћај метала из отпада, 

 енергетско искоришћење отпада и 



59 

 

 чишћење димних гасова у складу са стриктним нормама које регулишу ову 

област. 

 Постоји више технологија које се могу примењивати за термички третман отпада 

попут конвенционалног сагоревања на решетки, сагоревања у флуидизованом слоју, 

гасификације и пиролизе. Међутим, досадашње искуство је показало да се 

конвенционалним сагоревањем на решетки још увек добија највиши степен 

искоришћења и најекономичнији рад уз знатно ниже инвестиционе трошкове [Söder, 

2013]. Ово је у највећој мери последица специфичних физичких и хемијских својстава 

комуналног отпада. 

 Због напред наведених специфичности који се односе на структуру и карактеристике 

комуналног отпада, котловске једнице код инсинерационих постројења се у извесној 

мери разликују од котловских јединица при сагоревању фосилних горива. Шема 

модерног котловског постројења које се користи у Европи за сагоревање комуналног 

отпада приказана је на Слици 2.26 

 

Слика 2.26 Савремена котловска конфигурација за сагоревање отпада [Söder, 2013] 

 Котловска јединица има четири пролаза од чега су три у испаривачком делу, након 

чега се продукти воде до догрејача и економајзера. Предности ове конфигурације су у 

високој ефикасности, расположивости као и релативно лаком приступу цевима у 
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четвртом пролазу. Главни недостатак у односу на друге конфигурације су виши 

инвестициони трошкови. Поред ове, хоризонталне изведбе могуће су и вертикалне које 

су јефтиније али код којих се јавља низ проблема који се односи на одржавање (тежак 

приступ цевима прегрејача и економајзера због одржавања, повећана опасност од 

корозије) што умањује расположивост система. 

 Произведена пара, из котловског постројења се уводи у турбине које могу бити 

реализоване као кондензационе и противпритисне. Начин коришћења паре за 

производњу електричне и топлотне енергије код инсинерационих постројења се не 

разликује у односу на поступак код конвенционалних когенеративних постројења која 

користе фосилна горива или биомасу, а која су описан у поглављу 2.4.2. Степен 

искоришћења при производњи електричне енергије код ових постројења је нешто 

испод 30%. Међутим, уколико се у разматрање узме и топлотна енергија која се 

дистрибуира у СДГ укупни степен искоришћења је око 85% [Söder, 2013]. 

 Сегмент који се односи на третман продуката сагоревања, код инсинерационих 

постројења, је од посебне важности имајући у виду састав горива и присуство бројних 

токсичних једињења која настају термичком деструкцијом отпада. Сваки произвођач 

инсинерационих постројења има сопствени поступак за третман продуката сагоревања 

али је у сваком постројењу обавезан континуални мониторинг њиховог састава. 

Поступак пречићавања гасова за модерно Hitachi Zosen инсинерационо постројење 

детаљно је описан у [Söder, 2013].   

2.4.4 Геотермални системи даљинског грејања 

 

2.4.4.1 Геотермална енергија – општа разматрања 

 

Под геотермалном енергијом се подразумева онај део топлоте земље који се може 

директно или индиректно искористити [Dickson et al., 2013]. Ова топлота потиче 

највећим делом од распада радиогених елемената који се налазе у слојевима Земље. 

Остатак се односи на: топлоту стварања Земље – топлоту која је настала у раној фази 

формирања Земље, потенцијалну енергију – која настаје у процесима кристализације 

гвожђа у Земљиној кори као и на фрикциону топлоту – топлоту која је настала трењем 

као последица енергије еластичности код сеизмичких потреса [Mitić, 2008]. 
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 Крећући се од површине ка средишту Земље температура расте. На Слици 2.27 

приказана је промена температуре Земље са порастом дубине [Stacey, 1992]. 

 

Слика 2.27 Промена температуре Земље са порастом дубине [Stacey, 1992] 

 Овај раст температуре са дубином назива се геотермалним градијентом. За дубине до 

10 km градијент просечно износи 2.5-30C/100 m [Elder, 1981]. Међутим градијент 

значајно флуктуира у зависности од глобалне локације. Постоје подручја која су 

прекривена „млађим“, седиментним геолошким слојевима код којих геотермални 

градијент износи само 10C/100 m. Са друге стране има пуно области на Земљи где је 

градијент готово десет пута већи од просечног. Ова подручја, са температурним 

градијентом већим од просечног представљају потенцијално погодне геотермалне 

системе.  

 Геотермални системи се састоје из [Glassley, 2014]: 

 извора топлоте, 

 резервоара и  

 геотермалног флуида 

 Извор топлоте може бити високе температуре уколико је у питању интрузија магме 

из дубљих слојева Земљине унутрашњости до слојева који су економски исплативи за 
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експлоатацију (5 – 10 km) или код система са нижим температурама сама промена 

температуре са дубином. 

 Резервоар је део запремине у унутрашњости земље испуњен порозним врелим 

стенама који је повезан са флуидом који је носилац топлоте. У одређеним ситуацијама 

постоји природна веза између резервоара и места на површини кроз који се 

геотермална вода јавља на површини у виду извора или гејзера. Геотермални флуид је 

флуид који се налази у резервоару. Вода је најчешћи геотермални флуид.  

 Потенцијали геотермалне енергије у Европи су енормни. По [Ungemach et al., 2010] 

уколико се искористи само 1% геотермалне енергије на дубини од 5 – 10 km у 

континенталном делу Европе, добило би се 1023 J енергије. Слично, у оквиру студије 

„More District Heating in Europe“ која је настала као резултат пројекта [Ecohetacool] 

процењено је да се годишње у Европи може добити 370 EJ топлотне енергије из 

геотермалних ресурса, искључиво на економској основи.  

 Први радови на свеобухватном мапирању геотермалног потенцијала Европе урађени 

су 1988. године када је штампан први Атлас геотермалних ресурса у ЕУ. Нова верзија 

документа, са ажурираним подацима и већом просторном покривеношћу штампана је 

2003. године [Hunter et al., 2003]. Процена геотермалног потенцијала  резервоара 

извршена је по методи Mуffler-Cataldi [Mуffler et al., 1978]. У Атласу је покривено цело 

подручје Европе при чему детаљни подаци постоје само за земље ЕУ i PECO ( Pays 

d'Eуrope Centrale et Orientale). Приказ геотермалних ресурса у Европи дат је на Слици 

2.28.  

 Потенцијали геотермалних система зависе у највећој мери од температуре 

геотермалног флуида. Геотермални ресурси се према овом критеријуму могу поделити 

на ресурсе: 

 ниске енталпије, 

 средње енталпије и  

 високе енталпије. 
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Слика 2.28 Геотермални потенцијали у Европи  на дубини од 1.000 m [Hunter et al., 

2003] 

 У литератури не постоји консензус о температурским распонима који одговарају 

одређеним врстама геотермалних ресурса. У Табели 2.2 су дате средње вредности 

температура осредњене према препорукама [Glassley, 2014].  

Табела 2.2 Температурски нивои за различите врсте геотермалних ресурса [Glassley, 

2014]. 

Тип геотермалног (ГТ) ресурса Осредњене температуре (0C) 

ГТ ресурс ниске енталпије < 115 0C 

ГТ ресурс средње енталпије 115 -190 0C 

ГТ ресурс високе енталпије > 190 0C 

 

2.4.4.2 Конфигурација геотермалних система даљинског грејања  

Геотермална енергија се може експлоатисати коришћењем различитих технологија, при 

чему је у општем случају потребно користити бушење и испумпавање геотермалне воде 

из дубљих слојева Земље. Искоришћење геотермалне енергије у енергетске сврхе 

представља само један од потенцијалних аспеката примене. 
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 Са експлоатацијом геотермалних ресурса у енергетске сврхе започето је педесетих 

година двадесетог века. Та прва истраживања, све до седамдесетих година, односила су 

се искључиво на конверзију геотермалне енергије у електричну. Тек након прве 

енергетске кризе седамдесетих година почиње интересовање за експлоатацију 

геотермалане енергије.  

 Геотермално грејање није нова технологија. Први системи геотермалног грејања 

постојали су још у старом Риму, а данас је још у функцији геотермални СДГ у 

Француској из 14. века о коме је било речи у поглављу 2.2. 

 Међутим први, модерни, комерцијални геотермални СДГ развијени су на Исланду 

седамдесетих година двадесетог века. Од тада креће експанзија ових система не само на 

Исланду него у целом свету. Данас је Исланд водећа земља у свету по проценту 

становништва који се снабдева топлотом из геотермалних извора. Према анализи која је 

спроведена у оквиру GeoDH пројекта у 2014. години у Европи је било 247 

функционалних геотермалних СДГ [GeoDH]. Они су размештени у 22 европске земље 

са укупним инсталисаним капацитетом од 4.500 МW. Од овог броја 162 геотермална 

СДГ је у ЕУ28 са укупном снагом од 1.300 МW.  

 У ЕУ28 највећи број инсталираних геотермалних СДГ има Француска (45) а потом 

следе Немачка (25), Мађарска (21) и Италија (19). Од осталих земаља Европе по броју 

геотермалних СДГ предњаче Турска и Исланд у којима је и инсталиран највећи број 

геотермалних СДГ у Европи.   

 Најновији подаци о геотермалним потенцијалима у ЕУ публиковани су као резултат 

европског (Inteligent Energy) пројеката GeoDH. У оквиру овог пројекта, за земље 

чланице пројектног конзорцијума, урађен је скрининг геотермалног потенцијала 

[GeoDH]. Додатно је извршена анализа како би се за сваку од земаља чланица 

пројектног конзорцијума проценио процентуални удео становништва које се може 

снабдевати топлотном енергијом из геотермалних ресурса на дубинама од 1.000 - 2.000 

m системом даљинског грејања. Добијени резултати анализе приказани су у Табели 2.3.  
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Табела 2.3 Приказ удела становништва који се може снабдевати топлотном енергијом 

из геотермалних СДГ за земље ЕУ28 [GeoDH] 

Држава 
Бр. становника 

(у милионима) 

Процењена дубина 
геотермалног извора 
температуре 60-100 0C 

Удео становништва који се 
може снабдевати топлотом 
из геотермалног СДГ 

Бугарска 7.2 1.000 m ~ 50% 

Чешка 
република 

10.5 
 

2.000 m ~ 10% 

Данска 5.6 2.000 m ~ 75% 

Француска 65.6 1.000 m ~ 37% 

Немачка 82 1.000 m ~ 38% 

Мађарска 10 1.000 – 2.000 m ~ 90% 

Ирска 4.5 1.000 m ~ 35% 

Италија 59.7 1.000 m ~ 50% 

Холандија 16.8 1.000 m ~ 30% 

Пољска 38.6 2.000 m ~ 10% 

Румунија 20 2.000 m ~ 20% 

Словачка 5.4 2.000 m ~ 50% 

Словенија 2 2.000 m ~ 50% 

Велика 
Британија 

63.2 
 

2.000 m ~ 20% 

 

 Из Табеле 2.3 може се видети да су потенцијали геотермалне енергије у домену 

централизованог снабдевања становништва топлотном енергијом енормни. 

 Код геотермалних СДГ, геотермални резервоар представља основни извор топлоте. 

Илустрација концепта дата је на Слици 2.29 [Kaltschmitt et al., 1999]. 
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Слика 2.29 Начин експлоатације хидрогеотермалних извора код геотермалних СДГ 

 

 Из геотермалног резервоара, геотермална вода се допрема до површине пумпом. 

Вода потом иде до измењивача топлоте у коме се топлота предаје преносиоцу топлоте 

који циркулише у дистрибутивној мрежи СДГ. Охлађена вода се пумпом која је 

постављена у ињекционој бушотини враћа у геотермални резервоар на одређеном 

одстојању од места експлоатације. Ово је битно како би се одржао баланс у 

геотермалном резервоару.  

 Конфигурација СДГ и начин експлоатације геотермалног ресурса највише зависе од 

температуре геотермалног флуида, издашности извора и његових физичко-хемијских 

својстава. Основна подела геотермалних СДГ је на директне и индиректне.  

 Код директних система геотермална вода се из извора директно дистрибуира преко 

мреже према потрошачима. Овакви системи су реализовани на Исланду јер су физичко-

хемијске карактеристике геотермалне воде задовољавајуће. Међутим, најчешће 

геотермална вода садржи непожељне супстанце које поспешују корозију па се врши 

хидрауличко раздвајање примарне инсталације, кроз коју циркулише геотермална вода, 

и секундарне кроз коју циркулише медијум за пренос топлоте према потрошачима. 
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Хидрауличко раздвајање се најчешће врши преко титанијумских, плочастих 

измењивача топлоте мада се поред њих, али знатно ређе, примењују и цевни 

измењивачи топлоте.  

 Уколико је температура геотермалног флуида недовољна или ако је издашност мала, 

постоји могућност израде хибридних система код којих се разлика од расположиве до 

потребне топлоте надокнађује неким екстерним извором топлоте. Овакви системи се 

називају хибридним геотермалним СДГ. Неке од често коришћених индиректних, 

хибридних конфигурација геотермалних СДГ приказане су на Слици 2.30. 

                   (a)                           (b)                                           (c) 

Слика 2.30 Примери индиректних конфигурација геотермалних СДГ [Kaltschmitt et al., 

1999] 

 На Слици 2.30 (а) је приказана стандардна индиректна конфигурација код које је као 

вршни извор топлоте предвиђено котловско постројење. На Слици 2.30 (c) као додатни 

извор топлоте је предвиђена топлотна пумпа и вршни котао, док је на Слици 2.30 (b) 

приказана конфигурација са когенеративним постројењем, топлотном пумпом и 

вршним котлом. 



68 

 

 Додатна подела геотермалних СДГ је на отворене и затворене. Код отворених 

система охлађена вода из инсталације корисника се не враћа у систем. На тај начин се 

значајно смањују инвестициони трошкови за израду дистрибутивне мреже. Овакви 

системи се користе на Исланду. Потенцијални проблеми се односе на неминовно 

смањење издашности геотермалног извора, као и чињенице да у већини система састав 

воде не дозвољава директно, површинско изливање. Због тога се већина система 

реализује као затворена.   

 Предности геотермалних у односу на СДГ код којих се користе фосилна горива су 

следеће: 

 геотермални ресурси представљају практично неисцрпан извор енергије, 

 на геотермалне системе не утичу спољни услови (спољна температура, доба 

дана и сл.), 

 минимална емисија CO2 у поређењу са конвенционалним системима 

заснованим на фосилним горивима, 

 имају добар однос цена/перформансe, 

 уштеде у односу на индивидуалне системе грејања на гас износе 30-50% [Söder, 

2013], 

 експлоатациони трошкови су минимални, јер нема утрошка новца за набавку 

енергената,  

 повећавају енергетску сигурност јер омогућавају коришћење локалних ресурса, 

 смањују увоз фосилних горива и 

 креира се значајан број радних места и упошљава грађевинска оператива у 

периоду изградње система. 

 Међутим постоје и недостаци везани за употребу геотермалних СДГ. Главни 

проблем се односи на високе инвестиционе трошкове. То је уједно и главни разлог за 

релативно малу заступљеност ових система. Трошкови испитивања а касније и бушења 

експлоатационих и ињекционих бунара (бушотина) за допремање геотермалне воде до 

површине су велики јер захтевају употребу специјализоване и скупе опреме. Ово се 

посебно односи на бушење бунара са дубинама већим од 2000 m. Пратећа опрема код 

реализације геотермалних СДГ у виду циркулационих пумпи за испумпавање воде из 
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геотермалних резервоара, измењивача топлоте, пратеће инфраструктуре и мерно-

регулационе опреме такође представља значајан издатак. У разматрање треба узети и 

цену цеви и радове за полагање дистрибутивне мреже која је у распону од 25-75% цене 

целокупног пројекта.  

 Додатни проблем односи се на смањење потенцијала геотермалног извора са 

временом. Издашност геотермалног извора се временом смањује, али сваки извор 

захтева засебно разматрање. Реињектирањем охлађене воде у резервоар ствара се 

могућност за поновно загревање ове воде, али ови процеси обично трају дуго.    

 У новије време јављају се и проблеми са сеизмичким потресима на местима где 

постоје геотермални СДГ. Ови потреси настају као последица прекомерне 

експлоатације геотермалних извора што има за последицу промену геолошке 

структуре. Најновији пример је Базел где је због малих сеизмичких потреса на месту 

геотермалног СДГ постројење морало да буде затворено [Wikipedia].  

 Снабдевање становништва топлом водом из геотермалних ресурса не мора да буде 

само преко СДГ већ је могуће користити и геотермална когенеративна постројења. Због 

недовољне температуре геотермалне воде у већини налазишта у Европи примењује се 

готово искључиво бинарни системи који функционишу по Ранкиновом циклусу. 

Когенеративни геотермални системи у Европи постоје на Исланду, Аустрији и 

Немачкој а у току је изградња система у Италији и Мађарској [GeoDH]. 

2.4.5 Соларни системи даљинског грејања 

2.4.5.1 Потенцијали соларне енергије 

Највећи део расположиве енергије на Земљи потиче са Сунца (99.9%) [Kaltschmitt et al., 

2007]. Процењено је да до спољњег омотача атмосфере годишње доспева 5.5 1024J 

енергије. Ова вредност представља теоријски потенцијал.  

 Међутим, само део те енергије, због губитака, доспева до површине Земље где се 

може конвертовати у друге, корисне видове енергије. Тај део се назива техничким 

потенцијалом и он представља део теоријског потенцијала који би могао бити 

искоришћен употребом одговарајућих конверзионих технологија. Глобални технички 

потенцијал соларне енергије износи 8.000 EJ годишње. 
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 За реализацију пројеката конверзије соларне у друге видове енергије од посебне 

важности је доступност приземних мерења компонената сунчевог зрачења. Једна од 

најважнијих величина је ирадијанса или интензитет зрачења. Ова величина представља 

тренутни флукс краткоталасне енергије зрачења и изражава се у W/m2. Поред 

ирадијансе, важна величина је ирадијација, која се још назива и енергијом зрачења или 

количином зрачења. Ирадијација представља интеграл ирадијансе у одређеном 

интервалу времена и изражава се у Wh/ m2.  

 У Европи се ирадијанса мери на великом броју локација. Подаци о соларној 

ирадијанси су комерцијално доступни. Интеграљењем података ирадијансе за велики 

број локација, најчешће на годишњем нивоу, добијају се мапе са потенцијалима 

соларног зрачења.  Једна од таквих мапа, приказана је на Слици 2.31. 

 

Слика 2.31 Величина ирадијансе за подручје Европе за период од 1994 -2010 [SolarGIS] 

 

 Подаци о потенцијалима соларне енергије у Србији су јако скромни. Једина 

референца, у којој се студиозно разматрају потенцијали соларне енергије у Србији је 

Студија енергетског потенцијала Србије за коришћење сунчевог зрачења и енергије 

ветра [Studija SolVet]. У студији се износе поражавајући подаци о стању мерења 

соларног зрачења у Србији. Констатује се да је стање знатно лошије чак и у односу на 
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оно из осамдесетих година прошлог века. Додатно се наводи да је 1988. године укинут 

Национални центар за сунчево зрачење који је према резолуцији Светске метеоролошке 

организације постојао у бившем Савезном хидрометеоролошком заводу. Такође, 

указује се на чињеницу да су 1991.године у Србији престала и сва мерења сунчевог 

зрачења. 

 Главни резултат ове свеобухватне студије представља мапирање соларног 

потенцијала на територији Републике Србије (Слика 2.32).  

 

Слика 2.32 Мапа просечне годишње ирадијације на хоризонталној површини за 

територију Републике Србије [Studija SolVet] 

 Како се наводи у документу, мапирање и процена потенцијала је извршена на основу 

података добијених из претходних истраживања као и додатним мерењима и 

коришћењем података и резултата Европског атласа за сунчево зрачење. У резултатима 

студије се додатно наводи да Србија располаже натпросечним потенцијалима сунчевог 

зрачења у односу на земље континенталне Европе као и да има „посебну погодност у 

комплементарности временске расподеле енергије сунчевог зрачења…..што је врло 

важно за «покривање» шпицева у општој потрошњи енергије“ [Studija SolVet]. 
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2.4.5.2 Концепт соларног даљинског грејања 

Соларни системи даљинског грејања представљају један од потенцијалних начина за 

термичку конверзију соларног зрачења. Ови системи последњих година добијају на 

значају у ЕУ. Реализација солaрних СДГ започета је крајем деведесетих година 

прошлог века. Један од првих, комерцијалних система направљен је 1996. у малом, 

приобалном месту Марстал у Данској (Слика 2.33).  

 

 

Слика 2.33 Соларни систем даљинског грејања у Марсталу у Данској 

 Капацитет овог система је континуално увећаван из године у годину, тако да је од 

почетних 8.038 m2 соларних колектора површина увећана на 33.000 m2 (подаци из 2014. 

године). Значај овог пројекта је препознат и од стране европске комисије, па је кроз 

ФП7 пројекат Sуnstore 4 (реализован од 2010-2014.године) финансирано увећање 

капацитета за додатних 15.000 m2 соларних колектора и изградња сезонског 

акумулатора топлоте запремине 75.000 m3. Данас укупна инсталисана снага соларног 

дела система износи 23.3 MW и овај систем снабдева топлотном енергијом 55% 

топлотних потреба 1.500 становника Марстала. Према бази соларних СДГ, која је 

креирана као резултат два европска пројекта 'SDHtake-off - Solar District Heating in 

Europe' и 'SDHplus – New Business Opportunities for Solar District Heating and Cooling' 

[SDHtake-off]  у Европи постоји 131 СДГ снаге веће од 700 kW. Већина ових система је 

сконцентрисана у Данској при чему је највећи соларни СДГ у Европи, систем из 

Марстала.  
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 Кључни елемент сваког соларног СДГ представљају „поља“ соларних колектора. 

„Поља“ соларних колектора настају међусобним спајањем великог броја колектора који 

се даље интегришу у систем даљинског грејања. Колектори се постављају у паралелне 

редове. Оптимално је поставити до 20 колектора у једном реду при чему треба 

обезбедити адекватно растојање између редова. Растојање се одређује тако да суседни 

колектори не смеју да заклањају један други, при чему треба додатно обезбедити 

простор за прилаз радника (Слика 2.34). 

 

Слика 2.34 Постављање соларних колектора за будући соларни СДГ [ArconSunmark] 

 Искуства из претходно реализованих пројеката указују да је оптимално растојање 

око 4.5 m мерећи од предње стране једног реда до предње стране другог реда. Такође, 

за постављање 1 m2 соларних колектора потребно је обезбедити  3-4 m2 земљишта   

[SDHtake-off]. 

 За постављање соларних колектора не постоје посебна ограничења. Она се односе 

само на то да изабрана места имају добру изложеност сунцу, да је цена земљишта на 

изабраној локацији приступачна и да су испуњени елементарни естетски услови. 

Колектори могу да се постављају на земљу, кровове, акустичке баријере и сл. Најчешћи 

начин постављања код СДГ је на земљу јер се једино тако могу добити већи 

капацитети. Овакав начин постављања је уобичајан у већини Европских земаља, попут  

Шведске, Данске, Аустрије и Холандије. Са друге стране у Немачкој се колектори 

најчешће постављају на кровове зграда.  
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 Код соларних СДГ, за конверзију соларне у топлотну енергију, готово искључиво се 

примењују равни плочасти пријемници што се може лако утврдити прегледом базе 

података о соларним СДГ у Европи [SDHtake-off]. Ово на први поглед чуди, будући да 

вакумски колектори имају знатно веће степене искоришћења у односу на равне 

плочасте колекторе, нарочито при температурама радног медијума већим од 500C. 

Међутим, цена вакумских колектора је знатно виша што се још увек не може 

компензовати увећаном ефикасношћу. 

 У зависности од капацитета, соларни СДГ могу бити велики, за снабдевање дела или 

читавог града или блоковски за снабдевање топлотном енергијом мањег броја 

стамбених јединица. Међутим и у случају великих система, произведена топлотна 

енергија не може у потпуности да покрије потребе већих урбаних целина па се 

соларани СДГ најчешће реализују као један из групе топлотних извора из којих се 

обезбеђује топлотна енергија. Према капацитету соларни СДГ се могу поделити на: 

 мале - користе се за предгревање воде (обезбеђују < 10% потреба за топлотом),   

 средње - обезбеђују од 10 - 30% потреба за топлотом и 

 велике -  у којима се обезбеђује више од 30% потребне топлоте за грејање. 

 Велики системи се увек изводе са неким видом складиштења топлоте. На тај начин 

је могуће остварити да се чак до 60% топлотних потреба потрошача прикључених на 

систем даљинског грејања обезбеди конверзијом соларне у топлотну енергију.  

 Акумулација односно складиштење добијене топлотне енергије је од кључне 

важности код соларних СДГ. Главни разлог је у чињеници да постоји временска 

некомплементарност између производње и утрошка топлотне енергије. Уколико се СДГ 

користе и у току летњих месеци, за снабдевање санитарном топлом водом, акумулатори 

мањег капацитета за краткорочно складиштење топлоте су сасвим довољни. 

 Међутим, код већих соларних СДГ циљ је искоришћење добијене топлотне енергије 

у току летњих месеци за загревање током јесени и зиме. У том случају потребни су 

системи за сезонско складиштење топлоте. То су акумулатори топлоте капацитета већег 

од 1.000 m3. Економичност ових СДГ расте са повећањем броја прикључених 

корисника и величином складишног резервоара јер онда специфична цена опада. 

Постоји више начина за реализацију сезонских акумулатора топлоте. Као медијум за 
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складиштење топлоте може се користити вода, комбинација шљунка и воде или земља. 

Избор медијума зависи највише од хидрогеолошких и геолошких услова на терену. 

Потенцијални начини реализације сезонских акумулатора топлоте приказани су на 

Слици 2.35 [SDHtake-off].  

 Код складиштења цистернастог типа израђује се цистерна која се укопава у земљу у 

близини поља са соларним колекторима. Цистерна може да буде од бетона, челика или 

полимерних композита. Са спољње стране цистерне поставља се изолација. Постоји и 

варијанта израде челичних цистерни које се постављају надземно али је њихова 

изградња скупа и ограничена на мање капацитете. 

 Код складишних резервоара базенског типа, ископава се рупа/базен, без статичке 

конструкције, на коју се директно полаже изолација. Овај тип складишног резервоара 

реализован је у Марсталу у Данској. 

 Трећи тип је складиштење топлотне енергије у бушотинама. Код овог система 

произведена топлота се ињектира и касније екстрахује из земље кроз вертикалне 

бушотинске измењиваче топлоте. За реализацију ових система не смеју да постоје 

подземни извори воде до дубине до које се простиру бушотине, што је најчешће 30 - 

100 m. 

 

Слика 2.35 Могући начини за складиштење топлотне енергије у соларним СДГ  
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 Коначно, четврти вид складиштења је у виду бунара. Код овог типа буше се две или 

више рупа до подземних вода. У току летњих месеци, кроз једну бушотину се 

екстрахује подземна хладна вода из једног бунара која се након загревања у соларним 

колекторима ињектира кроз другу бушотину у топли бунар. Зими се та загрејана 

подземна вода, из бунара топле воде дистрибуира у мрежу, при чему се након хлађења 

реињектира у хладан бунар.  Детаљна анализа и упоређење различитих типова 

складишних система дата је у [SDHtake-off, Kaltschmitt, 2007].  

 Mогуће је користити и напредне технологије попут материјала са променом фазе, 

апсорпционе системе и системе засноване на термо-хемијском складиштењу. Све ове 

технологије су још увек у почетној, експерименталној фази и нема потврда о њиховој 

економичности. 

 Потенцијали соларних СДГ су велики, посебно у земљама са натпросечном 

годишњом ирадијацијом, попут Србије. Међутим, у овом тренутку се соларни СДГ 

могу посматрати само као део ширег система за централизовано снабдевање топлотном 

енергијом у коме ће поред соларних постојати и други топлотни извори (најчешће 

когенеративна постројења). Главни проблем за реализацију соларних СДГ је 

реализација економичног сезонског складиштења топлотне енергије. У студији која је 

урађена у склопу 'SDHplus – New Business Opportunities for Solar District Heating and 

Cooling' пројекта наводи се да у економској анализи исплативости соларних СДГ треба 

рачунати са производном ценом од 3 eur cent/kWh за земље северне Европе, односно 2 

eur cent/kWh за земље јужне и југоисточне Европе. Уколико је из других извора топлоте 

могуће произвести топлотну енергију по нижој цени, реализација соларног СДГ је 

неоправдана. 

2.4.6 Конвенционални и „стратешки“ топлотни извори у СДГ – закључна 

разматрања 

Након прегледа конвенционалних и стратешких извора топлоте могу се извести 

одређени закључци. Најпре, начин садашњег функционисања СДГ у Србији је 

неодржив. Потребна је хитна миграција са традиционалних на „стратешке”  изворе 

топлоте. Пракса из земаља ЕУ, у којима постоје СДГ, показује да ови системи могу 

бити одрживи и прихватљиви за кориснике али само уз јасну енергетску стратегију 

државе и усклађену акцију државних регулаторних тела и локалне самоуправе. 
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Супституција постојећих извора топлоте „стратешким“, односно изворима који ће се 

базирати на употреби „отпадне“ топлоте из когенеративних постројења и обновљивим 

изворима енергије захтева велике инвестиције које се могу реализовати једино под 

условом да се у новој енергетској стратегији државе јасно дефинише улога СДГ и 

потреба њихове трансформације у когенеративне системе. Ово подразумева и увођење 

подстицаја за употребу обновљивих извора енергије за производњу топлотне енергије, 

увођење еколошких такси за употребу фосилних горива као и усаглашавање тренутне 

„субвенциониране“ цене струје са тржишном. 

 Уколико се прихвати овакав став, поставља се питање која од побројаних 

технологија за производњу топлотне енергије је најекономичнија. Свака од наведених 

технологија има предности и недостатака и није могуће извести генерални закључак. 

Искуства из Европе су различита. СДГ у Амстердаму као топлотни извор користи 

инсинерационо постројење а недавна одлука о знатном ширењу мреже даљинског 

грејања у овом граду указује на исплативост овог начина производње топлотне 

енергије. Са друге стране у студији [Davies et al., 2009] анализирана је исплативост 

реализације пројекта СДГ у Великој Британији. У студији се закључује да је 

најисплатљивији начин производње топлотне енергије из когенеративних постројења. 

Слично, у иницијативи градоначелника Лондона - London Heat Map потенцира се значај 

когенеративних постројења за остваривање циљева декарбонизације [LondonHM]. У 

оквиру ове иницијативе урађено је (и ради се) више енергетских мастер планова за  

поједине дистрикте Лондона који садрже и сегмент који се односи на избор адекватне 

технологије за производњу топлотне енергије. 

 Из претходне анализе произилази да није могуће a priori доносити закључке о томе 

која врста топлотног извора је најповољнија у општем случају. На избор технологије, 

поред величине инвестиционих трошкова, ефикасности и врсте и облика локално 

доступних горива, велики утицај имају подстицајни механизми и накнаде за различите 

аспекте производње енергије. Због тога је за сваки појединачан случај потребно 

урадити студије изводљивости којима ће се детаљно испитати предности и недостаци 

појединих технологија производње топлотне енергије и извршити селекција економски 

и еколошки најприхватљивије опције. 
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2.5 ОПТИМИЗАЦИЈА СДГ КРОЗ УВОЂЕЊЕ САВРЕМЕНИХ, 

ИНТЕЛИГЕНТНИХ СТРАТЕГИЈА УПРАВЉАЊА 

У претходном поглављу указано је на потребу што хитније замене постојећих 

топлотних извора „стратешким“ у СДГ у Србији. Разматрано је више опција, али се с 

обзиром на већ постојећу мрежу градских топлана, као једна од најприхватљивијих 

опција намеће трансформација топлана у когенеративна постројења. Додатни аспект је 

и потенцијална супституција фосилних горива обновљивим што би се директно 

одразило на смањење увоза енергената. 

 Међутим, замена или трансформација топлотних извора представља дуготрајан 

процес који захтева значајна финансијска средства и промене на стратешком нивоу. То 

се пре свега односи на дефинисање нове енергетске стратегије у којој фокус треба да 

буде на дистрибуираној производњи финалне енергије. У Данској се овај модел 

примењује након енергетске кризе седамдесетих година прошлог века. Данас је ова 

земља светски лидер у производњи финалне енергије из дистрибуираних (и 

обновљивих) извора [Eldrup, 2015]. Тенденција дистрибуиране производње енергије у 

свету је у порасту јер сазрева идеја да се оваквим приступом може пружити адекватан 

одговор на изазове глобалног загревања. Најновији пример је акциони план америчког 

председника, из августа 2015, којим се дефинишу смернице и конкретни механизми за 

транзицију ка дистрибуираној производњи енергије [White House]. 

 Трансформација топлотних извора у СДГ и супституција горива треба да буду 

стратешко опредељење државе али, као што је речено, представља процес које захтева 

значајно време и за који је врло тешко пронаћи адекватне механизме финансирања. 

Због тога је у тренутној ситуацији, потребно предузети  мере са којима је могуће у 

кратком року, уз мале инвестиционе трошкове, оптимизирати рад СДГ. Једна од опција 

која нуди значајан потенцијал је унапређење постојећег начина управљања у СДГ. 

Велика предност овог приступа је у чињеници да се унапређењем управљања ефекти 

уштеде у будућности могу само повећати уколико дође до, преко потребне, 

трансформације топлана у когенеративна постројења. У наставку се даје преглед 

основних нивоа (eng. levels) управљања у СДГ, указује на недостатке тренутног 

приступа и даје предлог унапређења, што је и тежиште ове дисертације. 

 



79 

 

2.5.1 Управљање у СДГ 

У СДГ постоје четири основна нивоа управљања/регулације [Frederiksen et al., 2013]: 

1. Регулација испоручене топлотне енергије на месту коришћења, 

2. Регулација протока, 

3. Регулација диференцијалног притиска и 

4. Управљање температуром напојног вода у примарној инсталацији. 

 Надлежности у управљању су подељене између произвођача и дистрибутера 

топлотне енергије у СДГ са једне стране, и корисника са друге. Прве две регулације се 

везују за секундарну инсталацију – инсталацију корисника, док је надлежност 

произвођача и дистрибутера топлотне енергије у СДГ у регулацији диференцијалног 

притиска у дистрибутивној мрежи и управљању температуром напојног вода у 

примарној инсталацији. 

 Регулација испоручене топлоте на месту коришћења (грејним телима) остварује се 

преко термостатских радијаторских вентила чији је циљ одржавање константне, задате 

температуре у просторији у којој се налази грејно тело. Термостатски радијаторски 

вентили се састоје од регулационог вентила на који се поставља термостатска глава 

(испуњена гасом, течношћу или воском) која делује као температурски сензор. 

Најквалитетнији су термостатски вентили са главом испуњеном гасом, јер је код њих 

инерција најмања. Термостатска глава је пропорционални регулатор који на промене 

температуре у просторији реагује постепеним подизањем односно спуштањем осовине 

на коју је насађена печурка вентила. На тај начин се обезбеђује фина регулација 

протока воде кроз грејно тело. Без обзира на евидентне предности овог вида регулације, 

којим се по неким проценама могу постићи уштеде и до 20% у односу на системе без 

регулације термостатским вентилима [Danfoss], у Србији он није заступљен. Регулација 

на месту коришћења, се такође односи на утрошак санитарне топле воде уколико је 

њена припрема предвиђена у СДГ.  

 Други ниво регулације односи се на локалну регулацију протока на месту раздвајања 

примарне и секундарне инсталације СДГ, тј. у топлотним подстаницама. Регулација 

протока остварује се најчешће постављањем пролазног регулационог вентила са 

електромоторним погоном у повратној грани примара. Вентилом се имплицитно 
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регулише количина топлоте која се из дистрибутивне мреже СДГ предаје корисницима. 

Величина потребног протока се одређује тако да се у напојној грани секундара добије 

жељена температура. Та температура се одређује у регулатору на основу спољне 

температуре и криве клизања коју дефинише корисник.  

 Регулација диференцијалног притиска остварује се пумпама које су лоциране у 

топлотном извору. Најчешће се користе пумпе са променљивим бројем обртаја тако да 

се њихова брзина мења у зависности од жељене вредности диференцијалног притиска 

на месту постављања сензора за мерење притиска. Најчешће се ови сензори постављају 

на најудаљенијем месту у дистрибутивној мрежи, при чему је задатак пумпи да остваре 

унапред дефинисани диференцијални притисак (најчешће 1 bar), који је једнак разлици 

притисака у напојној и повратној грани. Уколико је услов о задатом диференцијалном 

притиску испуњен, може се сматрати да постоје предуслови за ваљану регулацију у 

подстаницама. Важно је приметити да се овим пумпама врши регулација 

диференцијалог притиска, а не протока. Регулација протока се, као што је већ речено, 

остварује преко пролазних вентила који су лоцирани у топлотним подстаницама.  

 Последњи ниво регулације односи се на регулацију температуре напојног вода 

примара у топлотном извору. Овај ниво регулације је од суштинског значаја за 

економичан рад СДГ и начин његовог унапређења представља главну тему ове 

дисертације. Због тога се овај аспект управљања СДГ детаљно анализира у наставку, 

кроз приказ проблема и сугестија за његово решење. 

2.5.2 Недостаци тренутног начина управљања у СДГ 

Управљање већином СДГ данас се своди на управљање према измереној вредности 

спољне температуре уз евентуалну корекцију за брзину ветра и инсолацију [Madsenet 

al., 1992]. За тренутно измерену вредност спољне температуре, преко „криве клизања“ 

(још се назива „дијаграмом клизања“ или „клизним дијаграмом“), одређује се потребна 

вредност температуре потисног вода примара [Oliker, 1980; Madsen et al., 1992; Horlock, 

1987]. На сличан начин се дефинишу и „криве клизања“ за кориснике у секундарној 

инсталацији. Преко „кривих клизања“ могу се одредити и теоријске вредности 

температура поврата. „Криве клизања“ се добијају полазећи од основних поставки из 

теорије преноса топлоте, уз одређене корекције које изводе сами оператери у СДГ. Код 
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израде „кривих клизања“ полази се од следећих претпоставки [Živković, 1996; 

Levermore, 2000]: 

 линеарна зависност топлотних губитака зграде у зависности од спољне 

температуре, 

 константна вредност коефицијента пролаза топлоте кроз грађевинску 

конструкцију, 

 константна температура ваздуха у просторији и 

 идеално регулисање грејања у згради. 

 Све ове претпоставке представљају грубу апроксимацију рада реалног система али 

су донекле прихватљиве. Међутим, највећи недостатак тренутног начина управљања је 

што он не узима у обзир инерцију система, тј. чињеницу да се промена климатских 

фактора (посебно спољне температуре) не одражава тренутно на промену температуре 

ваздуха у просторијама грејаних објеката. Додатни проблем је што је модел развијен за 

систем који ради континуално без ноћних прекида. Као резултат оваквог начина 

управљања, произведена и предата количина топлоте врло често значајно превазилази 

потребе потрошача. То се консеквентно одражава на повећање температуре повратног 

вода примара, при чему се врло често дешава да оне  буду знатно више од 

прорачунских. Овај ефекат је посебно изражен у периоду умерених спољних 

температура, који је уједно и најчешћи током грејне сезоне [Madsen et al., 1992]. 

 Економичан рад СДГ директно је повезан са снижењем температуре повратног вода 

примара [Madsen et al., 1992]. Главна предност са снижавањем температуре повратног 

вода примара је што се у том случају иста количина топлоте може испоручити са 

нижом температуром напојног вода. На тај начин могу се остварити уштеде у 

производњи топлотне енергије и минимизирати губици топлоте у дистрибутивној 

мрежи. Додатно, снижавањем температуре повратног вода могуће је максимизирати 

повраћај топлоте из продуката сагоревања у димном тракту котлова који раде у 

кондензационом режиму. Ефекат уштеде је најизраженији код когенеративних 

постројења, јер се снижавањем потребне температуре напојног вода директно утиче на 

увећање производње електричне енергије односно укупног степена искоришћења 

постројења.  
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 У [Petersson/Werner] дата је процена потенцијалних уштеда са снижавањем 

температуре повратног вода за 27 СДГ у Шведској, за период од 1996-2010, према 

подацима Stefan Peterssona (FVB Sweden). Резултати анализе приказани су на Слици 

2.36. 

 

Слика 2.36 Уштеда у SEK/MWh произведене топлотне енергије у СДГ за снижење 

температуре поврата од 10C за 27 СДГ у Шведској за период од 1996-2010 [Petersson/ 

Werner] 

 Са графика се може видети да потенцијалне уштеде значајно флуктуирају. Величина 

уштеде зависи од типа и кофигурације СДГ па није могуће успоставити јединствени 

модел за њену процену. За Шведске СДГ, процењена уштеда је у распону од 0.05 до 0.5 

€/MWh за сваки 0C ниже температуре у повратном воду.  

2.5.3 Предлог унапређења управљања кроз усклађивање произведене и потребне 

количине топлотне енергије 

Из претходног поглавља може се закључити да је главни проблем са тренутним 

начином ценралног управљања у СДГ што се улога потрошача маргинализује и што се 

не разматра термичка инерција мреже и самих корисника. Као резултат настаје велика 

разлика између произведене количине топлоте са једне стране и оне стварно потребне, 

што резултира великим губицима. Због тога је управљање у СДГ потребно водити са 

циљем усклађивања произведене топлотне енергије са оном коју потрошачи захтевају, 

у сваком тренутку, колико год је то могуће. 
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 Овај приступ се назива „управљање према потражњи“  (eng. demand side 

management) и примењује се годинама у електро-енергетским системима за 

усклађивање производње ел. енергије и потреба потрошача. Према [Palensky et al., 

1999], „управљање према потражњи“ представља низ мера за унапређење енергетског 

система са стране потрошње. У СДГ „управљање према потражњи“ је први пут 

предложено у раду [Sipila et al., 2000]. Резултати њихове анализе су показали да је 

могуће привремено (за период од 2-3 сата) смањити топлотно оптерећење корисника 

СДГ у просеку за 25% након увођења „управљање према потражњи“. Идеја је даље 

разрађена у [Wernstedt, 2005] који су предложили мулти-агентску архитектуру за 

аутоматско, дистрибуирано управљање СДГ. Такође, указано је на потребу промене 

фокуса управљања у СДГ, при чему у новој стратегији управљања доминантна улога 

треба да буде додељена потрошачима. Ово је од изузетног значаја будући да потрошачи 

имплицитно одређују величину протока и температуре у мрежи и суштински 

представљају основни разлог постојања СДГ.  

 Усклађивање произведене количине топлоте са реалним потребама потрошача у 

СДГ могуће је остварити једино уколико су познати предиктивни термички модели 

свих или бар кључних потрошача у СДГ. Са предиктивним термичким моделима 

потрошача и поузданим алатима за предикцију спољне температуре, могуће је 

прецизно одредити будуће вредности топлотног оптерећења које се консеквентно може 

користи за управљање производњом топлотне енергије. Хоризонт предикције модела 

треба одредити у зависности од конфигурације дистрибутивне мреже.  Треба имати у 

виду да се промене у количини произведене топлотне енергије могу детектовати на 

крајевима дистрибутивне мреже тек након извесног времена (најчешће неколико сати). 

Ова инерција са једне стране зависи од брзине  воде у цевима (око 2m/s [Frederiksen et 

al., 2013]), a са друге од величине мреже. Кашњење у испоруци топлотне енергије 

појединим потрошачима одређује величину потребног хоризонта предикције модела.  

 Одређивање кредибилних  предиктивних термичких модела потрошача представља 

један од главних циљева ове дисертације. Предиктивни термички модели потрошача 

подразумевају моделе топлотног оптерећења и температуре повратног вода секундара. 

Резултати из литературе упућују да се температура повратног вода може са изузетном 

прецизношћу краткорочно прогнозирати применом методе експоненцијалног 

изравнавања [Madsen et al., 1992; Søgaard H.T., 1993]. Додатно, прихватљиви резултати 
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су такође добијени применом рекурентних неуронских мрежа [Protić, 2008]. Због тога је 

тежиште истраживања било на изради предиктивних модела топлотног оптерећења 

потрошача. 

 У наставку овог поглавља је дат литературни преглед претходног истраживања у 

области израде термичких модела док су математичке основе, опис експерименталне 

инсталације и добијени резултати приказани у поглављима 3, 4 и 5, респективно.   

2.5.4 Топлотно оптерећење у СДГ 

Први резултати везани за детерминистичко предиктивно термичко моделирање везују 

се за Thomasa Tredgolda [Billington et al., 1982]. Tredgold је први пут, 1824. године 

третирао проблем загревања зграда са рационалног, научног становишта користећи 

експериментално добијене податке за процену величине губитака топлоте кроз прозор 

зграде. Он је укупан губитак топлоте зграде рачунао као збир губитака топлоте кроз 

прозоре зграде и губитака топлоте од вентилације занемарујући губитак топлоте кроз 

зидове. Иако је у приступу било суштинских недостатака, у историјском контексту 

допринос је изузетан јер је по први пут уведен појам пројектованих губитака топлоте. 

 Увођење појма степен дана 1878. године, који је предложио Richard Strachey 

британски генерал на служби у Индији, представља даље унапређење [Billington et al., 

1982]. Strachey-ев рад у вези степена дана односио се на одређивање периода 

оптималних температура за раст пољопривредних култура али је брзо усвојен у 

метеорологији и у термоенергетици. Степен дан је у даљинско грејање први пут уведен 

у Немачкој - O.Krell (1909) а потом и у САД - Eуgen Milener (1915) и Шведској – 

Wilhelm Dahlgren (1922) [Werner, 1984]. Амерички концепт степена дана је био 

најпрецизнији, и у Европу је уведен 1927. године са Erichom Schуlcom, који је радио у 

берлинском предузећу за дистрибуцију топлотне енергије (BEWAG) [Rietschel et al., 

2003]. Са годинама концепт степена дана добија све више на значају, да би тридесетих 

година прошлог века биле урађене прве климатолошке мапе степена дана за већину 

земаља и градова. Међутим, убрзо је постало јасно да познавање броја степена дана 

није довољно за прецизно моделирање топлотног оптерећења конзума у СДГ. 

 Према [Werner, 1984] било је више истраживања у области моделирања топлотног 

оптерећења у СДГ. Један од првих радова је [Brown, 1948] који се односи на прогнозу 

вршног топлотног оптерећења у СДГ у New York-у. Као улазне променљиве коришћене 
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су средња температура претходног дана, средња вредност брзине ветра, средња 

влажност претходног дана, запремина грејаног простора и информација о дану у 

недељи. Увођење климатских величина у модел топлотног оптерећења у циљу 

унапређења управљања први је применио [Zuihlke, 1977]. Модел је садржао следеће 

независне променљиве: спољну температуру, брзину ветра и ирадијансу. Утицај 

климатских величина при изради модела топлотног оптерећења је, према [Werner, 

1984], испитивао већи број аутора [Athanasovici, 1971; Mumdiјan et al., 1980; Safonov, 

1978] у СДГ у Румунији, Бугарској и Русији, респективно. За већину ових модела се 

може рећи да су предиктивни.  

 Ипак,  једну од првих систематских анализа топлотног оптерећења у СДГ дао је 

[Werner 1984]. Teжиште истраживања је било на развоју функционалних, регресионих 

модела који садрже велики број утицајних величина. Непознате вредности 

коефицијената регресионих модела естимиране су на основу података прикупљених 

вишегодишњим (од 5 -11 година) мерењем у 6 СДГ у Шведској. Након тога вршена је 

анализа значајности естимираних коефицијената и дата њихова интерпретација. Модел 

топлотног оптерећења целокупног СДГ разматран је као конгломерат четири 

субмодела: загревања простора, припреме саниратне топле воде, дисипације топлоте у 

дистрибутивној мрежи и додатног топлотног оптерећења у току радног дана.  

 За разлику од истраживања [Werner, 1984], које је суштински било теоријског 

карактера, рад истраживача са института IMSOR (Institute of Mathematical Statistics and 

Operations Research) са Данског Техничког Универзитета представља први озбиљан 

искорак у области израде статистичких, предиктивних модела топлотног оптерећења у 

СДГ. Резултати њиховог истраживања публиковани су у два тома, у којима се 

независно разматра област идентификације и управљања у СДГ [Madsen et al., 1990; 

Madsen et al., 1992]. За израду предиктивних модела топлотног оптерећења СДГ 

примењене су непараметарске и параметарске методе, при чему су модели развијани 

коришћењем података добијених мерењем на СДГ у данском граду Esbjerg-у. Од 

непараметарских метода примењене су различите методе изравнавања (коришћени су 

Epanechnikov и Gauss кернели) и естимација редовима са ортогоналним функцијама 

(Legadre-ови полиноми и тригонометријске функције). Из групе параметарских метода 

коришћене су методе преносних функција (ARMAX). Модели су развијани за 

предиктивне хоризонте од 1-24h.  
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 У [Søgaard, 1993] се поред унапређења претходно развијених модела из [Madsen et 

al., 1990; Madsen et al., 1992] по први пут презентира могућност увођења 

дистрибуираног управљања у СДГ. Основна идеја је у избору неколико 

репрезентативних (критичних) тачака у дистрибутивној мрежи, праћењу основних 

параметара у њима (температура, проток, притисак) и усаглашавању произведене 

топлотне енергије према прогнозираним захтевима за те критичне тачке. Могућност 

дистрибуирања управљања се разматра на сличан начин и у [Madsen et al., 1994]. 

Недостаци модела из [Søgaard, 1993; Madsen et al., 1994] анализирани су у [Pinson et al., 

2007]. У раду се даље предлаже увођење модела са коначним импулсним одзивом (eng. 

Finite Impulse Response) у коме се коефицијенти модела замењују непараметарским 

коефицијентима функција утицајних променљивих.  

 У [Iwasaki et al., 1998] ауторегресиони модели су коришћени за предикцију 

вредности дневног топлотног оптерећења у СДГ у Токију. За предикцију часовних 

вредности топлотног оптерећења коришћене су неуронске мреже. Као улази су 

коришћене претходне вредности топлотног оптерећења. Нема информација о томе који 

тип неуронских мрежа је коришћен. Закључује се да су резултати задовољавајући али 

нема података о дескриптивним статистикама серије која је коришћена за израду 

предиктивног модела. 

 Dotzauer [Dotzauer, 2002] је развио врло једноставне моделе за предикцију топлотног 

оптерећења користећи податке из стокхолмског СДГ. Модел је развијен на 

претпоставци да топлотно оптерећење зависи само од спољне температуре и социјалне 

компоненте (која утиче на начин потрошње санитарне топле воде). За моделирање 

компоненте топлотног оптерећења које зависи од спољне температуре коришћена је 

део-по-део линеарна функција (eng. piecewise linear function), при чему су сегменти 

функције описани са девет параметара – четири топлотна нивоа (eng. heat levels) и пет 

нагиба (eng. slopes). Непознати параметри модела естимирани су коришћењем 

расположивих података. У раду се тврди да предиктивни модели дају сличне резултате 

као и комерцијални програмски пакети (коришћен је програм Aiolos [Tornevik, 1997]), 

међутим нема назнаке о томе који предиктивни хоризонт(и) је(су) коришћен(и).  

 У раду [Nielsen et al., 2006] потрошњa топлотне енергије за цео СДГ разматрана је 

кроз grey-box модел. Целокупни СДГ моделиран је као јединствени потрошач. 

Поставке из теорије преноса топлоте искоришћене су за формулисање иницијалне 
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структуре модела. Непознати параметри модела естимирани су коришћењем 

метеоролошких података и података о потрошњи са самог постројења. Резидуали, 

одступања резултата модела од измерених података, приказани су кроз модел шума 

који је придодат основном моделу. На тај начин је грешка предикције значајно 

редукована. На крају је извршено статистичко тестирање, како би се дошло до коначне 

структуре модела.   

 Краткорочно предиктивно моделирање топлотног оптерећења целокупног СДГ 

применом SARIMA (eng. Seasonal Autoregressive Integrated Moving Average) модела 

анализира се у [Grosswindhager et al., 2011]. Како се наводи у раду адекватност модела 

проверена је стандардном дијагностиком која се користи код израде регресионих 

модела.  Добијени модели су инкорпорирани у простор стања где је за секвенцијалну 

предикцију искоришћен Калманов филтер. Има мало информација о квалитету 

добијених резултата, али се на основу једног од достављених графика може уочити да 

су резултати у делу где су коришћени подаци из тест сета (eng. out of sample) 

незадовољавајући. 

 Термичко моделирање зграда разматра се у већем броју радова. Grey-box термички 

модели за једну опитну просторију разматрају се у [Madsen et al., 1995].  У [Andersen et 

al., 2000] стохастичке диференцијалне једначине су искоришћене за моделирање 

термичког понашања опитног објекта подељеног у две опитне просторије у којима је 

коришћено грејање радијаторима. Метод потпорних вектора се разматра у раду [Zhao et 

al., 2010]. Избор улазних променљивих и интерпретација резултата је нејасна, тако да 

не постоји могућност јасног увида у квалитет добијених резултата. Свакако, треба 

издвојити рад [Bacher et al., 2013] у коме су развијени предиктивни термички модели за 

шеснаест кућа у Sondeborg-у у Данској. Предиктивни модели су били базирани на 

адаптивним линеарним моделима временских серија. Овај рад је настао на основу 

добијених резултата из већег истраживања [Nielsen et al., 2000] у коме је испитивана 

могућност инкорпорирања резултата нумеричких прогностичких модела 

метеоролошких променљивих (спољне температуре, ирадијансе и брзине и правца 

ветра) у предиктивне моделе топлотног оптерећења.  Као улази модела коришћене су 

прогнозиране вредности климатских величина: спољне температуре, ирадијансе и 

брзине и правца ветра. Ове прогнозиране вредности добијене су као излази из 

нумеричких прогностичких модела данског метеоролошког института. Анализом 
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добијених резултата може се уочити да су најлошији резултати добијени за случај 

интермитентног рада система.  

 Из приказаног литературног прегледа може се извести неколико закључака: 

 већина истраживача користила је статистичке методе које су биле базиране на 

подацима добијеним непосредним мерењем, 

 примењен је велики број метода, параметарских и непараметарских, при чему 

се већина модела заснива на вишеструкој регресији и методи преносних функција, 

 није могуће извршити упоредну анализу резулата из литературе, с обзиром на 

различите конфигурације анализираних СДГ, 

 у већини радова нема приказа дескриптивних статистика за серије које су 

коришћене за израду модела, што онемогућава непристрасну анализу добијених 

резултата,  

 евидентно је да је утицај потрошача маргинализован при чему су у највећем 

броју радова предиктивни модели развијани за целокупан СДГ и   

 у малом броју радова се разматра могућност коришћења савремених метода 

статистичког учења. 

 Ови закључци послужили су за формулисање даљег правца истраживања. Оно је 

било усмерено ка изради предиктивних модела топлотног оптерећења индивидуалних 

потрошача, заснованих на савременим методама статистичког учења. У наредном 

поглављу дат је детаљан приказ математичких основа за израду ових модела.  
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3. ИЗРАДА ПРЕДИКТИВНИХ ТЕРМИЧКИХ МОДЕЛА 

ПОТРОШАЧА У СДГ – МАТЕМАТИЧКЕ ОСНОВЕ 

 

3.1 МАТЕМАТИЧКИ МОДЕЛИ – ТЕОРИЈСКИ ОКВИР И ПОДЕЛА 

Као што је већ речено у претходном поглављу, централни проблем у овом раду 

представља одређивање кредибилних предиктивних термичких модела потрошача у 

системима даљинског грејања којима је могуће, уз одговарајући степен тачности у 

унапред дефинисаним временским интервалима (предиктивним хоризонтима), 

предвидети вредности релевантних величина за управљање системима даљинског 

грејања. Израда математичких модела представља један од основних задатака 

природних наука и по многим ауторима [Gilbert et al., 1998; Harrison et al., 1998; 

Ramadas, 2009] има суштински значај за разумевање науке. Једно од кључних својстава 

модела је да они у основи представљају апроксимацију реалности [Portides, 2007]. Ова 

формулација захтева додатно објашњење.  

 Ако се пође од претпоставке да постоји процес који генерише опсервабилне 

податке, онда се може рећи да постоји јединствено пресликавање :Xf Y  које 

пресликава скуп улаза у скуп излаза. Ово пресликавање представља тачан/истинити 

модел (eng. true model) посматраног процеса. Остаје неразјашњена дилема да ли је 

посматрани процес детерминистички а да ми видимо случајност због наше 

немогућности да разумемо бројне узрочно последичне везе или је случајност 

иманентна природи [Merkle, 2010]. Ова формулација одражава два супротстављена 

погледа на циљеве и резулате научних активности у филозофији науке. Једна група 

филозофа науке, који се називају реалистима, тврди да формулисани закони у науци 

представљају и законе природе. Са друге стране, инструменталисти тврде да научни 

закони представљају само алате за израду предикција. У овом истраживању је полазна 

претпоставка да је процес који генерише податке стохастички. 

 У процесу моделирања формулише се ново апроксимативно пресликавање (модел) 

ˆ :Xf Y тако да је f̂ f . Основни епистемолошки проблем је што не постоји 

могућност непосредног доказивања да формулисани модел заиста представља 

апроксимацију непознатог, истинитосног пресликавања. Провера се може извршити 
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само на основу доступних мерења, која не морају нужно да одражавају карактер 

посматраног процеса. Одатле произилази позната формулација Box-a: „Сви модели су 

погрешни, али су неки корисни “ [Box, 2013].  

 Теоријске основе моделирања дефинисане су кроз теорију система док свака научна 

дисциплина има своје особености, које се огледају кроз специфичност поступка израде 

модела. Постоји велики број подела, по најразличитијим критеријумима, и стручна 

литература је преплављена мноштвом класификација [Khine et al., 2011; Isermann, 2010; 

Dekker, 2014]. Врло често критеријуми класификације нису најјасније дефинисани што, 

уз врло често различиту терминологију, уноси додатни проблем у разумевање подела. 

У наставку су приказане поделе које су од значаја за ово истраживање. 

3.1.1 Подела модела на статичке и динамичке 

Оно што суштински повезује све моделе, независно од научне дисциплине је постојање 

одређене функционалне зависности између улазних и излазних променљивих 

посматраног система. Због тога је од значаја одредити карактер те везе, одакле и 

произилази подела модела на статичке и динамичке. 

 Уколико је та веза директна (тренутна) тј. ако вредност или вредности излазних 

променљивих у тренутку k зависе само од вредности улазних променљивих у тренутку 

k, онда се ради о статичким моделима. Уколико поред улазних променљивих у 

тренутку  k,  излаз зависи и од улаза из неког претходног временског корака  k-1, k-2,..., 

k-n онда се такви системи математички описују динамичким моделима [Ljung et al., 

2000]. Управо је ова, друга врста модела, чешћа у реалним, инжењерским системима 

код којих на тренутну вредност излаза не утичу само тренутне већ и претходне 

вредности улазних променљивих. Динамички систем “еволуира” у времену, а заједно 

са  њим и променљиве које описују његово понашање.  

 Код потрошача у СДГ постоји значајна термичка инерција. Она се огледа у 

чињеници да ће промена из окружења (нпр. промена спољне температуре, брзине 

ветра, инсолације) утицати на промену топлотног оптерећења потрошача са одређеним 

кашњењем, које зависи са једне стране од карактера те промене а са друге од 

грађевинске конструкције посматраног објекта. Због тога је евидентно да се термичко 

понашање потрошача може ваљано математички описати једино динамичким 

моделима. Даље разматрање је ограничено на ову групу модела. 
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3.1.2 Подела модела на детерминистичке и статистичке 

Једна од најважнијих подела модела је према карактеру претходног знања о 

посматраном проблему и последично начину инкорпорирања тог знања у модел. 

Уколико се процес израде модела искључиво базира на коришћењу физичких 

принципа и закона (eng. first principles) тада говоримо о теоријским, 

детерминистичким, дедуктивним или „white box“ моделима1 [Isermann et al., 2010]. У 

том случају се експериментално прикупљени подаци о систему користе искључиво за 

верификацију модела. Код ових модела, излази система се за дате улазе могу одредити 

са потпуном тачношћу.  

 Међутим, врло често је случај да полазни закони нису познати или је посматрани 

систем сувише комплексан за теоријско моделирање. Тада је потребно потражити 

алтернативно решење. Експлозивни раст брзине компјутера, усавршавање опреме за 

мерење, прикупљање и складиштење података о процесу, пад њихове цене и самим тим 

повећање њихове доступности омогућили су релативно једноставно и јефтино праћење 

и архивирање вредности промењивих које описују понашање динамичких система. То 

је допринело развоју суштински другачијег приступа у моделирању. Користећи 

архивиране податке које карактеришу посматрани систем, могуће је реконструисати 

посматрани процес. На тај начин настају индуктивни, „black box”  модели или 

статистички модели1.  

 Коме од ова два приступа дати превагу зависи од величине и карактера претходног 

знању. У [Maybeck, 1979], наводе се два основна недостатка детерминистичких модела 

код моделирања реалних система.  

 Прво, математички модели динамичких система нису идеални. Било који 

математички модел даје само оне карактеристике које су од директног значаја за онога 

ко тај модел развија. Циљ модела је да прикаже само кључна својства система, при 

чему се значајан део система изузима из разматрања. Наравно, увек се полази од 

претпоставке да изостављени (немоделовани) делови система не утичу на посматране 

улазе и узлазе, али се врло често дешава да се иницијална процена покаже као нетачна. 

Додатно, чак и они сегменти система који су обухваћени моделом суштински 

                                                           
1 У питању су синоними. Називи се разликују код различитих аутора. 
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представљају само апроксимације. Према томе можемо закључити да постоји много 

неодређености у теоријском (детерминистичком) математичком моделу. 

 Други недостатак детерминистичких модела је у чињеници да динамички системи 

нису управљани само оним контролним улазима које дефинишу оператери, већ 

поремећајима изван посматраног система који су најчешће потпуно непознати па се не 

могу моделирати детерминистички нити се њима може управљати.  

 Треба додати и чињеницу да се подаци о посматраном систему могу прибавити 

релативно једноставно, што под условом правилног избора утицајних величина 

омогућава адекватно реконструисање скривеног процеса који генерише податке. 

 Термичко понашање потрошача у системима даљинског грејања се може 

математички описати и детерминистичким и статистичким моделима.  

 Код детерминистичких модела се полази од основних података о грађевинским 

конструкцијама објекта, уграђеним материјалима, позицији објекта и осталим 

релевантним параметрима како би се добили енергетски симулациони модели. Са 

друге стране, код статистичког моделирања прикупљени термички подаци о 

посматраном објекту се користе за “откривање” скривених веза које постоје између 

улазних и излазних променљивих. У наставку ће бити дато кратко разматрање 

предности и недостатака оба приступа и образложење зашто је у овом раду усвојен 

статистички приступ. 

 Иако је последњих година дошло до значајног напретка у квалитету програмских 

алата за енергетску симулацију објеката (ESP-r, TRNSYS, EnergyPlus, BSim (Building 

Simulation)) и даље као велики проблем остаје  комплексност добијених модела као и 

чињеница да се већина резултата студија из литературе односи на експерименталне, 

релативно једноставне грађевинске објекте [Neto et al., 2008; Crawley et al., 2008]. Код 

СДГ симулација би подразумевала израду модела сваког од потрошача што је 

компликовано и непрактично. Такође, нeдавно урађене студије [Gorse et al., 2012; 

Stafford et al., 2012]  су показале да се реални, измерени губици топлоте у великој мери 

разликују у односу на оне добијене као резултат симулационих програма. Резултати 

ове студије су сублимирани на Слици 3.1. 
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Слика 3.1 Процентуално одступање симулираних и измерених вредности топлотних 

губитака за 21 индивидуалну зграду2 [Gorse et al., 2012] 

 Студија је рађена у Енглеској за 21 индивидуалну зграду. Са слике се јасно види да 

су одступања алармантно велика. Само мали број зграда има одступања од ±15% која 

су прихватљива. За већину зграда (12/21) одступања су већа од 40%. 

 Додатан проблем код детерминистичких модела је што они, без обзира на теоријско 

упориште увек садрже известан степен неодређености, која се пре свега односи на 

податке који карактеришу грађевинске материјале од којих су објекти израђени а који 

су нужно саставни део тих модела. Овде се мисли на неодређеност као последицу 

нехомогености материјала, неодређеност као последицу неслагања каталошких и in situ 

измерених карактеристика уграђених материјала као и на чињеницу да се особине 

материјала мењају са временом [Zhao et al., 2014]. Овде треба додати и одступања 

пројектних од измерених вредности коефицијената пролаза топлоте, као последицу 

лоше изведених грађевинских радова. У дисертацији [Andersen, 2013] дат је пример 

преузет из [Hens et al., 2007] у коме је приказанa слика добијена термовизијском 

камером на којој се види изузетно велико одступање коефицијента пролаза топлоте два 

зида која су по пројекту требала да имају исти коефицијент пролаза топлоте (Слика 

3.2).  

                                                           
2 За неке зграде је вршено више симулација/мерења па је зато укупан број симулација/мерења 33 



94 

 

 

Слика 3.2 Два зида која су по пројекту требало да имају исти коефицијент пролаза 

топлоте [Andersen, 2013] 

 У претходна разматрања треба уврстити и чињеницу да већину објеката у СДГ чине 

старе зграде за које нема адекватне документације, што претпоставља додатан извор 

неодређености.  

 Са друге стране, већина објеката у СДГ има макар елементарну мерно-регулациону 

опрему при чему у новијим подстаницама најчешће постоје регулатори са опцијом 

архивирања измерених података. У топлотним подстаницама где нема аквизиционе 

опреме, постоји могућност за њену уградњу уз минимална улагања. Додатно, уз све 

већу доступност и брзину интернета постало је релативно једноставно даљинско 

надгледање и управљање топлотним подстаницама. Све ово чини да подаци о 

потрошачима постану лако доступни и управо се ти подаци могу искористити за 

израду предиктивних модела.  

 Коначно, спољна температура, најутицајнија величина на термичко понашање 

потрошача, је стохастичка величина чија се будућа вредност не може предвидети са 

потпуном извесношћу. Ову величину је тешко на адекватан начин уврстити у 

детерминистичке моделе, који су углавном експланаторни док то није случај са 

статистичким моделима.  

 Из горњег излагања може се закључити да је за проблем разматран у овој 

дисертацији практичније усвојити статистичке моделе.  
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3.2 СТАТИСТИЧКИ МОДЕЛИ - МОДЕЛИ ДОБИЈЕНИ ПРИМЕНОМ МЕТОДА 

СТАТИСТИЧКОГ УЧЕЊА 

 

3.2.1 Општа разматрања и историјски преглед 

 

Израда статистичких модела подразумева учење или естимацију модела3 на основу 

расположивих података. Учење је иманентно интелигентним системима, без обзира на 

то да ли су ти системи биолошки или не. Оно омогућава систему да усваја концепте из 

окружења и, што је још важније, да се прилагођава/адаптира на промене из окружења. 

Након што је знање усвојено олакшана је интеракција система и његовог окружења.  

 Има више дефиниција учења, али је у наставку разматрање ограничено на оне које 

се односе на аспект машинског учења. [Scott, 1985] дефинише учење као процес у коме 

се изграђује претражива репрезентација претходних интеракција система са 

окружењем. Ова дефиниција изоставља важан сегмент сталног унапређења знања који 

уводи [Michalski, 1990] и који дефинише учење као конструкцију или модификацију 

репрезентације онога што је доживљено. Коначно [Carbonel, 1992] генерализује 

претходне формулације и уводи два типа машинског учења: прикупљање нових 

информација о окружењу и унапређење постојећег знања. У овом раду појам учења се 

посматра као поступак естимације емпиријских модела из расположивих података 

добијених мерењем. Под естимацијом модела подразумева се естимација његове 

структуре и параметара. 

 Проблем учења из података (статистичког учења)4 је један од централних предмет 

истраживања у филозофији још од античких времена, кроз појам „идуктивног 

закључивања”. Велики допринос класичне филозофије теорији статистичког учења 

огледа се кроз увођење два кључна индуктивна принципа: принципа једноставности 

(eng. parsimony principle или Occam razor) који је формулисао енглески монах Окам у 

14 веку и принципа оповргљивости (eng. princilple of falsifiability) који је формулисао 

један од највећих филозофа науке двадесетог века, Karl Poper. Уколико се теорија 

статистичког учења посматра у ширем контексту, зачеци ове дисциплине се везују за 

радове Legandra и Gausa о методи најмањих квадрата и линеарној регресији. Након 

                                                           
3 Појмови естимације и учења се у даљем тексту сматрају синонимима. 
4 Појмови статистичког учења и учења из података се у даљем тексту сматрају синонимима. 
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Legandra и Gaussa, знатно касније су уследили и радови Fisher-a о линеарној 

дискриминантној анализи. Значајни допринос теорији статистичког учења дао је и Alan 

Turing педесетих година кроз увођење појма машинског учења. Савремена теорија 

статистичког учења је уведена шездесетих година претходног века кроз радове Vapnika 

и Chervonenkisa и формулисања VC теорије (eng. Vapnik – Chervonenkis theory). Први 

радови Vapnika и сарадника су прошли готово неопажено будући да је тадашње 

уверење истраживача било да без обзира на математичку кохерентност, VC теорија 

нема потенцијала за практичну примену. Тај теоријски статус метода је значајно 

утицао да са применом ових метода за решавање реалних, практичних проблема 

започне тек касније.  

 Седамдесетих година прошлог века Nelder и Wedderburn уводе појам генералисаних 

линеарних модела који омогућава развој великог броја линеарних метода. Због 

ограничења рачунских ресурса у том периоду, није био могућ рад на нелинеарним 

методама.  

 Са унапређењем рачунара, средином осамдесетих година, почиње и озбиљнији рад 

на нелинеарним методама. Овде је потребно истаћи фундаментални рад Brieman-a 

[Brieman et al., 1984] који уводи CART (classification and regression trees) и унакрсну 

валидацију (eng. cross validation) као метод за избор најбољег модела. Такође, из овог 

периода треба издвојити и допринос Hastija и Tibširanija [Hastie et al., 1990] који уводе 

генералисане адитивне моделе. Потом је уследио период доминације метода на бази 

неуронских мрежа.  

Средином деведестих година, Vapnik кроз увођење метода потпорних вектора - SVM 

(eng. Support Vector Machines) за естимацију мултидимензионалних функција, 

омогућава практичну имплементацију метода статистичког учења. Први радови са 

применом SVM метода показали су супериорност овог метода у односу на вештачке 

неуронске мреже [Vapnik et al.,1998]. Поред увођења SVM-a допринос Vapnika се 

огледа и у чињеници да је први повезао статистику са теоријом учења.  

 Даље унапређење перформанси рачунара омогућило је рад на усавршавању 

постојећих и увођењу нових метода статистичког учења. Данас, преовладава уверење 

да се бољи резулати могу добити пре комбиновањем различитих метода него једном 

методом. Ове нове методе се збирно називају ансaмбл методама (eng. ensambl methods).  
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3.2.2 Подела статистичких модела према функцији 

 

Са методолошког аспекта потребно је бити прецизан у дефинисању функције или сврхе 

статистичког модела. Разграничење је од велике важности јер оно у великој мери 

опредељујe поступак израде модела који се разматра у наредном одељку.  

 По овом критеријуму модели се могу поделити на предиктивне и експланаторне 

(каузалне). Уколико се модели користе за предвиђање будућих вредности 

променљивих система онда се таква врста модела назива предиктивним. У супротном у 

питању су експланаторни модели.  

 Иако у филозофији науке постоји јасно разграничење између ових врста модела, у 

статистичкој а нарочито инжењерској литератури недостаје темељна дискусија о 

њиховим разликама. Geisser [Geisser 1993] је један од првих који указује на значај 

предиктивних модела у савременој статистици и потреби методолошког раздвајања ове 

групе модела у односу на класичне, каузалне моделе. Важно је навести и рад Breiman-a 

[Breiman, 2001]. Он указује на две „културе” у савременој статистици и потреби 

њиховог јасног разграничења. Једна, конвенционална, подразумева да су анализирани 

подаци генерисани унапред познатим стохастичким моделом података. Друга користи 

алгоритамске моделе и разматра податке као резултат реализације непознате расподеле 

или стохастичког процеса.  

 И експланаторно (каузално) и предиктивно моделирање подразумевају употребу 

података за естимацију параметара модела, оцену валидности као и упоређивање 

модела са другим моделима. Међутим постоје и значајне разлике [Shmueli et al., 2011]. 

Најпре, добар каузални модел је онај који естимира податке довољно блиско док је 

добар предиктивни модел онај који даје прецизну предикцију. Даље, код каузалних 

модела целокупни расположиви сет података се користи за естимацију параметара 

модела док се код израде предиктивних модела подаци деле на тренинг и валидациони 

сет како би се утврдила предиктивна својства модела на подацима који нису 

коришћени за естимацију параметара. Коначно, код каузалних модела успешност 

модела се процењује на основу способности модела да апроксимира податке док је код 

предиктивних модела то тачност предикције, односно способност екстраполације. 

Напред наведено је систематизовано у Табели 3.1 [Shmueli et al., 2011]:  
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Табела 3.1 Карактеристике експланаторних и поредиктивних модела 

Експланаторни (каузални) модел Предиктивни модел 

Даје објашњење зависности у оквиру 
популације 

Предвиђа нове вредности 

Мали узорци, неколико променљивих Велики узорци, велики број променљивих 

Ретроспективан приступ Проспективан приступ 

Циљ – Идентификација доброг 
“фитованог” модела  

Циљ – Регресија са великим 
предиктивним  
потенцијалом 

Интервали поверења, тестови хипотеза,  
п вредности 

Моћ предикције над подацима изван 
тренинг сета 

 

 Разлика између ове две групе модела постаје илустративнија уколико се објасни на 

примеру поступка израде експланаторних и предиктивних модела на бази линеарне 

регресије [Shmueli et al., 2011] .  

 Код експланаторних модела поступак израде регресионих модела садржи следеће 

кораке: 

 избор улазних величина, 

 приказ и анализа дијаграма растурања, 

 подешавање (eng. fitting) регресионог модела према подацима и усвајање 

модела, 

 провера валидности претпоставки везаних за модел и 

 употреба модела за тестирање зависности у оквиру популације 

 Избор коначног експланаторног модела врши се на основу теорије (из које је 

разматрани модел), сагласности модела са подацима (eng. data fit) и статистичког 

значаја променљивих модела. 

 Са друге стране, поступак израде предиктивних модела је следећи: 

 избор улазних величина, 

 приказ и анализа дијаграма растурања, 
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 подела полазног скупа података на тренинг и тест сет, 

 подешавање (eng. fitting) регресионог модела према подацима из тренинг сета 

и избор модела, 

 провера предиктивне моћи модела усвојеног у претходној са подацима из тест 

сета, 

 додатно подешавање (eng. re-fitting) финалног модела, у овом случају целим 

скупом података и 

 анализа перформанси модела на новом скупу података. 

 За разлику од експланаторних модела, код предиктивних модела циљ није у 

интерпретацији и опису расположивог сета података. Додатно, статистички значај (p 

вредност) улазних величина није кључан критеријум за њихов избор. Такође, анализа 

резидула је пожељна али није од суштинког значаја као што је то случај код 

експланаторних модела. Најважније су предиктивне перформансе усвојеног модела и 

то на подацима изван сета који је коришћен за естимацију параметара модела.  

 Будући да је циљ овог рада израда предиктивних модела потрошача у системима 

даљинског грејања, даља разматрања су ограничена на предиктивне моделе. 

3.3 ПОСТУПАК ИЗРАДЕ СТАТИСТИЧКИХ МОДЕЛА 

У стручној литератури постоји велики број извора у којима се анализира проблем 

израде предиктивних статистичких модела. Даље разматрање се базира на радовим 

[Ljung, 1998; Dowdy et al., 2011; Shmueli, 2010]. Поступак израде подразумева низ 

следећих сукцесивних корака: 

 дефинисање циља, 

 планирање експеримента и прикупљање података, 

 прелиминарна анализа података, 

 избор улазних променљивих, 

 избор метода за израду предиктивног модела и 

 валидација и избор модела. 
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 У даљем тексту се свака од фаза израде модела разматра засебно. Од посебног 

значаја је фаза избора метода за израду предиктивних модела естимације модела која 

се најдетаљније разматра јер исход из ове фазе суштински опредељује квалитет 

добијеног предиктивног модела.  

3.3.1 Дефинисање циља 

Дефинисање циља израде модела представља прву фазу у процесу израде модела. Ова 

фаза опредељује даљи ток истраживања. Циљ овог истраживања је израда 

предиктивних модела потрошача у системима даљинског грејања заснованог на 

методама статистичког учења коришћењем експериментално добијених података. 

3.3.2 Планирање експеримента и прикупљање података 

Код израде предиктивних модела начин прикупљања података је од посебне важности 

будући да се естимација параметара модела врши искључиво из података. Због тога је 

потребно постојање довољно великих узорака којим би била обухваћена већина 

карактеристичних стања која описују разматрани систем. Уколико је величина узорка 

мала, постоји велика опасност да развијени модел има велику варијансу и 

пристрастност.  

 Такође, пре извођења експеримента или опсервационих студија у циљу прикупљања 

података за израду модела потребно је дефинисати време узорковања. Оно треба да 

буде  са једне стране довољно мало како се не би изоставили кључни ефекти у 

понашању система а са друге стране довољно дуго како би се избегле краткотрајне 

флуктуације које су последица шума мерења или других поремећаја која нису од 

значаја при моделирању посматраног система.  

 Додатно, потребно је дефинисати начин прикупљања података. Постоје два основна 

поступка за добијање података који се користе код израде статистичких модела. То су 

експерименти и опсервационе студије. Код експеримената се врши узорковање под 

контролисаним условима. Због тога су добијени подаци најчешће неоптерећени шумом 

и погодни за израду каузалних, експланаторних модела. Са друге стране подаци 

добијени опсервационим студијама су оптерећени шумом али зато реалније 

одсликавају систем који се моделира. Из тог разлога се за израду предиктивних модела 

чешће користе подаци добијени из опсервационих студија. 
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 За израду предиктивних модела топлотног оптерећења потрошача у систему 

даљинског грејања коришћени су експериментални подаци који су добијени 

аквизицијом података из две топлотне подстанице у Нишу и Новом Саду. Детаљан 

опис инсталације и начина извођења експеримента приказан је у поглављу 4. 

3.3.3 Прелиминарна анализа података 

Прелиминарна анализа података се најчешће изводи кроз неколико фаза. У првој фази 

се анализира континуитет серија које се користе за израду модела. Најчешће је случај 

да одређени подаци у серији недостају. Уколико је број недостајућих података мали, 

најједноставнији метод за повезивање раздвојених серија је интерполација. Међутим 

уколико недостаје велики број података потребно је применити неку од метода за 

креирање сурогат података који би се импутирали на оним местима где недостају 

оригинални подаци. У статистичкој литератури има много референци које се баве 

проблемом недостајућих података [Rubin, 1987; Allison, 2002; McKnight, 2007; Enders, 

2010; Buuren,  2012]. Међутим, у овим изворима се проблем недостајућих података 

готово искључиво третира са аспекта израде исправних процедура тестирања хипотеза.  

Са друге стране литература за третирање недостајућих података код предиктивних 

модела је оскудна [Saar-Tsechansky et al., 2007; Jerez et al., 2010]. Један од метода за 

импутацију недостајућих података при изради предиктивних модела је методе к 

најближих суседа (eng. k-nearest neighbour) [Troyanskaya, 2001]. Аутори наводе да је 

метода робустна на величину хипер параметара и броја недостајућих података. 

 Друга фаза код прелиминарне анализе података је детекција нетипичних вредности 

(eng. outliers). Иако постоје формалне статистичке дефиниције нетипичних вредности, 

које се дају под одређеним условима, нетипичне вредности се неформално дефинишу 

као оне вредности које драстично одступају од остатка података. Најједноставнији 

начин за њихову детекцију је визуелни приказ серија улазних и излазних 

променљивих. Нетипичне вредности се могу уклонити ручно или се њихов утицај 

може минимизирати кроз траснформацију података [Rousseeuw et al., 2005]. 

Потенцијално решење је и примена метода које су неосетљиве на нетипичне 

вредности.   

 Трећа фаза у прелиминарној анализи података односи се на сажети приказ 

нумеричких карактеристика серија које се користе за израду предиктивних модела. 
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Најчешће се за нумеричко описивање серије података користе следеће статистике: 

средина, медијана, минимум, максимум и стандардна девијација. Ови подаци заједно 

са визуелним приказом серија представљају полазиште за даљу анализу предиктивних 

модела. 

 Коначно, четврта фаза је подела података. Једна од најчешћих грешака која се чини 

приликом израде предиктивних модела је да се перформансе модела проверавају на 

подацима који су коришћени за израду модела. У том случају се ради о интерполацији, 

добијени резултати  су преоптимистични и не одговарају реалним перформансама 

модела. Због тога је у почетној фази процеса израде модела потребно укупан сет 

расположивих података поделити на део који ће се користити за израду модела и други 

део који ће се користити за валидацију односно тестирање добијеног модела. Величина 

тренинг односно тест сета зависи од врсте разматраног проблема али је пожељно да и 

тренингом и тест сетом буду обухваћена карактеристична стања система. Уобичајено 

је да тренинг сет садржи већи број узорака у односу на тест сет.  

3.3.4 Избор улазних променљивих 

Приликом израде предиктивних модела од велике важности је избор променљивих које 

ће учествовати у моделу. Ово питање је критично будући да врло често постоји велики 

број потенцијалних предиктора који могу бити укључени у модел. Пожељно је да број 

улазних променљивих буде мањи како би модел био интерпретативнији и мање 

рачунски захтеван. Наравно, потребно је уврстити оне променљиве које су значајне и 

које доприносе бољем описивању зависне променљиве. Такође, практична искуства 

показују да увођење додатних такозваних неинформативних предиктора доводи до 

деградације предиктивних својстава изабраног модела [Koren, 2009]. Неке од метода 

које се користе за израду предиктивних модела имају „уграђене“ механизме за 

селекцију улазних променљивих из великог сета променљивих који се унапред 

дефинише (нпр. метод случајних стабала и MARS - метод мултиадаптивних 

регресионих сплајнова). Поступак избора улазних променљивих се назива селекцијом 

атрибута (eng. feature selection). 

 Изузев метода које имају уграђен механизам за избор улазних променљивих, све 

остале методе за избор улазних променљивих се према [John et al., 1994] могу сврстати 

у две групе: 
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 методе филтрирања и 

 врепер методе (eng. wrapper methods) 

 Код метода филтрирања утицај појединих улазних променљивих одређује се пре 

него што се оне уврсте у модел. У предиктивни модел се укључују само оне 

променљиве које испуњавају одређени критеријум који се унапред дефинише. 

Са друге стране код врепер метода испитује се више модела користећи процедуре за 

аутоматско додавање или уклањање променљивих. Ове методе су у основи методе 

претраге, при чему се испитује велики број комбинација са улазним променљивима 

како би се добила она комбинација која има најбоља предиктивна својства [Petković et 

al., 2015]. 

Оба приступа имају својих предности и мана. Код врепер метода главни проблем је 

што су рачунски захтевне. Додатни проблем је што постоји опасност од презасићења. 

Са друге стране методе филтрирања су рачунски брже али је недостатак што се избор 

променљивих врши изван модела па остаје могућност избора корелисаних улаза и 

потенцијално изостављање интеракција између променљивих које су битне за 

описивање варијабилности излазне променљиве. 

3.3.5 Избор метода за израду предиктивног модела 

 

Избор метода за израду предиктивних модела је од пресудног значаја, јер та одлука у 

највећој мери утиче на квалитет добијених резултата. Методе треба изабрати у 

сагласности са особеностима посматраног система, a након увида у претходно добијене 

резултате из литературе. Закључци из више радова упућују на то да је потребно 

укључити и нелинеарне ефекте код моделирања термичке динамике објеката [Jiménez 

et al., 2008; Goyal et al., 2012; Killian et al., 2015; Touretzky et al., 2014]. Због тога се код 

избора метода за моделирање топлотног оптерећења у овој дисертацији о томе посебно 

водило рачуна.  

3.3.6 Валидација и избор модела 

Велики број метода статистичког учења је врло адаптабилан што омогућава описивање 

врло комплексних зависности између зависних и независних променљивих. Међутим, 

врло често се дешава да се заједно са описивањем зависности између променљивих од 
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интереса опише и шум. То доводи до презасићења (eng. overfitting) при чему се 

добијају модели који дају задовољавајуће  резултате на скупу података који су 

искоришћени за израду модела али са друге стране имају врло лоше резултате када се 

испитују на подацима који претходно нису искоришћени за израду модела. Проблем 

презасићења је један од најозбиљнијих проблема у поступку израде кредибилних 

предиктивних модела и потребно му је посветити посебну пажњу.  

 Традиционални приступ се заснива на томе да се укупан расположиви сет података 

подели на тренинг и тест сет. По овом приступу тренинг сет се користи за израду 

модела, док се квалитет модела (предиктивна својства) проверавају коришћењем тест 

података. Иако је овај приступ бољи од приступа код кога се исти сет података користи 

и за израду и за евалуацију модела, недостаци се огледају у чињеници да је са само 

једним скупом немогуће добити кредибилан предиктивни модел [Hawkins et al., 2003; 

Molinaro et al., 2005]. 

 Савремени приступ се заснива на поновном узорковању (eng. resampling). Код овог 

приступа укупан сет података се случајно дели на више подскупова. Део података се 

користи за фитовање модела док се остатак узорака користи за испитивање 

ефикасности модела. Овај процес се понавља велики број пута како би се добио 

најбољи сет параметара који даје најмању грешку. Грешка се најчешће исказује као 

средње квадратна грешка (eng. RMSE) и она се користи за проналажење оптималног 

сет параметара модела и испитивање предиктивних својстава добијених модела. 

Постоји више врста метода са поновним узорковањем. Најпознатије су методе 

унакрсне валидације (eng. cross validation), методе Monte Karlo унакрсне валидације и 

бутстреп метода (eng. bootstrap). У случају када је редослед података од важности, као 

што је случај у овој дисертацији, метод унакрсне валидације даје јако добре резултате 

[Burman, 1989]. 

 Метод унакрсне валидације су независно први предложили [Allen, 1974], [Stone, 

1974] и [Geisser, 1975] као начин за естимацију параметара предиктивног модела како 

би се унапредиле предикције. Значај рада [Allen, 1974] је у чињеници што је увео 

критеријум суме квадрата предикције при чему метод који је он предложио подсећа на 

оно што се данас назива „изостави један“ унакрсну валидацију (eng. leave one out cross 

validation). [Stone, 1974] се сматра првим истраживањем у коме је унакрсна валидација 
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издвојена као метод за избор модела и као метод за оцену модела. Допринос [Geisser, 

1975] се огледа у томе што је по први пут увео унакрсну валидацију са v развоја (eng. 

v-fold cross validation). Овај метод унакрсне валидације је данас најкоришћенији.  

 Код ове методе целокупни сет података се случајно дели на v група, или развоја, 

приближно исте дужине. Један развој, односно подскуп података, се користи за 

тестирање док се осталих v-1 развоја користи за одређивање параметара модела (eng. 

parameter tuning). Након што се на основу тренинг сета одреде параметри, срачунава се 

RMSE за податке из тест развоја. Процедура се понавља v пута при чему се сваки пут 

друга група односно развој бира за тест сет. Приликом сваке провере одређује се 

вредност RMSE која се на крају процеса, након што се ретестира модел v пута 

срачунава по следећем изразу [James et al., 2013]: 

 
1

1 v

i
i

CV RMSE
v 

   (3.1) 

 Ова вредност представља онда најбоље приближење правој вредности средње 

квадратне грешке модела. 

 Варијанта овог метода,  прилагођена подацима у облику временске серије, 

примењена је у овој дисертацији. Детаљан опис дат је у поглављу 5. 

3.4  КОНЦЕПТ СТАТИСТИЧКОГ УЧЕЊА 

Проблем естимације модела, као што је раније већ наведено, се у овом истраживању 

разматра као проблем статистичког учења. Савремено статистичко учење сматра се 

подоблашћу машинског учења које представља подобласт компјутерске науке која се 

назива вештачком интелигенцијом.  

 Циљ статистичког учења је у проналажењу скривених веза које постоје између 

улазних и излазних променљивих у скупу података који је генерисан у одређеном 

процесу. Може се рећи да је статистичко учење настало као вид имплицитног одговора 

на каузално моделирање које је годинама доминирало у науци [Berk, 2008]. 

 Појам учења у инжењерству и статистици је врло широк и подразумева 

интерполацију, регресију, класификацију, кластеровање и естимацију густине (eng. 
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density estimation). Међутим, у овом раду је разматрана регресија која подразумева 

естимацију реалне функције на основу коначног сета података оптерећених шумом.  

 Према [Vapnik, 2000] сваки систем за учење/естимацију модела из података састоји 

се из три основна елемента: 

 генератора података, 

 разматраног система и 

 алгоритма учења. 

 Генератор података представља непознати систем који генерише улазе 

разматраног система. Улази система припадају скупу реалних бројева nRx . Полазна 

претпоставка је да ти улази произилазе из неке непознате густине ( )p x . Подаци о 

улазу се добијају експериментом или опсервационим студијама. Најчешће су ти 

подаци:  

 подаци пресека (eng. cross sectional data) и 

 подаци у облику временских серија (хронолошки груписани подаци, eng. time 

series data).   

 Подаци пресека се добијају узорковањем из посматраног система у било ком 

временском тренутку. Код овог типа података временска димензија је ирелевантна. 

Најчешће се може усвојити претпоставка да су подаци пресека добијени случајним 

узорковањем из одговарајуће скривене популације [Wooldridge, 2012]. 

 Подаци у облику временских серија представљају уређени скуп опсервација једне 

или више променљивих у времену. Другим речима, временска серија се може 

посматрати као низ података са хронолошким распоредом. Већина временских серија 

је стохастична или случајна што значи да се будуће вредности серије не могу одредити 

са потпуном извесношћу на основу претходних вредности. Математички гледано, то 

значи да временска серија представља низ случајних променљивих које су међусобно 

зависне [Brockwell, 2009]. Осмотрена временска серија представља у ствари 

реализацију скривеног стохастичког процеса (eng. underlying stochastic process), при 

чему се полази од претпоставке да је тај скривени процес ергодичан. То подразумева 

да је осмотрена временска серија довољно дуга да би у потпуности окарактерисала 



107 

 

скривени стохастички процес [Metcalfe et al., 2009]. Додатно, осмотрена временска 

серија најчешће представља једну и најчешће једину реализацију која ће икада моћи 

бити осмотрена. Управо ово чини да се анализа временских серија не може изводити 

класичним алатима теорије вероватноће већ захтева посебан приступ.  

 Карактер података у великој мери опредељује врсту метода која ће се примењивати 

за израду модела. У овој дисертацији подаци који су коришћени за израду модела 

добијени су опсервационим студијама у две топлотне подстанице прикључене на 

топлане у Нишу и Новом Саду. Будући да су узорковања података вршена у 

временском интервалу од 15 min, добијене су временске серије релевантних величина 

које су касније искоришћене за израду предиктивних модела.  

 Разматрани систем даје одговарајуће излазе за сваки улаз. Основна претпоставка, 

која одговара реалним ситуацијама, је да осмотрене вредности улаза x не одређују 

једнозначно вредности излаза y. Разлози за то могу да буду у пробабилистичком 

карактеру генератора или система. У случају генератора, стохастички карактер је 

најчешће последица немогућности да се потпуно сагледа простор улаза. Други разлог 

је непрецизно мерење улаза при ћему се добијају опсервације оптерећене шумом. Код 

разматраног система стохастичност се јавља као последица пробабилистичког 

карактера самог процеса или као последица непотпуног мерења излаза. Најчешћи 

разлог за стохастични карактер процеса је у чињеница да су изостављени одређени 

улази. Утицај немоделираних улаза на излаз може се математички приказати кроз 

условну густину (y )p x
 
која представља вероватноћу остварења излаза y под условом 

да јe x  познато. Оваква репрезентација система је општег карактера јер омогућава врло 

једноставно превођење на специфичан случај детерминистичког модела. 

 Коначно, алгоритам учења у најопштијем смислу подразумева избор и 

имплементацију функција којима се на најбољи начин апроксимира излаз система.  

3.4.1  Математичка формулација проблема статистичког учења 

Проблем статистичког учења се формулише као претрага и избор најподесније 

функције (модела) којом се естимира зависност између улаза и излаза. Естимација је 

ограничена коначним бројем опсервација које треба искористити за моделирање. Уз 
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претпоставку да је разматрани проблем стохастички, расподела прикупљених података 

дата је здруженом густином [Vapnik, 2000]: 

 ( , ) ( ) ( )p y p p yx x x           (3.2) 

 Статистичко учење, које се у овом раду разматра као апроксимација, подразумева 

проналажење апроксимативне функције ˆ ,( )f x w  којом се апроксимира тачна али 

непозната (скривена) функција ,( )f x w . Аргумент w се односи на параметре или 

тежине (пондере) модела (конвенција која је уобичајна у области неуронских мрежа од 

eng. weight). Функција ˆ ,( )f x w се у литератури која се бави проблемима естимације 

назива хипотезом. Хипотеза ˆ ,( )f x w се бира из хипотетичког простора ˆ( )f H H . 

 Апроксимативна моћ (тачност, перформансе) хипотезе се мери критеријумском 

функцијом или функцијом губитка (eng. loss function) ( , ( , ))L y f x w  која представља 

разлику између излаза стварне (скривене) функције и апроксимиране функције 

(хипотезе) за сет података који се користи за тренирање ( , )tryx . Хипотеза треба да 

минимизира критеријумску функцију, што се математички може приказати као:  

 
( , )

ˆ ( ) arg min ( , ( , ), )
f

f L y f
x w

x wwx   (3.3) 

 Уколико једначину (3.3) прикажемо у облику математичког очекивања добија се 

израз функциja ризика која се обележава са Р и који има следећи облик:  

 ( ) ( , ( , )) ( , ) ( , ( , )) ( , )R L y f dp y L y f p y d dy  w x w x x w x x   (3.4) 

 Минимизација функциja (3.4) представља решење генеричког проблема учења који 

може бити регресија, класификација, есимација густине и кластеризација. У овом раду 

се разматра само проблем регресија при чему је циљ естимација реалне функције  на 

сету података за тренирање ( , )tryx .  

 Излази анализираног система, полазећи од претпоставке о пробабилистичком 

карактеру посматраног процеса представљају реализацију случајне променљиве y: 

 ( )y g v x   (3.5) 
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 Случајна променљива y се састоји од детерминистичке компоненте ( )g x и шума v  

за који важи претпоставка да има средину нула. Детерминистичка компонента 

( )g x представља математичко очекивање условне густине ( )p y x :  

 ( ) ( )g yp y dy x x   (3.6) 

 Уколико се као критеријумска функција искористи квадрат грешке естимације, што 

је уобичајна пракса у регресији:  

 2( , ( , )) ( ( , ))L y f y f x w x w   (3.7) 

функциja ризика из једначине (3.7)  добија следећи облик:  

 2( ) ( , ( , )) ( , ) ( ( , )) ( , )R L y f p y d dy y f p y d dy   w x w x x x w x x     (3.8) 

 Елементарним трансформацијама, функциja ризика из (3.8) се може даље раздвојити 

на три компоненте:  

 

2

2 2

2

2

( ) ( ) ) ( , )) ( , )

( )) 2( ))( ) ( , )) ( ) ( , )) ( , )

( )) ( , ) 2( ))( ) ( , )) ( , )

( ) ( , )) ( , )

R y g g f p y d dy

y g y g g f g f p y d dy

y g p y d dy y g g f p y d dy

g f p y d dy

     

          

       

  





 



w x x x w x x

x x x x w x x w x x

x x x x x x w x x

x x w x x

        (3.9) 

 Уз услов да је математичко очекивање једнако нули средњи члан у (3.9) је једнак 

нули. На тај начин израз (3.9) добија коначан облик:  

 2 2( ) ( )) ( , ) ( ) ( , )) ( , )R y g p y d dy g f p y d dy      w x x x x x w x x   (3.10) 

 Према томе функциja ризика, у случају регресије са критеријумском функцијом у 

облику квадрата грешке апроксимације, има два члана - први који се односи на 

варијансу опсервационог шума и други који се односи на апроксимацију непознате 

функције )gx . У већини практичних проблема, подаци у виду тренинг и тест сета су 

најчешће дефинисани пре процеса естимације тако да се на величину овог члана ни на 

који начин не може утицати. Због тога се проблем учења у овом случају своди на 
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најтачнију апроксимацију функције )gx , односно минимизацију другог члана у 

изразу функциje ризика.  

3.4.2 Могући приступи проблему статистичког учења 

Као што је речено у претходном одељку, циљ статистичког учења је у избору 

одговарајуће апроксимативне функције којом ће се минимизирати функциjа ризика. 

Постоје два приступа којима се то може остварити. Први приступ се везује за класичну 

статистичку теорију па се и назива класичним. Други приступ се везује за резултате 

теорије регуларизације и статистичког учења. Овај приступ се назива адаптивним, 

флексибилним или приступу заснованом на индуктивним принципима.  

3.4.2.1 Класичан приступ – параметарске методе 

Класични приступ у одређивању апроксимативне функције се заснива на раду Фишера 

[Fisher, 1952]. Код класичног приступа, израда модела се поједностављено може 

посматрати као двокорачни поступак.  

 У првом кораку се дефинише облик апроксимационе функције f̂  којом се 

апроксимира непознато пресликавање f . Овај корак се назива спецификацијом или 

параметризацијом модела. Параметризацијом се могу формулисати линеарни или 

нелинеарни модели по предикторима (улазним величинама).  

 У другом кораку, након што је изабран облик модела, приступа се естимацији 

непознатих параметара модела. Овај поступак се назива учењем, фитовањем или 

тренирањем модела. У литератури се још назива и поступком избора форме и норме 

[Rice, 1964; Mason et al., 1995]. 

 Избор апроксимационе функције је од веће важности у односу на естимацију али се 

овом проблему у класичном приступу придаје мало важности. Најчешће се као 

апроксимационе функције користе полиноми, тригонометријске функције, радијално 

базисне и тангенс хиперболичке функције. 

 У кораку естимације, дефинише се критеријум за оцену грешке естимације стварне 

(скривене) функције апроксимационом функцијом (која је изабрана у претходном 

кораку) на скупу тренинг података ( , )tryx . Тим критеријумом треба да се утврди 
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растојање апроксимационе функције од података из тренинг сета. У теорији естимације 

се ово растојање дефинише преко норме [Farebrother, 2013]. Формално, норма у 

реалном линеарном простору H представља пресликавање  из H у R+ које испуњава 

следеће услове [Thompson, 1996]: 

 0x    

 
x x 

 R    

 
x y x y  

 

 Код дискретних података уобичајно се користи норма минковског или p-норма 

[Thompson, 1996]: 

   

1/

1

ˆ ˆ( , ) ( , ) ( , ) ( , )

pn p

p p
i

e f f f f


 
    

 
x w x w x w x w   (3.11) 

која је дефинисана за било које 0p . Из Минковски норме се могу извести и друге 

норме за различите вредности параметра п. У теорији естимације најчешће се користе: 

 апсолутна норма (за p =1),   

L1: 
1

1

ˆ ˆ( , ) ( , ) ( , ) ( , )
n

i

f f f f


  x w x w x w x w  

 Еуклидовска норма, (за p =2), 

  L2: 

1/2
2

2
1

ˆ ˆ( , ) ( , ) ( , ) ( , )
n

i

f f f f


 
   

 
x w x w x w x w и 

 Чебишевљева норма, (за p =  ),  

L  : ˆ ˆ( , ) ( , ) max ( , ) ( , )f f f f


  x w x w x w x w  

 Избор норме је у највећој мери условљен типом података. Уколико су подаци 

оптерећени гаусовским шумом, што је најчешћи случај, онда се користи еуклидовска 

норма. За податке са пуно грубих грешака (eng. outliers) користи се апсолутна норма 

док се за случај са тачним вредностима и униформном расподелом грешке примењује 

чебишевљева норма.  
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 Како би апркосимацијска функција што боље описала податке потребно је да 

вредност норме буде што мања. Међутим основни проблем оваквог приступа је у томе 

што прецизно фитовање функције тренинг подацима не гарантује једнако добре 

резултате и на тест сету података, односно скупу података који нису коришћени за 

естимацију непознатих параметара. 

3.4.2.2 Критика класичног приступа 

У већини реалних ситуација облик функционалне зависности између излазних и 

улазних променљивих није a priori познат. Без обзира на то, класична теорија увек 

полази од претпоставке о облику ове зависности што у случају погрешно изабране 

расподеле извесно доводи до потпуно погрешних резултата. Ово је уједно и главни 

недостатак класичног приступа.  

 Додатно, код овог приступа премало пажње се поклања избору класе/скупа 

функција којима ће се апроксимирати непознате/скривене функције јер се на самом 

почетку процеса израде статистичког модела постављају сувише стриктни захтеви у 

погледу облика непознате функционалне зависности. Фокус је на естимацији 

параметара а не на избору хипотеза, што је погрешно, јер се грешке у спецификацији 

модела не могу компензовати ни најсофистициранијим естимационим методама. 

Потенцијално решење проблема је најпре потражено у развоју непараметарских 

метода. 

3.4.2.3 Класичан приступ - непараметарске методе 

За разлику од параметарских, непараметарске методе не претпостављају a priori 

функционалну зависност између улаза и излаза, већ се поступак израде модела своди 

на проналажење најподесније функције којом се може апроксимирати стварна, 

скривена зависност. На тај начин се уводи значајна флексибилност у поступак 

моделирања и ствара могућност за описивање комплексних зависности. Међутим, и 

овај приступ не долази без ограничења. Главни недостатак непараметарских метода је 

што оне дају добре резултате само у асимптотском случају, тј. у случају када су на 

располагању изузетно велики скупови података, што најчешће није случај. Овај 

недостатак се одражава у виду лоших генерализационих својстава која се манифестују 

у виду „презасићења” (eng. overfitting). Презасићени модели дају нереалистично добре 

резултате на тренинг сету али јако лоше на тест сету података. Одавде се може 
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закључити да повећање флексибилности модела (увођењем непараметарских модела) 

долази са ценом у смислу „презасићења” и умањења предиктивних својстава модела. 

Коначно, код већине непараметарских, нелинеарних модела увећање флексибилности 

драстично утиче на умањење њихове интерпретабилности. Другим речима, 

коришћењем непараметарских метода добијају се врло сложени облици функције 

ˆ ( , )f x w при чему је јако тешко, а врло често и немогуће, разумети везу између улазних 

и излазних величина.  

3.4.2.4 Концепт адаптивног или флексибилног статистичког учења 

Ограничења класичног приступа, која су наведена у претходном одељку, била су 

подстицај за развој новог приступа статистичког учења. За разлику од класичног 

приступа, код адаптивног/флексибилног учења/естимације користи се врло широка 

класа апроксимационих функција које могу апроксимирати било коју континуалну 

функцију до жељеног нивоа тачности. Кључни проблем је у формулацији ограничења 

којима је могуће осигурати оптимално решење, са жељеним предиктивним својствима. 

Ова ограничења се формулишу у облику индуктивних принципа.  

 У статистичкој теорији учења коју је формулисао Vapnik [Vapnik, 2006] два корака 

су кључна у предиктивном учењу: 

 учење (есимација) непознате/скривене зависности из података и 

 коришћење зависности, естимиране у претходном кораку, за 

одређивање/предикцију будућих вредности излаза.  

 Од посебне важности је прва индуктивна фаза док се у другој фази просто 

срачунавају вредности излаза за осмотрене вредности улаза. Централни проблем у 

индуктивној фази је формирање модела који ће генерисати тачне предикције не само 

на тренинг сету, који је искоришћен за формирање модела, већ и на будућим 

опсервацијама. Ово својство се назива генерализацијом и од централног је значаја код 

израде предиктивних модела. Очигледно је да за израду прецизних предиктивних 

модела поред информација из тренинг сета потребна и нека додатна информација у 

форми претходног знања које ће се инкорпорирати у модел. 

 Код класичних параметарских модела, претходном параметризацијом модела 

ограничава се опсег могућих апроксимационих функција. Уколико је расподела која 
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генерише податке позната онда је овај приступ логичан избор. Међутим, код решавања 

практичних проблема то није случај јер ова расподела најчешће није позната.  

 Код адаптивних/флексибилних метода ограничења са претходном параметризацијом 

не постоје и могуће је користити широк спектар функција са пожељним 

апроксимационим својствима. По овој карактеристици адаптивни методи подсећају на 

непараметарске. Међутим, суштинска разлика је у чињеници што код непараметарских 

метода не постоји могућност инкорпорирања претходног знања у модел. То знање се 

код адаптивних/флексибилних метода инкорпорира у виду ограничења која се 

постављају при избору одређеног скупа апроксимационих функција и ограничења у 

оквиру самог сета изабраних функција. Увођење a priori знања је кључно у циљу 

добијања најбољих резултата естимације.  

3.5 ПРИМЕЊЕНЕ МЕТОДЕ ЗА ИЗРАДУ ПРЕДИКТИВНИХ МОДЕЛА  

Како би се утврдило да модел довољно добро апроксимира непознато пресликавање f  

потребно је да буду испуњени следећи услови [Pratihar, 2007]: 

 тренинг сет, тј. сет података који се користи за апроксимацију непознатог 

пресликавања треба да буде довољно велики како би на прави начин 

окарактерисао вариабилност  непознатог пресликавања; 

 пресликавања f  и  f* су  глатка и 

 скуп функција којима се моделира непознато пресликавање мора да буду 

довољно флексибилан да би се са њима реалистично приказало непознато 

пресликавање f. 

 Полазна претпоставка у истраживању је била да се бољи резултати, узимајући у 

обзир комплексност разматраног проблема, могу добити применом нелинераних 

модела. Нелинеарност у овом случају има два аспекта. Први се односи на чињеницу да 

модели нису ограничени на линеарно улазно-излазно пресликавање и други на 

чињеницу да је критеријумска функција нелинеарна по непознатим параметрима.  

 У оквиру овог истраживања разматрани су предиктивни модели добијени применом 

следећих метода: 

 методом регресије потпорним векторима - SVR метод 
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 неуронским мрежама са директним простирањем сигнала и бајесовском 

регуларизацијом и 

 bооsting методом.  

 Неуронске мреже представљају универзалне апроксиматоре што значи да могу 

апроксимирати било коју континуалну функцију до жељене тачности [Cybenko, 1989]. 

Прекретница у њиховом развоју представља увођење алгоритма простирања грешке 

уназад, што доприноси њиховој невероватној популарности. Данас је тешко издвојити 

поље науке и инжењерства у коме оне нису примењиване. Неуронске мреже са 

директним простирањем сигнала представљају најпопуларнију архитектуру. То је 

последица њихове једноставности као и добрих резултата добијених код решавања 

практичних проблема. MacKay уводи бајесовску пробабилистичку парадигму у 

поступак обучавања неуронских мрежа [MacKay, 1992; 1992a]. Исти аутор са 

изузетним успехом примењује тај алгоритам за решавање практичних предиктивних 

проблема из области климатизације [MacKay, 1994]. У овом истраживању се пошло од 

претпоставке да ће предложени метод, због сличности разматраних проблема, дати 

добре резултате и код моделирања топлотног оптерећења потрошача у СДГ. 

 Метод регресије потпорним векторима (SVR) се заснива на теорији Vapnik-

Chervonenkis-a.  За разлику од вештачких неуронских мрежа које су биле, и још увек су 

у великој мери, базиране на хеуристикама, метод потпорних вектора има јасно 

теоријско упориште. Додатно, тренирање SVR подразумева оптимизацију конвексне 

критеријумске функције чиме је осигурано постојање јединственог решења што није 

случај код неуронских мрежа, где није могуће утврдити да ли је локално решење 

истовремено и глобално. Важно својство метода је у томе што добијени модели 

експлицитно зависе од дела расположивих података – потпорних вектора, који 

олакшавају интерпретацију модела. Метод регресије потпорним векторима је са 

успехом примењиван у великом броју радова за моделирање комплексних система и 

решавање проблема у доменима који су слични разматраном [Dong et al., 2005; Jung et 

al., 2015; Mohammadi et al., 2015; Tutkun, 2014; Petković et al., 2015; Zhu et al., 2015]. 

 Коначно, gradient boosting представља релативно нову ансамбл методу (eng. 

ensemble), који се заснивају на комбиновању великог броја простих модела како би се 

добила боља својства резултујућег предиктивног модела. У литератури постоји више 
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потврда о успешној имплементацији ове методе за решавање практичних проблема 

[Ben Taieb et al., 2014; Lloyd, 2014; Silva, 2014]. То је уједно и био главни мотив да се у 

рад укључи и ова метода.  

 У наставку су изложене теоријске основе ових метода. Поступак израде 

предиктивних модела применом наведених метода и њихова валидација коришћењем 

експериментално добијених података, описана је у поглављу 5. 

3.5.1 Метод регресије потпорним векторима - SVR метод 

Све до средине осамдесетих година прошлог века, научна област обраде података била 

је базирана на линеарној анализи. Са појавом компјутера почиње нагло интересовање 

истраживача за анализу нелинеарних метода. Ово се пре свега везује за методе 

машинског учења базиране на биолошким системима (неуронске мреже и фази 

системе). Након почетних успеха уследило је период стагнације, са низом нерешених 

проблема, када је константовано да је поред чисте хеуристике потребно инкорпорирати 

и знање из класичне статистике. Једно од централних питања било је питање 

генерализације метода учења и проблем са димензионалношћу (eng. curse of 

dimensionality).  

 У том периоду долази и до „реоткривања” теоријских резултата Vapnika и 

Chervonenkis-a из шезедесетих година о потребним и довољним условима униформне 

конвергенције за коначни скуп догађаја и потпунијег формулисања VC (Vapnik-

Chervonenkis) теорије статистичког учења. Додатни подстицај, који је омогућио 

решавање сложенијих, нелинеарних проблема, представља увођење кернел метода (или 

метода језгра, eng. kernel methods) у статистичко учење који омогућавају пресликавање 

векторских улаза у високо димензионални простор карактеристика (eng. feature space). 

На тај начин је омогућено да се примени арсенал моћних линеарних алата за решавање 

нелинеарних проблема без опасности од презасићења (eng. overfitting) и проблема са 

локалним минимумом који су својствени неуронским мрежама. Спајањем резултата 

теорије статистичког учења, теорије регуларизације и кернел метода довело је до 

формулисања врло моћних алгоритама код којих се естимација сводила на решавање 

конвексних оптимизационих проблема. Ово је представљало суштински помак у 

односу на неуронске мреже код којих постојање мноштва локалних минимума 

представља један од главних проблема.   
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 Метод потпорних вектора SVM представља један од првих таквих алгоритама. 

Историјски гледано метод је прво развијен за решавање проблема препознавања 

образаца (eng. pattern recognition) а касније су уследиле примене за решавање проблема 

класификације и коначно уопштење за решавање проблема регресије [Vapnik, 2006]. 

 Данас је развој и имплементација алгоритама за метод потпорних вектора од 

великог како теоријског тако и практичног значаја [Izenman, 2008]. SVM метод, заједно 

са осталим методама које се базирају на адаптивном/флексибилном приступу (npr. 

boosting, random forest) данас одређују један од доминантних праваца истраживања у 

области машинског учења.  

3.5.1.1 Теоријске основе SVM метода 

Теоријске основе метода потпорних вектора у највећој мери се базирају на резултатима 

статистичке теорије учења. Следећа три резултата теорије статистичког учења су 

важна за разумевање метода потпорних вектора [Vapnik, 2000] 

 услови конзистентности принципа минимизације емпиријског ризика, 

 својства граница генерализације метода учења и  

 принцип учења/естимације за мале скупове података са задатим границама 

генерализације.  

3.5.1.1.1 Услови конзистентности минимизације емпиријског ризика 

У поглављу 3.4.1 проблем учења је дефинисан као одређивање најбољег естиматора f̂  

коришћењем расположивих података из тренинг сета. У једначини (3.10) проблем 

учења је математички представљен као минимизација ризика  R w .  

 Проблем минимизације функције ризика је у томе што је потребно минимизирати 

величину која се не може израчунати, јер здружена густина ( , )p yx  није позната. 

Уместо ове густине доступни су једино подаци из тренинг сета. На основу тренинг 

података, коришћењем неког индуктивног принципа, потребно је одредити функцију 

која минимизира функцију (3.10). Логичан приступ је у апроксимацији интеграла из 

израза (3.10) коначном сумом, одакле се добија израз за емпиријски ризик: 
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  
1

1
( ) ( , )

m

emp i i
i

R y f
m 

 w x w   (3.12) 

 На први поглед, решење се добија минимизацијом емпиријског ризика из једначине 

(3.12). Овај поступак се назива индуктивним принципом минимизације емпиријског 

ризика [Vapnik, 2006]. Међутим, постоји проблем везан за овакав присуп. 

Минимизацијом емпиријског ризика ( )empR w  из једначине (3.12), није загарантована 

његова конвергенција ка стварном ризику  R w .  

 Прва решења су формулисана кроз теореме Chernoff-a и у нешто општијем облику 

Hoeffging-[Chernoff, 1952; Hoeffging, 1963].  Кроз ове две теореме дефинисана је 

граница која утврђује колико је емпиријски ризик „удаљен” од стварног ризика. Ова 

граница се дефинише у пробабилистичком смислу као: 

   2( ) ( ) 2exp( 2 )empP R R m    w w  (3.13) 

 Међутим, основни проблем са овим теоремама је што не осигуравају 

конзистентност која се изражава кроз услов да функција која минимизира емпиријски 

ризик конвергира ка стварној функцији која минимизира очекивани или стварни ризик 

[Schölkopf et al., 2002]. Кључни допринос Vapnik- Chervonenkis теорије статистичког 

учења је у формулисању теореме која дефинише потребан и довољан услов 

нетривијалне конзистентности емпиријског ризика. По овој теореми индуктивни 

принцип минимизације емпиријског ризика је конзистентан ако и само ако емпиријски 

ризик конвергира униформно ка стварном ризику у следећем пробабилистичком 

смислу: 

  lim ( ) ( ) 0emp
m

P R R 


  w w  (3.14) 

 Врло важна поставка из горње теореме је што се конзистентност одређује за 

најлошију хипотезу из сета потенцијалних хипотеза тј. за ону апроксимациону 

функцију код које је највећа разлика између емпиријског и стварног ризика.  
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3.5.1.1.2 Генерализационе границе метода учења  

Кључна теорема статистичког учења Vapnik-Chervonenkis-a је од великог теоријског 

значаја али истовремено и врло општа, без дефинисања конкретних услова које сет 

хипотеза мора да испуни како би генерализација била осигурана. Због тога је потребно 

дефинисати границе генерализације (eng. generalization bounds)  којима је могуће 

утврдити одступање емпиријског од стварног ризика. Границе генерализације се 

одређују посебно за проблеме класификације и регресије. Имајући у виду да се у овом 

раду разматрају само проблеми регресије, даље излагање се ограничава на границе 

генерализације код регресије. 

3.5.1.1.2.1 Границе генерализације за регресионе проблеме 

По теорији статистичког учења регресиона формулација одговара случају 

неограничене, ненегативне критеријумске функције [Cherkassky, 2002]. То значи да у 

општем случају није могуће естимирати непознату густину само познавајући тренинг 

податке. Међутим може се поћи од претпоставке, која одговара великом броју 

практичних ситуација, да је непозната расподела са “уским крајевима” што одговара 

случају мале вероватноће реализације великих вредности [Schölkopf et al., 2002]. У том 

случају добија се практична форма  границе генерализације [Vapnik, 2006]: 

 

1

ln
( ) ( ) 1 ln

2
emp

n
R R p p p

n


 

    
 

w w   (3.15) 

 Постоје и алтернативни начини за одређивање границе генерализације [Cristianini et 

al., 2000] али је он затно комплекснији. 

 3.5.1.1.3 Принцип естимације за мале скупове података са задатим границама 

генерализације  

Индуктивни приступ се заснива на минимизацији емпиријског ризика. То значи да је 

циљ у проналажењу адекватних функција (или у статистичком жаргону) хипотеза из 

коначног простора хипотеза, са којима ће се остварити најмања могућа вредност 

емпиријског ризика. Vapnik је кроз теорију статистичког учења доказао да је потребан 

и довољан услов за конзистентност принципа минимизације емпиријског ризика 

коначност VC димензије у хипотетичком простору. VC димензија представља 
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карактеристику изабраних хипотеза и по [Hastie et al., 2009] VC димензија процењује 

њихову комплексност кроз оцену “вијугавости” (eng. wiggly) изабраних функција. Када 

број тренинг узорака конвергира бесконачности и када је број VC димензија коначан, 

минимум емпиријског ризика конвергира минимуму стварног ризика. Са друге стране, 

када је тренинг сет коначан и мали, принцип минимизације емпиријског ризика се 

може заменити структуралним ризиком. По теорији статистичког учења принцип који 

се назива минимизација структуралног ризика има пресудну улогу за одређивање 

оптималне комплексности модела на основу ограниченог скупа тренинг података.  

3.5.1.2 Метод потпорних вектора за решавање регресионих проблема 

Иако је метод потпорних вектора иницијално развијен за решавање класификационих 

проблема, принцип је убрзо уопштен и за решавање регресионих проблема [Vapnik, 

2006]. Док је код класификационих проблема циљ естимација функције која утврђује 

класну припадност (излази су бинарни,  0,1y или  1, 1y   ), код проблема 

регресије излази се дефинишу у виду континуалне променљиве ( y R ). У наставку се 

разматра примена метода потпорних вектора за решавање регресионих проблема. 

Најпре се разматра проблем линеарне регресије док је генерализација за нелинеарне 

проблеме приказана у наставку. 

3.5.1.2.1 Формулација проблема регресије потпорним векторима – линеарни 

случај 

Нека је дат скуп (тренинг) података  ,
n

i i i
yx , где је ix  вектор улазних података n

i Rx , 

а iy  су излазни подаци iy R . Циљ регресије је апроксимација тачне али скривене  

функције ( , )f x w  неком апроксимационом функцијом ˆ ( , )f x w која се може приказати 

на следећи начин: 

 ˆ ( , ) Tf b x w w x   (3.16) 

при чему је b скалар. Могућа је алтернативна формулација без одсечка b. 

 Како би изабрали најподеснију апркосимацију, потребно је дефинисати критеријум 

за оцену грешке апроксимације. Овај критеријум се дефинише критеријумском 

функцијом (eng. loss function) која мери величину одступања ствaрних од естимираних 
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вредности. Постоји више могућности за избор критеријумске функције при чему избор 

критеријумске функције дефинише и облик коначног модела. Избор критеријумске 

функције се везује директно за проблем који се решава. 

 У класичној регресији проблем се решава методом најмањих квадрата, применом 

еуклидовске норме. Избор је углавном базиран на историјским и рачунским разлозима 

[Steinwart et al., 2008]. Међутим, и из теоријских и практичних разлога у многим 

ситуацијама је пожељније изабрати неку другу критеријумску функцију. Проблемом 

избора адекватне критеријумске функције први се бавио Huber [Huber, 1964] који је 

уочио да за многе проблеме квадратна критеријумска функција не даје задовољавајуће 

резултате. Његов рад се везује за настанак области робустне естимације и 

формулисања Huberove критеријумске функције. Ова критеријумска функција се 

користи у случају када су опсервације оптерећене шумом, чији карактер није могуће 

утврдити унапред.  

 Једно од потенцијалних решења, које је предложио Vapnik [Drucker et al., 1997] и 

које се најчешће примењује код методе потпорних вектора је такозвана линеарна 

критеријумска функција са  -несензитивном облашћу. Ова критеријумска функција се 

дефинише на следећи начин: 

 

ˆ0 , ( , )
ˆ ( , )

ˆ ˆ( , ) , ( , )

y f w
y f w

y f w y f w



 

  
  

   


x
x

x x
  (3.17) 

 Геометријска интерпретација квадратне критеријумске функције и критеријумске 

функције са  -несензитивном облашћу дата је на Слици 3.3. 
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Слика 3.3 Геометријска интерпретација критеријумских функција 

 Уколико за пар улазно излазних података  , yx  важи  ˆ ( , )y f w  x онда је 

критеријумска функција једнака нули. У супротном, уколико важи да је ˆ ( , )y f w  x  

онда је вредност критеријумске функције једнака ˆ ( , )y f w  x . Геометријски ова  -

несензитивна област се може замислити као цев (eng.tube) око функције која се 

апроксимира. 

То значи да се емпиријски ризик може приказати на следећи начин: 

 
1

1
( , )

n
T

emp i i
i

R b y b
n 



  w w x   (3.18) 

Међутим, поставља се питање да ли се само одступање   - несензитивне 

критеријумске функције од тренинг сета података, може усвојити као потребан и 

довољан услов за добијање најпоузданије регресије? Одговор на ово питање се може 

добити анализом Rungeovog феномена.  

Rungeov феномен представља појаву осцилације на крајевима интервала 

интерполације, приликом интерполације произвољне функције полиномима високог 

реда на скупу еквидистантних  тачака. Ову појаву је открио немачки математичар 

Runge приликом утврђивања понашања грешке приликом полиномне итерполације 

одређених функција [Schlömilch et al., 1865]. Из ових разматрања произилази да у 

општем случају Вајерштрасова теорема не важи и да повећање степена полинома не 
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води нужно ка повећању тачности апроксимације. Додатно, може се закључити да 

захтев у погледу минимизације одступања апроксимационе функције од података не 

води нужно ка најтачнијој апроксимацији. Због тога се јавила потреба за дефинисање 

неких других критеријума. Једно од потенцијалних решења је релаксирање захтева за 

одступањем апроксимације и пооштравање критеријума којима се ограничава 

осциловање (eng. wigglines). Овај захтев се  математички исказује у виду захтева за 

равношћу (eng. flatness). Равноћа се математички дефинише као захтев за глатошћу уз 

захтев да сви изводи нестају у датој тачки 0x R [Radunovic, 2009]. 

 Vapnik први у функцију ризика инкорпорира овај захтев. Захтев за равношћу се у 

израз за ризик уводи кроз еуклидовску норму тежина 
2

w . Другим речима, што је овај 

члан мањи критеријумска функција је равнија. Коначно, функција ризика добија 

следећи облик: 

 
2

1

1 1
( , )

2

n
T

SVR i i
i

R b y b
n 



   w w w x   (3.19) 

 Захтев за равноћом у регуларизационом контексту се може посматрати као 

пенализациони члан. Увођењем овог члана добија се следећи облик регуларизационе 

функције ризика:  
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1

1
( , )

2

n
T

SVR i i
i

R b C y b




   w w w x   (3.20) 

 Регуларизациони параметар C>0 одређује ниво компензације између емпиријског 

ризика ( , )empR bw и регуларизационог члана 
21

2
w односно ниво компензације између 

одступања функције од  - несензитивне области и равности апроксимационе 

функције, респективно. Одступање тренинг података од - несезитивне области 

дефинише се преко ненегативних помоћних променљивих (eng. „slack variables”) *,i i   

(i=1,...,m). Ове величине “мере” одступање тренинг података од крајева  -несезитивне 

зоне. Уколико се тренинг подаци налазе унутар  - несезитивне области вредности 

допунских променљивих *,i i   су једнаке нули. Уколико је податак изнад  - 
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несезитивне области онда је * 0, 0,i i   односно * 0, 0i i   уколико је податак 

испод  - несезитивне области.  

 Увођењем допунских променљивих *,i i  , израз функције ризика SVRR  добија 

следећи облик:  

 
2* *

1 1

1
( , , )

2

m m

SVR i i i i
i i

R C   
 

 
   

 
 w w   (3.21) 

 Циљ регресије је минимизација регуларизационе функције ризика *( , , )SVR i iR  w . 

Минимизација ове функције математички представља оптимизациони проблем који се 

формулише на следећи начин: 

Минимизирати:            
2 *

1 1

1

2

m m

i i
i i

C  
 

 
  

 
 w    (3.22)                       

Уз испуњење ограничења:     *

*

,

,

, 0, 1,...,

i i i

i i i

i i

y b

b y

i m

 

 

 

    


   
  

w x

w x   (3.23)       

 За даље излагање потребно је објашњење одређених појмова из теорије 

оптимизације. Оптимизациони проблем са ограничењем (проблем условне 

оптимизације) се у општем случају дефинише на следећи начин: 

Минимизирати:  0 ( )f x  (3.24)  

Уз испуњење ограничења:  
( ) 0, 1,...,

( ) 0, 1,...,

i

i

f i m

h i p

 

 

x

x  (3.25) 

 Вектор 1( ,..., )nx xx  је оптимизациона променљива проблема. Функција 

0 ( )f x представља критеријумску функцију. Функције ( )if x  и ( )ih x  се називају 

функцијама ограничења при чему је за случај функције ( )if x ограничење дато у виду 

неједнакости (eng. inequality constrains), а у случају ( )ih x  у виду једнакости (eng. 

equality constrains). Вектор * * *
1( ,..., )nx xx представља оптимално решење 

оптимизационог проблема уколико даје најмању вредност критеријумске функције у 



125 

 

односу на све друге векторе који задовољавају ограничење. Вектор *x се још назива 

оптималом (eng. optimal). Према томе, циљ оптимизације је налажење оптималног 

решења ( *x ) које даје екстремну вредност критеријумске функције (минимум или 

максимум), као и срачунавање те ектремне вредности. 

 У зависности од облика критеријумске функције и ограничења оптимизациони 

проблеми се могу поделити у више група. Конвексни оптимизациони проблеми 

представљају једну од најважнијих група. Будући да сви оптимизациони проблеми који 

се разматрају у овом одељку (који се односе на SVR) имају конвексну структуру, даље 

излагање је ограничено на ову изузетно важну класу оптимизационих проблема. 

Најважнија пожељна својства конвексних оптимизационих проблема су [Boyd et al., 

2004]: 

 локална решења су истовремено и глобална, 

 могуће је применити дуалну теорију и 

 постоји велики број нумеричких алгоритама за одређивање оптималних 

решења. 

 Због ових атрактивних својстава у инжењерству се тежи да се разматрани 

оптимизациони проблеми, уколико је могуће, преведу у конвексну формулацију.  

 Појам конвексности за функцију се дефинише на следећи начин: 

Нека је дата функција ( )f w дефинисана у nR . Функција ( )f w је конвексна ако за свако 

, nRw u  и за било које (0,1)   важи: 

 ( (1 ) ) ( ) (1 ) ( )f f f       w u w u  (3.26)  

при чему се горња неједнакост назива Јенсеновом неједнакошћу [Boyd et al., 2004]. 

 Уколико су у формулацији оптимизационог проблема и критеријумска 

функција 0 ( )f x  и ограничења  у виду неједнакости ( )if x  конвексни а ограничења у 

виду једнакости ( )ih x  афина, онда се такав оптимизациони проблем назива 

конвексним.  
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 Уобичајени поступак за решавање оптимизационих проблема са ограничењем је 

формирање Лагранжове функције или лагранжијана. Оптимално решење се добија кроз 

одређивање тачке превоја (eng. saddle point) Лагранжове функције. Лагранжова 

функција се дефинише на следећи начин: 

 0
1 1

( , , ) ( ) ( ) ( )
m m

p i i i i
i i

L f f h   
 

   x x x x   (3.27) 

 Вектори ,  се називају дуалним векторима или Лагранжовим множитељима. Они 

се користе при “увођењу” ограничења у Лагранжову функцију. Лагранжова функција у 

ствари представља критеријумску функцију 0 ( )f x  проширену са, придодатим, 

ограничењима у виду једнакости и неједнакости.  

 Вектор x  се назива примарним вектором (eng. primal variable vector) па се самим 

тим и оптимизациони проблем (3.24) и (3.25) назива примарним оптимизационим 

проблемом док се Лагранжова функција назива Лагранжијаном са примарним 

променљивим или Лагранжовом примарном функцијом и обележава са pL [Boyd et al., 

2004]. 

 Из примарног могуће је формулисати дуални оптимизациони проблем кроз увођење 

Лагранжове дуалне функције:  

 ( , ) ( , ) min ( , , )d pd L L      
x

x   (3.28) 

 Из гоње дефиниције произилази да се Лагранжова дуална функција dL добија 

минимизирањем вредности Лагранжове примарне функције по x . 

 Сада је могуће формулисати дуални оптимизациони проблем који је добијен из 

примарног: 

Максимизирати:  ( , )d     (3.29) 

Уз испуњење ограничења:  0    (3.30) 

 Може се доказати [Schölkopf et al., 2002] да је Лагранжова дуална функција увек 

конкавна, без обзира на то каква је примарна функција. Такође, максимизација 

конкавне Лагранжове дуалне функције се може посматрати као минимизација 
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негативне Лагранжове дуалне функције која је конвексна. Уз опсервацију да је 

ограничење конвексно, произилази врло важан закључак да је дуални оптимизациони 

проблем увек конвексан, што осигурава његово ефикасно решавање. Додатно, 

оптимално решење дуалног проблема добија се у виду Лагранжових множитеља 

(дуалних вектора) који фигуришу у примарној формулацији оптимизационог проблема. 

 Потребни и довољни услови за оптимално решење оптимизационих проблема са 

ограничењима дају се кроз Karush-Kuhn-Tucker (KKT) услове или KKT теорему [Boyd 

et al., 2004; Schölkopf et al., 2002]. Ова теорема је још позната као услов превојне тачке 

(eng. saddle point condition).  

 У општем случају KKT услови важе за произвољан облик оптимизационе функције 

и ограничења. Међутим, таква, општа, формулација није од практичног значаја. Због 

тога се даје прагматичнија формулација, али у овом случају ограничена на конвексне 

оптимизационе проблеме са диференцијабилним критеријумским функцијама и 

ограничењима. У наставку је дата формулација ове практичне варијанте KKT теореме 

(KKT теорема за диференцијабилне конвексне проблеме) [Schölkopf et al., 2002]. 

 Решење оптимизационог проблема формулисаног на начин (3.24) и (3.25) са 

конвексним и диференцијабилним функцијама ( )if x и ( )ih x је дато као *x , ако постоји 

неко 0i   за свако  i n , тако да су испуњени следећи услови: 
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  (3.31) 

 Директна и најважнија последица KKT услова је у чињеници да се конвексни 

оптимизациони проблем решава, израчунавањем * *( , )x који задовољавају услове из 

горње теореме. Примена ККТ услова омогућава транформисање проблема 

минимизације у проблем решавања скупа једначина за који постоје ефикасни 

нумерички алати.   
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 Претходно излагање је било потребно за потпуније објашњење SVR методе. 

Вратимо се на оптимизациони проблем минимизације регуларизационе функције 

ризика *( , , )SVR i iR  w . Овај оптимизациони проблем је дат у изразима (3.22) и (3.23). У 

оптимизационој теорији овај проблем се назива конвексним квадратним проблемом са 

линеарним ограничењима или конвексним квадратним програмирањем.  

 Први корак, при одређивању оптималног решења је формирање Лагранжове 

примарне функције pL : 

 

2* * * * * *

1 1

1

* *

1

1
( , , , , , , , ) ( ) ( )

2

( , )

( , )

m m

p i i i i i i
i i

m

i i i i
i

m

i i i i
i

L b C

y b

y b

           

  

  

 





    

    

    

 





w w

w x

w x

  (3.32) 

где  *, , ,b  w  и * *( , , , )     представљају примарне односно дуалне променљиве, 

респективно. 

 Дуална формулација се добија примењујући први услов из KKT теореме који каже 

да су за оптимално решење парцијални изводи Лагранжове примарне функције по 

примарним променљивим  *, , ,b  w једнаки нули. Ови услови се могу написати на 

следећи начин: 
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  (3.33) 

 Замењујући ове изразе у израз Лагранжове примарне функције pL (3.32) добија се 

Лагранжова дуална функција и формулација дуалног проблема: 
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Максимизирати:     
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  (3.34)                                                                    

Уз поштовање ограничења:    
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  (3.35)                                    

 Приликом изођења дуалне формулације елиминисане су дуалне променљиве 

*( , )   па сада Лагранжова дуална функција има следећи облик: 

 * * * * *
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 У матричном облику Лагранжова дуална функција се може приказати као: 
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dL     T TH p   (3.37) 

где је 
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 Дуални проблем се сада може формулисати у матричном облику на следећи начин: 

 

Максимизирати:                         
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(3.38)                                                           

Уз поштовање ограничења:  
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 



 




  (3.39) 
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 Уколико се искористи чињеница да је максимизирање функције 0 ( )f x идентично са 

минимизирањем функције 0 ( )f x , добија се коначан израз дуалног проблема: 

Минимизирати:                           
1

2
  T TH p   (3.40)                                                            

Уз поштовање ограничења:  

 

*

1

*

( ) 0

, 0

m

i i i
i

y  

 



 




  (3.41)                                                

 Решење дуалног проблема се добија у облику дуалних променљивих *( , )  . Након 

што се срачунају дуалне променљиве *( , )  , из услова (3.33) може се одредити 

оптимална вредност примарне променљиве ( *)w w :  

 * *

1

( )
m

i i i
i

 


 w x   (3.42) 

 Ово је формулација чувене “експанзије потпорних векора“ (eng. support vector 

expansion) која каже да се вектор тежина може у потпуности описати као линеарна 

комбинација подскупа тренинг података. 

 Вредност примарне променљиве b добија се из трећег KKT услова * *

1

( ) 0
n

i i
i

f


 x  

израз (3.33) који каже да је производ дуалних променљивих и ограничења једнак нули. 

Овај услов, примењен на ограничења из (3.22) и (3.23) се може написати на следећи 

начин:  

 

 

 * *

* *

, 0

, 0

0

0

i i i i

i i i i

i i

i i

y b

y b

  

  

 

 

    

    





w x

w x
  (3.43) 

 Из горњих израза оптимална вредност примарне променљиве b се срачунава на 

следећи начина:  
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 * ,i ib y   w x   (3.44) 

при чему се за случај дуалне променљиве i ,   додаје а за случај дуалне променљиве 

*
i  одузима.  

 Коначно се добија облик оптималне регресионе хиперравни:  

 * *( , )f b Tx w w x   (3.45) 

 Односно заменом *w из израза (3.42):  

 * *

1

( ) ( ) ,
m

i i i
i

f b 


  x x x   (3.46) 

 Поступак решавања се може приказати кроз следећи алгоритам: 

1. Формирати тренинг сет података, који се састоји од m тренинг парова улазно-

излазних података:  1 1( , ),..., ( , )n nx y x y  где n
ix R , iy R , 1,...,i m   

2. Изабрати одговарајуће вредности за параметре   и C, 

3. Формирати и решити дуални конвексни квадратни оптимизациони проблем: 

Минимизирати:                          
1

2
  T TH p                                                               

Уз поштовање ограничења:  

                                                

*

1

*

( ) 0

, 0

m

i i i
i

y  

 



 




 

где је 
*




 
  
 

1   
TH x x  a  

 1 2 1 2... ...N Ny y y y y y           p   

4. На основу одређених вредности дуалних променљивих *,  , из корака 3, 

срачунати тежине: 

* *

1

( )
m

i i i
i

 


 w x  
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5. На основу одређених тежина срачунати вредност параметра b: 

* ,i ib y   w x  

6. На основу добијених вредности из корака 3-5 формирати коначан облик 

оптималне регресионе хиперравни: 

* *

1

( ) ( ) ,
m

i i i
i

f b 


  x x x  

3.5.1.2.2 Уопштење регресије потпорним векторима за нелинеарне проблеме 

 

Претходно излагање односило се на проблеме линеарне регресије. Код решавања 

реалних, практичних проблема чешће се срећу нелинеарни проблеми.  Врло важно 

својство методе потпорних вектора је што се, и за класификационе и регресионе 

проблеме, релативно једноставно може направити уопштење за нелинеарне проблеме.  

 Основна идеја се базира на претпоставци да се полазни (у простору улаза) 

нелинеарни регресиони проблем може, у неком вишедимезионалном простору, 

трансформнисати у линеаран проблем. То подразумева да се изабере одговарајуће 

пресликавање ( ) x  улазних вектора  nRx  у векторе z  из неког 

вишедимензионалног, Hilbertovog простора H . Овај вишедимензионални простор се 

назива простором карактеристика (eng. features space). Пресликавање ( ) x се приказује 

као:  

 :
( )

nR H

x




 x x
  (3.47) 

 Код нелинеарних проблема функција регресије је:  

 ˆ ( , ) ( )Tf b  x w w x   (3.48) 

 По аналогији са линеарном регресијом, Лагранжова дуална функција добија следећи 

облик:   

* * * * *

, 1 1 1

1
( , ) ( )( ) ( ), ( ) ( ) ( )

2

m m m

d i i j j i i i i i i
i j i i

L y          
  

          x x         (3.49) 
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 Приликом овог пресликавања из простора улаза у простор карактеристика јављају се 

два проблема. Први је рачунски јер подразумева велик број израчунавања скаларних 

производа ( ), ( )i x x . Други проблем се односи на избор одговарајућег 

пресликавања ( ) x  којим ће се елементи из простора улаза пресликати у простор 

карактеристика. 

 Поступак директног срачунавања скаларних производа ( ), ( )i x x  подразумева, 

најпре пресликавање из простора улаза у простор карактеристика а потом и 

срачунавање скаларних производа. У случају велике димензионалности простора 

карактеристика овај поступак је неизводљив. Због тога се прибегава имплицитном 

пресликавању, које подразумева увођење кернела, односно функције кернела:  

 ( , ) , ( ), ( )i i iK    x x z z x x   (3.50) 

 Кернел се формално дефинише на следећи начин [Schölkopf et al., 2002]: 

Функција ( , )iK x x дефинисана на n nR R се назива кернелом на n nR R или краће 

кернелом уколико постоји пресликавање ( )  из простора nR у Хилбертов простор:  

 :
( )

nR H

x




 x x
  (3.51) 

такво да:  

 ( , ) ( ), ( )i iK   x x x x   (3.52) 

 Функција кернела ( , )iK x x је функција улазног простора, чиме се избегава директно 

пресликавање у простор карактеристика. Такође, за одређивање скаларног производа 

( ), ( )i x x  није потребно познавање облика пресликавања ( )  . На тај начин се 

превазилазе први проблеми, који су повезани са потенцијално великом 

димензионалношћу у простору карактеристика. Важно је напоменути да се облик 

кернел функције бира унапред. 

 Пошто је утврђено да се рачунски проблеми могу превазићи употребом кернела, 

логично питање је које функције кернела се могу користити  у SVR. Мерцерова 
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теорема [Mercer, 1909] дефинише услове које кернел ( , )iK x x мора да испуни како би 

могао да буде скаларни производ у Хилбертоом простору односно простору 

карактеристика [Martínez-Ramón et al., 2005].  

 Многе функције испуњавају Мерцерове услове али се у SVR најчешће користе 

следећи кернели: 

 линеарни, 

 полиномни и 

 радијално базисни. 

 Облици ових кернела дати су у Табели 3.2. 

Табела 3.2 Кернел функције које се најчешће применљују код SVR 

Назив кернела Математичка формулација 

Линеарни ( , ) ,i iK x x x x  

Полиномни 
( , ) ,

d

i iK      x x x x ; , , d  су 

константе 

Радијално базисни 
2

( , ) exp( )i iK   x x x x  

 

 Пратећи аналогију са SVR за линеарне проблеме, након увођења кернел функције, 

дуални оптимизациони проблем постаје: 

Максимизирати:                   

 

* * *

, 1 1

*

1

1
( )( ) ( , ) ( )

2

( )

m m

i i j j i j i i
i j i

m

i i i
i

K

y

      

 

 



    

 

 



x x

  (3.53) 

Уз поштовање ограничења:    

 

*

1

*

( ) 0

, 0

m

i i i
i

y  

 



 




  (3.54) 

односно у матричном облику: 
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Минимизирати:                           
1

2
  T TH p   (3.55)                                                            

Уз поштовање ограничења:  

 

*

1

*

( ) 0

, 0

m

i i i
i

y  

 



 




  (3.56)                                                

где је 
*




 
  
 

 
   

K K
H

K K
 а  1 2 1 2... ...N Ny y y y y y           p  док 

K означава одговарајућу кернел матрицу ( , )i jK x x . Упоређујући горњу формулацију 

са формулацијом код линеарне регресије, примећује се да је једина разлика у облику 

Хесијана.  

 Након одређивања вредности дуалних променљивих *( , )  и срачунавања тежина:  

 * *
i i  w   (3.57) 

и параметра b (где је то потребно) формира се оптимална нелинеарна регресиона 

хиперраван у облику:  

 * * *( , )f b x w Kw   (3.58) 

3.5.1.2.3 Избор кернела и хипер параметара за случај SVR за нелинеарну регресију 

 

У претходном излагању је напоменуто да се кернел функције код SVR за нелинеарну 

регресију бирају унапред. Избор кернела је од велике важности јер управо кернели 

одређују начин пресликавања и облик коначног предиктивног модела. Међутим, за 

сада не постоји поступак којим би се унапред, без тестирања на подацима, могла да 

донесе одлука о избору одговарајућег кернела. Ипак већина студија у којима су SVR 

методе коришћене за моделирање указују да радијално базисни кернели дају најбоље 

резултате [Oliveira, 2006; Ong et al., 2005; Sanchez, 2008]. 

 Други проблем код примене SVR методе је адекватан избор хипер параметара. 

Појам хипер параметара се односи на параметре критеријумске функције и ограничења 
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(C i  ) као и на параметре кернела нпр.   код радијално базисног кернела (видети 

Табелу 2).  

 Регуларизациони хипер параметар C контролише однос између комплексности 

апроксимационих функција и грешке фитовања. Уколико хипер параметар C има малу 

вредност долази до подзасићења (eng. underfittinga) а са друге стране избор превелике 

вредности утиче на презасићење (eng. overfitting). 

  Са друге стране величина   хипер параметра утиче на ширину  несензитивне зоне. 

Уколико је  велико, већа је и толеранција према потенцијално присутном шуму у 

подацима. Са друге стране превелике вредности могу довести и до знатног одступања 

естимиране од стварне зависности. 

 Избор параметара може бити аутоматизован и базиран на хеуристикама.  

Аутоматизована претрага се најчешће врши “претраживањем по мрежи“ (eng. grid 

search). Код овог поступка се најпре простор параметара дискретизује у мрежу, а потом 

се врши претрага параметара који минимизирају грешку тренирања. Претпоставка је да 

она констелација параметара која даје најбоље резултате на тренинг сету у ствари 

представља најбољи сет параметара предиктивног модела. Уобичајено се 

дискретизација простора параметара врши на логаритамској мрежи са основом 2 или 

10 [Chang et al., 2011]. Након тога се врши фина дискретизација у околини тачака у 

којима су добијени најбољи резултати. Овај поступак је рачунски захтеван али се без 

обзира на тај недостатак најчешће примењује. 

 Од хеуристичких приступа најчешће цитиран је онај Cherkaskog [Cherkassky et al., 

2004]. Они предлажу да се вредност C одреди као разлика минималне и максималне 

вредноси излаза:  

 max minC y y    (3.59) 

 У случају реалних података оптерећених шумом и нетипичним вредностима (eng. 

outliers) предлажу следећи образац:  

 max ( 3 , 3 )y yC y y      (3.60) 

при чему y представља средњу вредност а y стандардно одступање података излаза. 
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 Теоријске студије [Kwok, 2001; Schölkopf et al., 2002] су показале да вредност 

параметра   треба да буде  0,6 0,8  . Међутим ове вредности важе за асимптотски 

случај, тј. за случај са непрактично великим тренинг сетом. У практичним применама, 

може се користити вредност коју предлажу [Cherkassky et al., 2004]: 

 
ln

3
n

n
    (3.61) 

3.5.2 Вештачке неуронске мреже 

Већина реалних/практичних инжењерских проблема је комплексна и подразумева 

постојање нестационарности, нелинеарности и неодређености. Решење треба тражити 

у примени нелинераних модела. Способност неуронских мрежа да уче и генерализују 

понашање било ког комплексног и нелинеарног система чини их врло погодним алатом 

за моделирање. У литератури постоји велики број потврда за успешну имплементацију 

неуронских мрежа за моделирање и предикцију различитих система и процеса [Haykin 

1999, 2007, 2008; Bishop 2006]. 

 Неуронске мреже представљају нелинеарне, непараметарске моделе који мапирају 

функционалну зависност између улазних и излазних података. Другим речима, 

неуронске мреже представљају универзалне апроксиматоре што значи да могу 

апроксимирати било коју континуалну функцију до жељене тачности под условом да је 

број неурона (базисних функција) довољно велики [Cybenko, 1989]. 

 Према [Haykin, 2008] вештачке неуронске мреже представљају масивни, паралелно 

дистрибуирани процесор који има природно својство складиштења искуственог знања 

и креирање могућности за његово искоришћење. У основи оне су математички модели 

за обраду информација које по начину функционисања подсећају на биолошке нервне 

системе. Биолошки системи, прецизније начин обраде информација у мозгу, послужио 

је као инспирација за њихов развој. Оне подсећају на мозак са два аспекта:  

 знање се обезбеђује кроз процес учења и  

 јачина веза између неурона, које се називају синаптичке тежине или краће 

тежине се користе за складиштење знања. 
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 Мозак обрађује информације поступно и усваја нове концепте у времену. У току 

овог процеса он исказује изузетну способност закључивања и доношење одлука чак и у 

случају када су му презентиране комплексне, ирелевантне или парцијалне 

информације. Локална обрада/процесуирање информација која се одвија у можданим 

ћелијама односно неуронима (који формирају мноштво паралелних мрежа у кори 

мозга) је од суштинског значаја у овим активностима. Кора мозга представља танак 

слој мозга који садржи велики број неурона (између 100 до 500  милиона). Неурони су 

организовани у око 1.000 главних кластера/скупина при чему сваки од њих садржи око 

500 мрежа док једна мрежа може да садржи и до 10.000 неурона. Мозак поседује више 

различитих, специјализованих неурона који могу да проследе сигнал од сто до више 

хиљада других неурона. Данас је познато да поновљена ексцитација неурона 

условљава јачање веза између два или више неурона чиме се креира и шири мрежа која 

у ствари представља меморију тј. памћење. Меморија односно прикупљено знање се у 

ствари реализује у виду различитих јачина везе између неурона [Grossberg, 1988]. 

 Интерес за моделирањем биолошких неуронских мрежа појавио се четрдесетих 

година прошлог века и био је првенствено мотивисан развојем система који би имали 

хуманоидне карактеристике. Иницијални покушаји моделирања везују се за биологију, 

неуро/когнитивне науке и сродна поља.  

 Кључни корак начињен је 1943 године када су McCulloch и Pitts развили први 

вештачки неурон- праговски неурон (eng. treshold neuron), просту апроксимацију 

биолошког неурона. Наредни важан корак је формулација првог алгоритма учења 1949. 

године, који је формулисао физиолог Donald Hebb. Иницијална идеја, коју је 

презентиарао Hebb, којом се учење неуронских мрежа посматра као процес промене 

тежина синапси и данас се концептуално примењује. За развој модерних неуронских 

мрежа заслужан је рад Rosenblatta  који је педесетих година прошлог века предложио 

први вештачки неуронски модел, који је назван перцептроном, и који је био способан 

да учи. Даље унапређење дали су шездесетих година прошлог века Widrow и Hoff кроз 

ADALINE модел (eng. Adaptive Linear Element) код кога се учење заснивало на 

минимизацији квадрата грешке кроз сукцесивне итерације. У том периоду интензиван 

је рад истраживача на пољу вештачких неуронских мрежа све док се није појавио рад 

којим је заустаљено истраживање на пољу неуронских мрежа за дуги низ година. То је 

био рад Minskog и Papert-a из 1969. године [Minski et al., 1969]. У том раду критикује се 
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модел перцептрона и изводе математички докази о лимитираности перцептрона на 

проблеме линеарног пресликавања. Али, Minski и Papert у истом раду остављају 

могућност да вишеслојна мрежа са нелинеарним активационим функцијама 

потенцијално може да оствари комплексна пресликавања. Међутим, у то време није 

постојао алгоритам који би те идеје могао да спроведе у реалност. Готово тек након 

двадесет година од објављивања овог рада, 1986. године [Rumelhart et al., 1986] уводе 

алгоритам простирања грешке уназад (eng. error backpropagation) за обучавање 

вишеслојног  перцeптрона. Овај рад је представљао други кључни моменат у историји 

развоја вештачких неуро мрежа јер је „реиницирао” истраживања која трају и данас. 

Данас су истраживања у области вештачких неуронских мрежа усмерена у два правца: 

когнитивном (неуробиолошки правац) и у области машинског учења (eng. machine 

learning and data mining). 

 Према [Palit, 2005] вештачке неуронске мреже имају следећа важна својства: 

 способност препознавања функционалне зависности код података, што је 

посебно погодно када структура модела посматраног процеса није a priori 

позната или се само може описати сложеним математичким релацијама и/или 

када су подаци оптерећени шумом; 

 способност универзалне апроксимације функција која омогућава моделирање 

произвољних нелинеарних континуалних функција до жељеног нивоа тачности; 

 способност нелинеарног пресликавања вредности временске серије из прошлог 

у будући тренутак и 

 способност адаптивног учења и генерализације из примера.  

 Начин функционисања неуронских мрежа5 зависи од [Fausett,  1994]:  

 архитектуре неуронске мреже (другим речима од начина повезивања неурона),  

 облика активационих функција и 

 методе одређивања/додељивања тежина везама између неурона (синапсама) 

(поступак додељивања тежина синапсама се назива обучавањем или учењем 

неуронске мреже)  

 

                                                           
5 У даљем тексту се под неуронским межама подразумевају вештачке неуронске мреже 
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3.5.2.1 Архитектура неуронске мреже 

Основни градивни и процесни елемент неуронских мрежа је као и код биолошких 

мрежа неурон (Слика 3.4). Три основна елемента чине модел неурона [Haykin, 2009]: 

 скуп синапси/веза при чему се свака карактерише одређеном 

тежином/јачином, 

 сабирач, у коме се сабирају улазни сигнали и 

 активациона функција, којом се ограничава величина излаза неурона.  

 

Слика 3.4 Нелинеарни модел неурона [Haykin, 2009] 

 Сваки од улазних сигнала xi са слике се множи тежином wи пре него што доспева до 

сабирача где му се додаје померај (eng. bias). Излаз из сабирача је улаз активационе 

функције. Излаз из активационе функције је истовремено и излаз неурона yi. 

 Неурони се уобичајено повезују у слојеве при чему је најчешћи случај да је 

активациона функција неурона у једном слоју, као и начин повезивања ових неурона са 

другим неуронима ван посматраног слоја иста. Уобичајено је да неурони формирају 

скривене и излазне слојеве. Иако изглед улазних јединица на шематском приказу 

неуронских мрежа подсећа на слој, оне се најчешће не третирају као слој неурона јер се 

у њима не изводе никакве рачунске операције. Таква конвенција је усвојена и у овој 

дисертацији. 

 Начин повезивања неурона у оквиру и изван слоја и природа те везе одређује 

архитектуру неуронске мреже. Са друге стране, начин подешавања или естимирање 
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тежина синапси између неурона, како би се добили жељени резултати, произилази из 

одговарајућих метода обучавања/тренирања.  

3.5.2.1.1 Подела неуронских мрежа према архитектури/структури 

Према архитектури неуронске мреже је могуће поделити на:  

 мреже са директним простирањем сигнала (eng. feedforward neural networks) и 

 рекурентне неуронске мреже 

3.5.2.1.1.1 Неуронске мреже са директним простирањем сигнала 

Код неуронских мрежа са директним простирањем сигнала, неурони (процесни 

елементи) су повезани на тај начин да се сви сигнали простиру у једном правцу, од 

улазних ка излазним јединицама. Овај тип неуронских мрежа се сврстава у групу 

статичких  неуронских мрежа. Динамика се инкорпорира у структуру кроз увођење 

улаза и/или излаза са кашњењима. Неуронске мреже са директним простирањем 

сигнала могу бити реализоване као једнослојне и вишеслојне мреже. 

 Једнослојне мреже се састоје од улазног слоја са кога се врши пројекција на излазни 

слој неурона. Будући да у улазном слоју нема никаквих прорачунавања ове мреже се 

називају једнослојним без обзира што се de facto састоје од два слоја.  

 

Слика 3.5 Једнослојна неуронска мрежа са директним простирањем сигнала [Haykin, 

2009] 

 Код вишеслојних неуро мрежа поред улазног и излазног слоја постоји и скривени 

слој неурона који има функцију „посредовања“ између улазног и излазног слоја. 

Овакав тип мрежа се примењује за решавање реалних проблема. Вишеслојне неуронске 
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мреже са директним простирањем сигнала представљају универзалне апроксиматоре 

[Hornik et al., 1989]. 

 

Слика 3.6 Потпуно повезана двослојна неуронска мрежа са директним простирањем 

сигнала [Haykin, 2009] 

3.5.2.1.1.2 Рекурентне неуронске мреже 

Код рекурентних мрежа постоји веза и са директним (eng. feedforward) и са повратним 

(eng. feedback) простирањем сигнала тако да је могуће кретање сигнала у оба правца. 

Другим речима, уколико у мрежи са директним простирањем сигнала постоји повратна 

спрега, којом се излазни сигнал из мреже враћа на почетак, онда говоримо о 

рекурентним неуронским мрежама. Код рекурентних неуронских мрежа улазни 

сигнали се простиру кроз слојеве мреже као и код мреже са директним простирањем 

сигнала, али се одређени улази и излази са закашњењем враћају ка улазном слоју чиме 

се повећавају способности глобалног учења неуро мреже. Ове мреже припадају групи 

динамичких неуро мрежа будући да код њих излази не зависе само од тренутних већ и 

од претходних вредности улаза. Додатно, рекурентне неуронске мреже имају 

способност препознавања дугорочне зависности која постоји у подацима. Повратне 

спреге су изведене на тај начин да омогућавају памћење претходних стања мреже. Та 

претходна стања се рекурзивно, у сваком следећем временском кораку, 

реинтерпретирају неуро мрежи заједно са новим улазима што омогућава постојање 

меморије, односно информације о свим претходним улазима.  
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 Док концептуално рекурентне неуронске мреже представљају моћне алате за 

моделирање комплексних процеса и система, у пракси их је јако тешко обучавати 

[Pascanu et al., 2012]. Главни проблеми са обучавањем рекурентних неуронских мрежа 

односе се на проблем “нестајућих” и “експлозивних“ градијената који су детаљно 

описани у [Bengio et al., 1994].  По [Bengio et al., 1994]  проблем “експлозивних“ 

градијената се  односи на експлозивни раст норме градијента у току обучавања док се 

проблем “нестајућих” градијената односи на обрнути ефекат који подразумева 

експонецијални пад норме ка нули што онемогућава естимирање зависности између 

временски удаљених догађаја. 

3.5.2.1.2 Избор одговарајуће архитектуре неуро мреже 

Избор архитектуре неуро мреже у највећој мери зависи од динамике и сложености 

проблема који се решава. Не постоји генерална препорука већ је потребно подробно 

утврдити предности и недостатке појединих типова. Најбоље је избор извршити након 

детаљне анализе расположивих података о посматраном динамичком систему.  У овом 

раду су коришћене неуронске мреже са директним простирањем сигнала и једним 

скривеним слојем. 

3.5.2.2 Активационе функције 

Нелинеарност неуронских мрежа се остварује коришћењем нелинеарних активационих 

функција. По Коломогоровљевој теореми општег представљања (eng. general 

representation theorem) [Kolmogorov, 1957] активациона функција треба да буде 

нелинеарна како би формирала универзални апроксиматор. По овој теореми било која 

нелинеарна функција потенцијално може бити активациона али је због захтева који се 

јављају у процесу обучавања неуронских мрежа потребно да изабрана функција буде 

глатка и ограничена. Активационе функције се начешће бирају тако да буду 

континуалне и диференцијалне и да припадају групи сигмоидалних функција [Haykin, 

2009]. Избор нелинеарне активационе функције се директно одражава на перформансе 

неуронских мрежа. Детаљан приказ активационих функција које се користе код 

неуронских мрежа дат је у рефренцама [Duch  et al., 1999; Cichocki et al., 1993]. 
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3.5.2.3 Обучавање неуронских мрежа 

Обучавање неуронских мрежа, односно адаптација тежина синапси неуронских мрежа, 

уствари представља проблем естимације. Предност ове интерпретације је што се сви 

фундаментални резултати теорије естимације који су развијани деценијама могу 

употребити за анализу својстава и перформанси неуронских мрежа.    

 Терминологија која се користи код неуронских мрежа (области машинског учења) 

разликује се у односу на терминологију која се традиционално употребљава у теорији 

естимације и идентификације система. Тако уместо параметара говоримо о тежинама 

синапси и као што је већ речено уместо о естимацији говоримо о учењу или адаптацији 

тежина синапси [Sjöberg et al., 1995]. Према [Bilings, 2013] ова нова терминологија је 

уведена само како би се показало да се анализира нешто ново док се у суштини 

разматрају традиционални проблеми. 

 Код обучавања неуронских мрежа, као и код других метода статистичког учења, 

уобичајно је да се укупан, расположив сет података подели на тренинг и тест сет. У 

тренинг фази, користећи податке из тренинг сета, одређују се итеративно вредности 

тежина синапси све до тренутка док се не добију жељени излази мреже. Након 

тренирања перформансе модела (неуро мреже) се проверавају на тренинг сету 

упоређивањем излаза мреже са опсервираним излазом. Поступак тренирања може бити 

надгледан (eng. supervised) или ненадгледан (eng. unsupervised).  

 Код надгледаног обучавања постоји информација о тачном или жељеном излазу за 

сваки расположиви улаз. Са друге стране код ненадгледаног учења ова информација не 

постоји па се обучавање врши само на основу својстава улазног сета података. У овом 

раду се разматрају само проблеми надгледаног обучавања.  

 У зависности од начина на који се неуро мрежи презентирају тренинг парови, 

методе обучавања неуро мрежа се могу поделити на on-line и off-line [Mandić et al., 

2001]. Код on-line учења опсервације се секвенцијално уводе у систем, једна за другом. 

Након што се нова опсервација презентира мрежи, тренутно се изврши адаптација 

тежина, а опсервација се потом одбацује. На тај начин се тежине мреже адаптирају све 

до тренутка док се не дође до последње опсервације из тренинг сета. Након увођења 

последње опсервације, процес учења се зауставља. On-line учење се још назива 

секвенцијалним.  
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 Са друге стране, код off-line учења (назива се још eng. batch или epoch wise) све 

опсервације из тренинг сета (које се називају епохом) се презентирају мрежи без 

икаквог реда. Након што се све опсервације презентирају мрежи, врши се адаптација 

тежина по претходно дефинисаном критеријуму (алгоритму учења). Процес обучавања 

се понавља све до тренутка док се не постигне жељена тачност. У овој дисертацији се 

разматрају само проблеми обучавања у off-line режиму. 

 Неуронска мрежа се може приказати као пресликавање ( ; , )y Mx w  из скупа улаза x у 

скуп излаза y  при чему w  представља вектор тежина синапси неуронске мреже а 

M карактеристике неуронске мреже у смислу изабране архитектуре, броја слојева и 

неурона и типа активационе функције неуронске мреже [MacKаy, 1992а]. У процесу 

надгледаног обучавања неуронске мреже одређују се оптималне вредности тежина 

w кроз минимизацију критеријумске функције која дефинише одступање излаза 

неуронске мреже од излаза из тренинг сета. Ова критеријумска функција која се још 

назива функцијом грешке и обележава са ( )E w од суштинске је важности за проблеме 

обучавања неуронских мрежа. Геометријски ( )E w се може посматрати као 

хиперповршина грешке над простором тежина. Обучавање неуронских мрежа 

представља одређивање оптималних вредности тежина, које се добијају 

минимизацијом функције грешке ( )E w . То значи да се проблем обучавања неуронских 

мрежа своди на оптимизациони проблем. 

 Проблем код обучавања неуронских мрежа је у томе што хиперповршина грешке у 

општем случају није конвексна. Критеријумска функција је конвексна само у следећим 

случајевима [Bottou, 1991]: 

 када су све активационе функције у неурону линеарне и када се критеријумска 

функција приказује као збир квадрата грешке и 

 када су активационе функције у скривеним неуронима нелинеарне али фиксне, 

скривени неурони са линеарним активационим функцијама  и  када се 

критеријумска функција приказује као збир квадрата грешке. 

 У свим осталим случајевима критеријумска функција за неуро мреже које имају 

скривене и излазне слојеве неурона са нелинеарним активационим функцијама биће 

нелинеарна, неконвексна хиперповршина са много локалних минимума и превојних 
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тачака. За решавање овакве врсте општих оптимизационих проблема где је 

критеријумска функција произвољног нелинеарног облика није осигурано да се 

минимизацијом функције грешке добије глобални минимум. О потенцијалним 

решењима овог проблема биће речи у поглављу 2.6.3.2. У наставку се разматра један 

од првих алгоритама обучавања који је успешно примењен код вишеслојног 

перцептрона, метод простирања грешке уназад. 

3.5.2.3.1 Метод простирања грешке уназад  

Метод простирања грешке уназад је врло једноставан и суштински представља метод 

за срачунавање градијента излаза неуро мреже по тежинама синапси. Због тога се још 

назива и стандардним градијентним методом. Овај метод дели судбину многих других 

метода у математици и инжењерству који су дуго времена постојали у некој другој, 

најчешће теоријској области математике, али им је требало пуно времена да буду 

поново откривени и примењени за решавање практичних проблема. Може се рећи да је 

управо откриће овог метода представљало окидач за експанзију интересовања у 

области истраживања неуронских мрежа. Метод је први пут предложен у [Rumelhart et 

al., 1986].  

 Метод простирања грешке уназад представља процедуру обучавања неуро мрежа 

кроз промену тежина синапси. У току учења све тежине у мрежи се адаптирају/мењају 

симултано. У најједноставнијем случају, подешавање тежина синапси врши се  кроз 

одређивање извода грешке по свим тежинама мреже (и оним које су везане за скривене 

и оним које су везане за излазне неуроне).  

 Начин функционисања алгоритма обучавања са простирањем грешке уназад биће 

објашњен на примеру неуронске мреже са једним скривеним и једним излазним слојем. 

Релевантни делови неуро мреже за објашњење алгоритма обучавања дати су на Слици 

3.7: 



147 

 

 

Слика 3.7 Шематски дијаграм алгоритма простирања грешке уназад за неуронску 

мрежу са једним скривеним слојем [Haykin, 2009] 

 Усвојено је да неуро мрежа има r улаза, t скривених неурона и s излазних неурона. 

Индексирање се врши на следећи начин: 

 улази  1,...,m r   

 скривени неурони 1,...,j t  

 излазни неурони   1,...,k s  

 Према Слици 3.7 излаз из j-тог скривеног неурона обележава се са jY  и он је 

функција суме пондерисаних улаза у тај неурон:  

 
1

( )
r

h
j j j j jm m

m

Y f V f w X


 
   

 
   (3.62) 

где је jY пондерисана сума улаза у ј-ти скривени неурон, ( )jf  активациона функција ј-

тог скривеног неурона, h
jmw представља тежину на вези између m -тог улаза и ј-тог 

скривеног неурона а mX  је улаз m. 

 Са друге стране излаз из излазног неурона је: 
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1

( )
t

o
k k k k kj j

j

O g W g w Y


 
   

 
   (3.63) 

где је kW  пондерисана сума улаза у k-ти излазни неурон, ( )kg  активациону функцију k-

тог излазног неурона, o
kjw  представља тежину на вези између ј-тог скривеног неурона и 

k-тог излазног неурона а jY  је излаз ј-тог скривеног неурона.   

 Нека је дат тренинг сет података  ,p pD  x d , где 1,...,p P  представља број 

улазно-излазних парова података који се користе за обучавање. Критеријумска 

функција ( )E w представља суму квадрата грешке између опсервираног излаза система 

и излаза неуро мреже:  

  
2

1 1

1
( )

2

P s

pk pk
p k

E d o
 

 w   (3.64) 

где pko  представља к-ти излаз неуро мреже за p-ти тренинг пар, а индекс 

1,...,k s означава излазни неурон. Код методе простирања грешке уназад оптималне 

вредности тежина се добијају итеративном минимизацијом критеријумске функције. 

Овај метод се базира на итеративном алгоритму спуста градијента.  Прво се даје 

алгоритам за ажурирање тежина на вези између скривеног и излазног слоја а потом 

тежина на вези између улаза и скривеног слоја. 

 Нека је са ,
o
i kjw обележена тежина на вези између ј-тог скривеног и k-тог излазног 

неурона у итерацији i. Ова тежина се код методе простирања грешке уназад ажурира у 

наредном итеративном кораку на следећи начин: 

 1, , ,
o o o
i kj i kj i kjw w w     (3.65) 

где је:  

 ,

,

o i
i kj o

i kj

E
w

w



 


  (3.66) 

 У горњем изразу,   је параметар обучавања који дефинише величину корака у 

итеративном поступку. Користећи правило ланца (eng. chain rule):  
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 , ,

,

i
i k i ko

i kj

E
Y

w






  (3.67) 

где је:  

  ,

, , ,

, ,

i ki
i k i k k i k

i k i k

OE
e g W

O W



 

 
  (3.68) 

 Коначно израз (3.65) добија финалан облик:  

 1, , , , ,

,

o o oi
i kj i kj i kj i k i ko

i kj

E
w w w Y

w
 


   


  (3.69) 

 Наредни корак је одређивање тежина на вези између улаза и скривеног слоја 

неурона. Тежина на вези између m-тог улаза и ј-тог неурона у скривеном слоју, у i-тој 

итерацији се обележава са ,
h
i jmw . Ова тежина се ажурира на следећи начин:  

 1, , ,
h h h
i jm i jm i jmw w w     (3.70) 

где је:  

 ,

,

h i
i jm h

i jm

E
w

w



 


  (3.71) 

 На сличан начин као и код тежина између скривеног и излазног слоја добија се 

коначан израз за ажурирање тежина између улаза и скривеног слоја:  

 1, , , , ,

,

h h hi
i jm i jm i jm i j i mh

i jm

E
w w w x

w
 


   


  (3.72) 

где је:  

  , , , ,
1

s
o

i j j i j i k i kj
k

f Y w 


    (3.73) 

 Редослед корака код алгоритма простирања грешке уназад је следећи: 

 избор улазно-излазног пара података из тренинг сета, 
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 задавање иницијалних вредности тежина на везама улаз-скривени слој h
jmw и 

скривени слој-излазни слој ,o
kjw  

 избор и додељивање активационих функција скривеним ( )f  и излазним 

неуронима ( ),g   

 срачунавање грешке за све неуроне из излазног слоја, 

 срачунавање грешке за све неуроне из скривеног слоја, 

 коришћење добијених вредности грешака за ажурирање тежина на везама улаз-

скривени слој и скривени слој-излазни слој према изразима. 

 Ова процедура се извршава за све тренинг парове из тренинг сета што се назива 

епохом обучавања. Процедура се понавља све док се не добије унапред дефинисана 

вредност грешке.  

3.5.2.3.2 Унапређења методе простирања грешке уназад 

Један од главних проблема код обучавања неуронских мрежа је у чињеници да је 

критеријумска функција или функција грешке ( )E w најчешће неконвексна 

хиперповршина са много локалних минимума и превојних тачака што отежава или 

онемогућава одређивање глобалног минимума. Међутим уколико се неконвексна 

критеријумска функција ( )E w апроксимира конвексном функцијом, у околини неке 

локалне тачке, онда је могуће применити читав низ алгоритама који се користе за 

решавање конвексних оптимизационих проблема. 

 Стандардна процедура за апроксимације критеријумске функције састоји се у 

развијању ( )E w  у Тејлоров ред, до члана другог реда у околини тачке 0w :  

      0 0 0 0

1
( ) ( )

2
E E g     

TTw w w w w w H w w   (3.74) 

где је ( )E w - апроксимација ( )E w у околини тачке 0w , 
E

g



w

 и 
2

2

E



H
w

 су први и 

други извог функције грешке по тежини за 0w w .  
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 Оптимална вредност тежине w се добија након изједначавања градијента израза 

(3.74) са нулом:  

  0

( )
0

E
g 

   


w
H w w

w
  (3.75) 

 Из горње једначине добија се оптимална вредност вектора тежина:  

 1
0 g  w w H   (3.76) 

 Једначина (3.76) је основна форма која се користи за формулацију метода другог 

реда, који много брже конвергирају ка минимуму у односу на методе првог реда који 

се заснивају само на градијенту. 

 Многи оптимизациони алгоритми се базирају на изразу  (3.76). Ове методе се збирно 

називају Њутновским оптимизационим методама. Једна од тих метода је Њутн-

Рапсонова метода. У овом случају тежине синапси се ажурирају на следећи начин:  

 1
1k k k kg 

  w w H   (3.77) 

 Код овог метода врло је вероватно да ће у неком итеративном кораку да се добије 

негативно дефинитна хесијан матрица H  што директно доводи до дивергенције у 

наредном кораку. Додатни проблем је што у сваком итеративном кораку треба 

рачунати H  што за велики број тежина може да буде озбиљан рачунски захтев. 

 Потенцијално решење овог проблема је у примени оптимизационих алгоритама који 

се не заснивају на срачунавању H  у сваком кораку. Постоји велика класа ових 

оптимизационих алгоритама који се заједничким именом називају квази њутновски 

алгоритми. Најважнији алгоритми из ове групе су:  

 Davidson-Fletcher-Powell и 

 Broyden-Fletcher-Goldforb-Schano  алгоритми. 

 Опште својство ових алгоритама је што се заснивају на неком облику апроксимације 

инверзне матрице хесијана. Детаљи о овим алгоритмима могу се пронаћи у [Gupta et 

al., 2004]. Главни недостатак метода другог реда је у чињеници да је систем 
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нелинеарних једначина који је заснован на хесијану потребно срачунавати у свакој 

итерацији. 

 Сви горе наведени алгоритми другог реда спадају у групу алгоритама за решавања 

оптимизационих проблема у којима је критеријумска функција општег облика. 

Међутим, критеријумска функција се код обучавања неуронских мрежа најчешће 

дефинише као сума квадрата грешке естимације. За тај случај од изузетне важности су 

два оптимизациона алгоритма: 

 Gaus-Njutnov и 

 Levenberg –Markardov алгоритам. 

 Код Гаус-Њутновог метода, адаптација тежина синапси мреже се одвија итеративно, 

по Њутн-Рапсоновом алгоритму:  

 1
1k k k kg

  w w H   (3.78) 

Пошто је критеријумска функција дефинисана као сума квадрата грешке естимације, 

градијент и хесијан имају посебан облик. Уколико се пође од критеријумске функције 

( )E w : 

 ( ) ( ) ( )E   Tw w w   (3.79) 

први извод грешке по тежинама може се приказати преко Јакобијана:  

 ,( ) i
i j

j

w
w

 
   

J   (3.80) 

док се други извод дефинише преко Хесијана H :  

 
2

,

( )
( )i j

i j

E
w

w w




 

w
H   (3.81) 

 За случај критеријумске функције у облику суме грешака естимације, матрице 

Хесијана и Јакобијана добијају специјалан облик: 

 2 ( )g  TJ w   (3.82) 

и  
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 2 2 ( )


 


T
T J

H J J w
w

  (3.83) 

 Најчешће се полази од претпоставке да је ( ) w мало па се у изразу за Хесијан (3.83) 

други члан може одбацити. Другим речима Хесијан се може апроксимирати са:  

 2 TH J J   (3.84) 

 Уколико се ови облици Јакобијана и Хесијана замене у Њутн-Рапсонов израз за 

ажурирање тежина синапси (3.76) добија се:  

  
11

1 ( )k k k k kg 


     T Tw w H w J J J w   (3.85) 

 Гаус-Њутнов метод ажурирања тежина се другачије назива генералисаним методом 

најмањих квадрата. Предност метода у односу на класичан Њутн-Рапсонов алгоритам 

је што није потребно директно израчунавање матрице Хесијана у сваком итеративном 

кораку и што је генерално бољи од најбољих квази њутновских алгоритама [Matignon, 

2005]. Са друге стране, основни недостатак Гаус-Њутновог алгоритма је што је у 

ситуацијама када је други извод негативан, правац оптимизационе претраге усмерен ка 

областима у којима грешка расте. Додатни проблем је што алгоритам почиње да 

дивергира када кроз итерације Јакобијан изгуби ранг. Овај проблем је решен увођењем 

Levenberg –Markardovog алгоритма. 

3.5.2.3.3 Levenberg- Markardov метод 

Код Гаус-Њутновог метода полази се од претпоставке да је други члана из израза (3.81) 

мали и да га је могуће занемарити. Међутим, у одређеним случајевима то није могуће 

урадити, што за последицу има да овај алгоритам конвергира или сувише споро или 

чак дивергира. Због тога је предложен метод Levenberg- Markarda код кога се у 

итеративној шеми узима у обзир цео израз Хесијана. Код овог алгоритма се такође 

матрица Хесијана не израчунава у сваком итеративном кораку али се примењује 

регуларизација за случај када је матрица TJ J недовољног ранга (eng. rank deficient). 

Код Levenberg-Markardovog метода користи се следећа итеративна шема за ажурирање 

тежина:  
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  
1

1 ( )k k k 


   T Tw w J J I J w   (3.86) 

где k  представља скалар који контролише правац претраживања и величину корака 

[Oliver et al., 2008] док је I јединична матрица. За мале вредности k Levenberg-

Markardov алгоритам постаје Гаус-Њутнов метод јер други члан из регуларизационог 

израза постаје занемарљив. Са друге стране за велике вредности k  Levenberg-

Markardov алгоритам имплементира метод најбржег спуста. Чињеница да Levenberg-

Markardov алгоритам садржи оба метода имплицитно инкорпорирана у својој 

структури чини овај метод супериорнијим у односу на остале оптимизационе 

алгоритме. Према [Matignon, 2005] Levenberg-Markardov метод је најбољи метод за 

обучавање мрежа уколико је број тежина релативно мали (испод 100) при чему се као 

његове кључне предности издваја чињеница да готово увек конвергира и да даје јако 

добре резултате у случајевима у којима су улази мултиколинерани, што се врло често 

дешава код решавања реалних, инжењерских проблема.  

 Додатно унапређење Levenberg-Markardovog алгоритма могуће је постићи увођењем 

проблема обучавања мрежа у пробабилистички, бајесовски контекст. Овде је од 

посебне важности проблем регуларизације којим је могуће поред адаптација тежина 

симултано контролисати и комплексност структуре неуронске мреже. 

3.5.2.3.4 Levenberg-Markardov метод и бајесовска регуларизација 

Уобичајни приступ код обучавања/тренирања неуронских мрежа подразумева 

естимацију непознатих тежина минимизацијом критеријумске функције која се 

најшеће задаје као сума квадрата грешке. Овај поступак је идентичан поступку 

максималне веродостојности који је предложио Ser Fisher [Fisher, 1952]. Код класичног 

приступа полази се од претпоставке да су тежине синапси параметри са константним 

вредностима који се добијају као тачкасте оцене (eng. point estimate) коришћењем 

података из тренинг сета. 

 Алтернативни приступ, који је ближи реалности, подразумева да постоји 

неодређеност (eng. uncertainty) у вези тежина синапси неуронске мреже и да их је 

потребно посматрати у пробабилистичком контексту, као случајне променљиве које се 

задају преко густина. Проблем одређивања вредности тежина у овом случају одговара 
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проблему естимације који представља проблем статистике закључивања (eng. 

inferential statistics). Два доминантна правца у теорији статистике закључивања су: 

фреквентистички (или класични) и бајесовски.  

 Код фреквентистичког приступа, вероватноћа се интерпретира као дугорочна 

релативна фреквенција [Merkle, 2010]. Параметри се посматрају као фиксне али 

непознате величине које треба одредити. Простор узорка представља скуп свих 

могућих опсервационих величина, док се перформансе статистичких процедура 

одређују осредњавањем по простору узорка. Кључно је да се целокупна процедура 

може извести и пре извођења експеримента и без расположивих података. Током већег 

дела двадесетог века преовладавала је фреквентистичка теорија, без обзира на 

чињеницу да су тада већ биле познате све предности бајесовског приступа. Главни 

разлог за то, што ће бити и приказано у даљем тексту, је у низу рачунских проблема 

које није могуће решавати аналитички док за нумеричка решења, у том периоду, није 

било расположивих компјутерских ресурса. 

 Са друге стране, бајесовски приступ је заснован на теореми коју је формулисао 

свештеник Томас Бајес (eng. Thomas Bayes) а постхумно објавио његов пријатељ 

Ричард Прајс (eng. Richard Price). Ова теорема је суштински допринела до развоја 

потпуно новог, интуитивног начина размишљања и тумачења вероватноће. О значају 

ове теореме можда најбоље говоре речи великог, енглеског статистичара Харлода 

Џефрија који је написао да је Бајесова теорема у вероватноћи од истог значаја као и 

Питагорина теорема у математици [Jeffry, 1973]. Основна предност бајесовског 

приступа је у чињеници да се базира на природном начину размишљања и да је 

филозофски и логички потпуно исправна, што није случај код класичног приступа 

[O'Hagan et al., 2004]. Цела теорија се ослања на само један алат - Бајесову теорему која 

се користи у свим ситуацијама. Применом Бајесове теореме добијају се јасни и 

директни закључци при чему је могуће користити све расположиве информације о 

посматраном  процесу или систему. Са друге стране класичан приступ има филозофске 

неодостатке, даје рестриктивне закључке са индиректним значењем и што је врло 

важно потпуно игнорише претходне информације. 

 Ипак при упоређивању ова два приступа, аргументи, као и обично, нису 

једнострани. Иако је са логичког и филозофског аспекта бајесовски приступ 
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непобитан,  још увек постоје одређене потешкоће у његовој практичној 

имплементацији. Проблеми су искључиво рачунске природе и везују се за 

израчунавања вишедимензионих интеграла. Развијена је и посебна дисциплина, 

бајесовска рачунска статистика, која је усмерена ка проналажењу нових, пре свега, 

нумеричких алата за решавање математичких проблема који се јављају у бајесовској 

анализи [Bolstad,  2011]. 

 Бајесовски приступ се заснива се на Бајесовој теореми. У основи, ова врло 

једноставна теорема, само даје корелацију између заједничке (eng. joint probability), 

условне (eng. conditional density) и маргиналне густине (eng. marginal density) за 

произвољно велики број случајних променљивих.  

 Бајесова теорема за две, међусобно повезане случајне променљиве x и y се може 

написати на следећи начин:   

 |
p(x, y)

p(x y )=
p(y)

  (3.87) 

 Другим речима условна густина случајне променљиве x у односу на случајну 

променљиву y, p(x y ) , једнака је количнику здружене густине случајних 

променљивих x и y, p(x, y) , и нормализујуће константе, која је у ствари маргинална 

густина случајне променљиве y , p(y). Примењујући Бајесову теорему још једном, али 

узимајући сада да је нормализујућа константа маргинална густина случајне 

променљиве x , p(x) , добија се коначан израз:  

 
|

|
p(y x ) p(x)

p(x y )=
p(y)

  (3.88) 

 Бајесову теорију је у домен неуронских мрежа први применио [MacKay 1992a]. По 

овом приступу претходно знање о тежинама синапси (мисли се на информацију о 

тежинама пре првих опсервација са система) задаје се преко априорних густина. Након 

што доспеју прве опсервације, које се приказују кроз веродостојност, информација о 

тежинама се ажурира кроз Бајесову теорему, при чему се добијају постериорне 

вредности тежина. Средње вредности постериорних густина тежина, представљају 
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њихове оптималне вредности па се самим тим могу одредити и вредности излаза 

неуронске мреже након увођења нових, непознатих улаза.  

3.5.2.3.5 Бајесовски приступ регуларизацији 

Циљ обучавања/тренирања мрежа је одређивање оптималних вредности тежина 

синапси. Уобичајено је да се оптималне вредности тежина синапси добијају 

минимизацијом критеријумске функције ( )E w која се најчешће дефинише као L2 норма 

жељених и стварних излаза неуро мреже:  

 2

1

1
( ) ( ) ( ( , ))

2

n

D i i
i

E E y O


  w w x w   (3.89) 

где iy  представља излазне податке из тренинг сета а ( , )iO x w излазе неуро мреже за 

тренинг сет података. Како се овај критеријум везује за податке, уобичајено је да се 

обележава са ( )DE w .  

 Додатни захтев код обучавања неуро мрежа односи се на ограничавања 

комплексности неуронске мреже. Комплексност се односи на број параметара мреже 

(тежина синапси). Уколико је број параметара велики, након одређивања оптималних 

вредности, готово извесно је да ће се добити мрежа која ће бити склона ка презасићењу 

(eng. overfitting). Због тога је јако битно ограничити број параметара мреже. Један од 

начина је метода одбацивања (eng. pruning) која се још назива оптималном операцијом 

мозга (eng. optimal brain surgery). Код овог метода одређеним параметрима се додељује 

вредност нула чиме се симплифицира структура мреже. Детаљи методе се могу наћи у 

[Hassibi et al., 1994]. Међутим, уколико међу улазима у неуро мрежи има и улаза који 

су међусобно колинеарни, што је врло чест случај, није препоручљиво да се “одстрани” 

више од једног параметра [Riplay, 1996] што је у супротности са полазним циљем о 

редукцији комплексности структуре. 

 Алтернативни начин за креирање оптималне структуре неуро мреже је увођење 

додатног регуларизационог члана којима се пенализирају (eng. penalise) велике 

вредности тежина.  Ограничавањем величине тежина осигурава се да излази мреже 

буду глатки. Ово је битно уколико се усвоји претпоставка да је скривена функција, која 

се моделирањем естимира, до извесног степена диференцијабилна. Додатно, са 

редукцијом комплексности структуре увећавају се генерализациона својства неуро 
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мреже. Један од потенцијалних начина регуларизације је увођење члана за опадање 

тежина (eng. weight decay) [Abu-Mostafa, 1990]:  

 
1

1
( )

2

n

w i
i

E w


 w   (3.90) 

 Уколико се додатни регуларизациони члан интегрише у израз критеријумске 

функције, и уведу коефицијенти   и   којима се пондерише утицај чланова добија се 

следећи облик:  

 ( ) ( ) ( )D wE E E  w w w   (3.91) 

 Оптималне вредности тежина се добијају минимизацијом критеријумске функције 

( )E w  кроз оптимизацију, најчешће градијентном методом. Међутим, јавља се проблем 

који се односи на одређивање оптималних вредности параметара   и  . Класичан 

приступ подразумева одређивање непознатих параметара методом претраге, која се 

заснива на унакрсном тестирању (eng. cross validation) великог броја комбинација са 

различитим вредностима параметара. Овакав приступ је произвољан и рачунски 

захтеван. Потенцијално решење се може потражити у бајесовском контексту.  

 Као што је већ речено, у бајесовском контексту, тежине синапси се сагледавају као 

случајне променљиве. Према Бајесовој теореми, постериорна густина тежина синапси, 

након што доспеју подаци са система, може се приказати на следећи начин:  

  
   

 
,

, ,
,

P D P
P D

P D

 
 

 


w w
w   (3.92) 

 У горњем изразу  ,P D w представља веродостојност тежина w за дате податке 

D ;  P w  је априорна густина тежина, која у ствари инкорпорира информације о 

тежинама пре него што доспеју подаци док члан  ,P D    представља нормализујућу 

константу која осигурава да:  

  , , 1P D d   w w   (3.93) 
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што произилази из основних аксиома вероватноће. Претпоставка је да је архитектура 

неуро мреже усвојена a priori, тј. пре поступка одређивања тежина. Уколико то није 

случај, потребно је утицај архитектуре, односно облика мреже инкорпорирати у изразе 

за постериорну густину, веродостојност и нормализујућу константу. 

 Постоје два начина за срачунавање постериорне густине тежина. Први начин је 

Лапласова метода која подразумева одређивање максималне апостериорне оцене (eng. 

MAP- maximal a posteriori estimate) [MacKay, 1992a]. Овај начин представља бајесовски 

еквивалент методе максималне веродостојности. Други начин је MCMC метод (eng. 

Markov chain Monte Carlo) [Neal, 1996]. У овом раду се разматра само први метод.  

 Вратимо се на израз за постериорну густину тежина  , ,P D  w . Уколико се пође 

од претпоставке да су априорна густина и веродостојност дефинисане преко гаусовске 

расподеле, може се писати: 

  
 

 1
, DE

D

P D e
K







w
w  (3.94) 

и 

  
 

 1
wE

W

P e
K







w
w  (3.95) 

   где је:  
2

n

DK





 
 
 

и  WK  
2

m





 
 
 

 док индекси n и m представљају укупан број 

тренинг парова, односно укупан број тежина синапси, респективно. 

 Након замене израза за априорну густину и веродостојност у једначину (3.92) добија 

се коначан облик апростериорне густине: 

  
 

 1
, ,

,

E

E

P D e
K

 
 




w
w  (3.96) 

где  ,EK   представља нормализациони фактор који обједињује нормализационе 

факторе из израза за  ,P D w ,  , ,P D  w и  P w .  
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 За одређивање постериорне густине потребно је одредити оптималне вредности 

параметара   и  . Уколико се ови параметри такође сагледају у бајесовском 

контексту, оптималне вредности параметара   и   се добијају максимизирањем 

апостериорне густине  ,P D  . Ова густина се, применом Бајесове теореме, може 

приказати на следећи начин: 

  
   

 

, ,
,

P D P
P D

P D

   
    (3.97) 

 Проблем максимизирања апостериорне густине  ,P D  , за случај униформне 

расподеле  ,P   , је еквивалентан проблему максимизације веродостојности 

 ,P D   [Foresee, 1997]. Веродостојност  ,P D    са друге стране представља 

нормализујућу константу у једначини за апостериорну густину тежина синапси, 

једначина (3.96).  Из једначине за апостериорну густину тежина следи:   

  
   

 
,

,
, ,

P D P
P D

P D

 
 

 


w w

w
  (3.98) 

 Након елементарних трансформација добија се: 

 

  
 

   
,

, E

D W

K
P D

K K

 
 

 
  (3.99) 

 Нормализујући фактори    ,D WK K  и  ,EK   су дефинисани у претходном 

тексту. У горњем изразу  ,EK   је непознато. Вредност овог фактора се може 

одредити развојем критеријумске функције у Тејлоров ред у околини тачке *w , која 

представља мод постериорне густине. У овој тачки је градијент једнак нули па се 

критеријумска функција може апроксимирати на следећи начин: 

    * * * *1
( ) ( )

2
E E   Tw w w w H w w  (3.100) 
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где је 
2

*

2

( )

( )

E

E




w
H

w
матрица Хесијана срачуната у тачки *w w . Уз ову апроксимацију 

нормализациона константа  ,EK   постаје: 

    
1

22 ** ( ), 2

m

E
EK e  



 wH  (3.101) 

 Сада је могуће срачунати веродостојност  ,P D   . Максимизирање је 

једноставније извести након логаритмовања: 

  * * *1
log , log ( ) log ( ) log (2 ) ( ) ( ) log (3.102)

2 2 2 2
D W

n m m
P D E E           w w H

  

Вредности непознатих коефицијената се добијају у два корака. У првом кораку се 

фиксира , након тога се горњи израз диференцира по  , изједначи са нулом и реши 

за максимум. У другом кораку се фиксира  , израз диференцира по  , изједначи са 

нулом и потом реши за максимум. Поступак је детаљно описан у [MacKay, 1992b]. 

Коначно се добијају оптималне вредности параметара *  и *  у следећем облику: 

 

*

*

*

*

2 ( )

2 ( )

W

D

E

n

E












w

w

 (3.103) 

где је * * 12 ( )m trag    H . Параметар   се назива ефективан број параметара. 

 Бајесовска регуларизација приказана на претходни начин подразумева прорачун 

матрице Хесијана. Раније је речено да Лавенберг-Маркардов алгоритам представља 

један од најефикаснијих алгоритама за одређивање оптималних вредности тежина 

синапси уколико се претпостави да је критеријумска функција дата у облику суме 

квадрата грешке естимације. Додатно, овај метод имплицитно садржи Гаус-Њутнов 

алгоритам за оптимизацију Хесијана који се може искористити за оптимизацију 

регуларизације. 

 У наставку су дефинисани кораци за случај бајесовске оптимизације 

регуларизационих параметара са Гаус- Њутновом апроксимацијом матрице Хесијана 

[Foresee et al., 1997]: 
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1. Усвајање почетних вредности параметара   и   и иницијализација вредности 

тежина синапси. Код иницијализације тежина, вредности се могу усвојити као 

случајни бројеви док се у [Foresee et al., 1997] предлаже примена Nguyen-Widrow 

метода [Nguyen  et al., 1990], 

2. Извршавање првог корака Лавенберг-Маркардовог алгоритма при чему се као 

критеријумска функција узима ( ) ( ) ( ) ,D wE E E  w w w  

3. Срачунавање  , при чему се вредност матрице Хесијана добија 

апроксимативно, користећи израз из Лавенберг-Маркардовог алгоритма 

 
1

1 ( )k k k 


   T Tw w J J I J w при чему иницијална апроксимација k
TJ J I у 

случају регуларизације добија облик  TJ J I , 

4. Након одређивања   срачунавају се нове вредности параметара  и   из 

једначина: 

2 ( )

2 ( )

W

D

E

n

E












w

w

 

5. Понављање поступка из корака 2 – 4 до тренутка док се не достигне 

конвергенција. 

3.5.3 Boosting метод 

Код метода статистичког учења при изради модела полази се од експериментално 

добијених података. Модели се израђују применом метод надгледаног обучавања при 

чему тренинг парове треба припремити унапред. Најчешће се користе стандардне 

методе регресије, неуронске мреже и методе потпорних вектора. Ове методе су 

објашњене у претходним одељцима. Применом ових метода добијају се јединствени 

предиктивни модели који се још називају јаким предиктивним моделима (eng. strong 

predictive models). 

 Алтернативни приступ који данас доминира у области машинског учења 

подразумева израду великог броја модела који се комбинују и синергијски, делују при 

решавању одређених класификационих и регресионих проблема. Оваквим приступом 
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настају ансамбл модели (eng. ensamble models) док се модели који учествују у изради 

ансамбл модела називају базним моделима или субмоделима (eng. base learners). 

Најчешће се као базни модели користе модели са великом пристрасношћу (eng. bias), 

мада има примера и комбиновања јаких модела нпр. неуронских мрежа у ансамбле 

[Hansen et al., 1990].  Међутим, постоји више литературних потврда да је комбиновање 

јаких модела непродуктивно а каткад и контрапродуктивно [Wickramaratna et al., 2001; 

Bauer et al., 1999].  

 Boosting метод је, слично као код методе потпорних вектора, развијен најпре за 

решавање класификационих проблема, да би потпом уследила и генерализације за 

регресију. Boosting алгоритам је први пут формулисан 1990 године у раду [Schapire, 

1990]. Практична имплементација метода уследила је девет година касније кроз 

AdaBoost метод [Schapire, 1999]. 

 Иницијално формулисан AdaBoost алгоритам давао је врло опречне предиктивне 

резултате - у одређеним ситуацијам су резултати са применом AdaBoost алгоритма 

превазилазили резултате других метода док су у другим случајевима резултати били 

јако лоши. Кључни корак у унапређењу boosting метода начинио је Фридман [Friedman 

et al., 2000] који је повезао AdaBoosting алгоритам са концептима из статистичког 

учења, показао да се boosting метод може сагледати као поступак етапне (eng. 

stagewise) израде адитивних модела и увео алгоритам спуста градијента као  алгоритам 

минимизације критеријумске функције. Фридман је овај метод назвао gradientnim 

boostingom (eng. gradient boosting). 

 Boosting метода у ствари представља итеративни поступак за минимизацију 

критеријумске функције кроз додавање нових субмодела који у датој итеративној фази 

допринесу највећој редукцији грешке естимације. Другим речима, за случај квадратне 

критеријумске функције, у сваком наредном итеративном кораку основном моделу се 

додају нови субмодели који на најбољи начин естимирају резидуале претходног 

модела. Вредности параметара модела који су одређени у претходној итерацији се не 

мењају са новим итерацијама. Овим поступком, сукцесивним додавањем нових 

субмодела, добија се коначан модел који у ствари представља ансамбл, комбинацију 

претходно добијених субмодела. Будући да се додавањем нових модела „ојачава“ 

(eng.boost)  полазни модел, поступак је назван boostingom. 
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 Предност boosting-a је у чињеници да се применом ове методе истовремено постиже 

редукција и варијансе и пристрастности (eng. bias) што није случај код других 

популарних ансамбл метода попут случајних стабала (eng. random forest) и beging 

метода.  

3.5.3.1 Математичка формулација bооsting метода 

Нека је дат тренинг сет података  ,i iyx , 1,...,i n  где су ix  улази а iy излази 

посматраног система. Циљ је реконструкција пресликавања :f yx  оценом ˆ ( )f x тако 

да се минимизира нека критеријумска функција ( , ( ))L y f x : 

 
( )

ˆ ( ) arg min ( , ( ))
f

f L y f
x

x x  (3.104) 

 Уобичајна процедура одређивања ( )f x  подразумева ограничавање претраге 

потенцијалних естимационих функција на параметарску фамилију функција ( , )f x . 

На тај начин се проблем своди на нумеричку оптимизацију кроз итеративно ажурирање 

вредности параметара модела. 

 Алтернативни приступ је нумеричка оптимизација у простору функција (eng. 

function space) [Friedman, 2001]. На тај начин се решење добија у облику адитивног 

развоја облика: 

 
0

ˆ ( ) ( )
m

k
k

f f


x x  (3.105) 

при чему 0 ( )f x представља иницијалну оцену а 
1

( )
m

k
k

f

 x су функционални инкременти 

(eng. boosts) који су дефинисани кроз оптимизациони метод [Friedman, 2001]. 

 Уколико се метод спуста градијента примени за тренинг сет података, алгоритам 

оптимизације се у итеративном кораку к може дефинисати на следећи начин: 

 1( ) ( ) ( )k i k i k k if f g x x x  (3.106) 

где је ( )kg x градијент:  
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1( ) ( )

( , ( ))
( )

( )
i k i

i i
k i

i f f

L y f
g

f






x x

x
x

x
  (3.107) 

а величина корака k :  

 1
1

arg min ( , ( ) ( ) )
n

k i k i k i
i

L y f g


 


  x x   (3.108) 

 Избор величине корака је од посебне важности. Избор превелике вредности 

k повећава могућност изостављања минимума у процесу претраге и истовремено 

отвара могућност за дивергенцију, док се са премалим вредностима значајно 

повећавају рачунски захтеви.  

 Потенцијални проблем настаје при одређивању градијента из једначине (3.107). 

Фридман je предложио решење овог проблема кроз апроксимацију градијента 

параметарском функцијом ( , )h x  која се назива субмоделом или “base learner” 

функцијом [Friedman, 2001]. На тај начин једначина (3.108) постаје: 

 1
, 1

( , ) arg min ( , ( ) ( , ) )
n

k k i k i i k
i

L y f h
 

   


  x x  (3.109) 

 Субмодели (eng. base learners) могу бити линеарне функције (вишеструка линеарна 

регресија, риџ регресија), глатке функције (сплајнови, радијално базисне функције), 

стабла одлучивања, таласићи (eng. wavelets) итд. 

 Поставља се питање на који начин одреди непознате параметра из субмодела. 

Најједноставнији начин је кроз средњеквадратну минимизацију, при чему се одређује 

субмодел који је „најкорелисанији“ са градијентом [Friedman, 2002]: 

 2

, 1

( , ) arg min ( ( ) ( , ) )
n

k k k i i
i

g h
 

   


   x x  (3.110) 

 Формула за ажурирање модела сада постаје: 

 1( ) ( ) ( , )k i k i k i kf f h  x x x  (3.111) 

 Алгоритам за примену градијент boosting метода се може приказати као низ 

следећих корака [Friedman, 2002]: 
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 Корак 1-  Дефинисање свих потребних улазних величина: 

 тренинг сет података, 

 избор критеријумске функције, 

 избор типа субмодела и 

 задавање броја итерација (итеративних корака). 

 Корак 2 – Иницијализација полазног субмодела 0
ˆ ( )f x , 

 Корак 3 – За k =1 до m (број итеративних корака) 

 срачунати градијент 

1( ) ( )

( , ( ))
( )

( )
i k i

i i
k i

i f f

L y f
g

f






x x

x
x

x
  

 срачунати 2

, 1

( , ) arg min ( ( ) ( , ) )
n

k k k i i
i

g h
 

   


   x x  

 срачунати 1
1

arg min ( , ( ) ( , ) )
n

k i k i i k
i

L y f h


  


  x x  

 ажурирати ( )kf x са 1( ) ( ) ( , )k k k kf f h  x x x  

3.5.3.2 Израда gradient boosting модела 

Код израде gradient boosting модела потребно је унапред одредити: 

 критеријумску функцију и 

 облик типа субмодела односно базисне функције 

3.5.3.2.1 Избор критеријумске функције 

Избор критеријумске функције најпре зависи од облика излаза. У зависности од тога 

могу се развити облици boosting алгоритма за решавање калсификацијских и 

регресионих проблема. У досадашњем излагању претпоставка је била да је 

критеријумска функција квадратна. У том случају boosting метод подразумева да се 

основном моделу додају субмодели који естимирају резидуале естимације. Међутим, 

уколико у тренинг подацима има пуно нетипичних вредности (eng. outliers) са 

квадратном критеријумском функцијом не могу се добити задовољавајући резултати. 

Флексибилност gradient boosting метод се огледа у чињеници што је поред квадратне 
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могуће користити и друге критеријумске функције.  Конкретно за решавање 

регресионих проблема могу се коритити Лапласова критеријумска функција: 

 1( , ( )) ( )L y f y f x x  (3.112) 

или Хубертова критеријумска функција:  

 

 
2

,

1
( ) , ( )

2
( , ( ))

( ) , ( )
2

H

y f y f

L y f

y f y f





 


  

 
        

x x

x

x x

      (3.113) 

 Параметар   се користи за спецификацију ефекта робустификације критеријумске 

функције. Поред ових најчешће коришћених критеријумских функција, могуће је 

користити и друге [Schapire et al., 2012]. 

3.5.3.2.2 Избор типа субмодела односно базисне функције 

Након избора критеријумске функције, од изузетне важности је правилан избор типа 

субмодела односно базисне функције. Структуралне претпоставке о моделу односно 

врсти утицаја који ће се инкорпорирати у модел дефинишу се кроз субмоделе. У 

стручној литератури је предложен велики број различитих облика субмодела [Wittek, 

2014; Gao et al., 2013; Pham et al., 2008; Zhang et al., 2010] при чему се они могу 

класификовати у три групе: стабла одлучивања, генералисане линеарне моделе и 

глатке моделе [Viola, 2001]. У овој дисертацији примењени су генералисани линеарни 

модели. 

3.5.3.3 Регуларизација код boosting-a 

Квалитет предиктивних модела се оцењује преко њихових генерализационих својстава. 

Најчешћи проблем код израде предиктивних модела је што се добијају модели који 

дају добре резултате за тренинг сет података док су резултати на тест сету података 

знатно лошији. Постоји више потенцијалних начина којима могу да се унапреде 

генерализациона својства boosting модела. У овом раду се укратко разматрају 

субузорковање (eng. subsampling) и сажимање (eng. shrinkage). 

 Према [Sutton, 2005] субузорковањем је могуће значајно унапредити 

генерализациона својства модела на начин који није рачунски презахтеван. Поступак 
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се заснива на случајној подели тренинг сета података на више субузорака. При томе се 

у свакој наредној итеративној фази, израде boosting модела, користи други субузорак за 

одређивање параметара субмодела односно базисне функције.  

 Са друге стране код поступка сажимања полази се од идеје која је употребљена код 

риџ регресије. Идеја је да се вредности нестабилних регресионих коефицијената 

„сажимају“ ка нули како би се редуковао њихов утицај. Код израде градијент boosting 

модела овај ефекат се постиже кроз одговарајуће пондерисање сваког додатног 

субмодела односно базисне функције која се придружује основном моделу. Према 

[Friedman, 2001] овај вид регуларизације код boosting модела изводи се директним 

пропорционалним сажимањем. Регуларизација се примењује увођењем параметра 

, 0 1    у итеративни корак за ажурирање вредности апроксимационе функције 

( )kf x : 

 1( ) ( ) ( , )k k k kf f h  x x x  (3.114) 

Параметар  се још назива брзином учења (eng. learning rate). 

3.5.3.4 Недостаци boosting метода 

Boosting метод који се заснива на „јачању“ основног предиктивног модела теоријски 

представља један од најефикаснијих метода статистичког учења који се може 

применити за описивање најкомплекснијих  нелинеарних зависности. Међутим постоје 

и одређени проблеми при имплементацији овог метода. У [Natekin, 2013] као 

потенцијални проблеми наводе се: 

 меморијски захтеви, 

 брзина извршавања алгоритма, 

 паралелизација и 

 непостојање адекватних субмодела којима је могуће обухватити и интеракције 

између предиктора. 

 Прва три проблема односе се на рачунске захтеве и могу се превазићи употребом 

снажнијих хардверских ресурса. Што се тиче непостојања адекватних субмодела 

којима је могуће обухватити и интеракције између предиктора, резултати добијени са 

boosting методом у различитим областима већ сада дају задовољавајуће резултате, тако 
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да се евентуалним увођењем нових класа субмодела могу очекивати само додатна 

побољшања.  
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4. АКВИЗИЦИЈА ПОДАТАКА ЗА ИЗРАДУ ПРЕДИКТИВНИХ 

ТЕРМИЧКИХ МОДЕЛА ПОТРОШАЧА У СДГ 

 

4.1 УВОД 

Подаци који су употребљени за израду предиктивних термичких модела потрошача 

узорковани су у топлотним подстаницама у склопу нишког и новосадског СДГ. 

Аквизиција података одвијала се без екстерног утицаја на посматрани систем, па се 

према томе, формално посматрајући, не може говорити о експерименту, који 

подразумева контролисано деловање на систем и праћење ефеката, већ о опсервационој 

студији где нема деловања онога ко изводи истраживање. Међутим, у литератури се 

појам опсервационих студија пре везује за медицинска и социoлошка истраживања 

него за истраживања у природним наукама и инжењерству, па се због овакве 

конвенције у наставку текста употребљава термин екперимент а не опсервациона 

студија.   

 Експерименталним приступом, уз контролисано деловање на релевантне величине, 

осигурало би се добијање података који би омогућили прецизнију естимацију 

параметара предиктивних модела али је извођење експеримента било немогуће из више 

разлога од којих су два најважнија.  

 Прво, системи даљинског грејања су комунални системи од посебног значаја који 

функционишу на комерцијалној основи, па било каква одступања у односу на 

дефинисан режим рада система нису дозвољена, јер би тиме биле нарушене уговорне 

обавезе које произвођач и дистрибутер топлотне енергије имају према корисницима. 

Други разлог се везује за климатске факторе. Најдоминантнији утицај на рад СДГ има 

спољна температура која имплицитно дефинише количину топлотне енергије коју 

треба произвести у СДГ и дистрибуирати корисницима. Из очигледних разлога на 

климатске факторе није могуће деловати.  

 Аквизиција података у Нишу је вршена током грејне сезоне 2009/2010 године. 

Паралелно са аквизицијом пoдатака из СДГ у Нишу, у току грејне сезоне 2010/2011 

рађена је и аквизиција података у новосадском СДГ. Циљ овог приступа био је у 

испитивању универзалности и могућности репликације примењених метода и 
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алгоритама за израду предиктивних термичких модела потрошача из једног СДГ у 

други.  

 СДГ у Новом Саду је изабран како због велике географске удаљености у односу на 

нишки тако и због саме конфигурације која се значајно разликује у односу на остале 

СДГ у Србији. Ове разлике се најпре огледају у чињеници да: 

 се један део топлотне енергије у СДГ у Новом Саду обезбеђује из 

когенеративног постројења „ТЕ-ТО Нови Сад“, 

 је велики део конзума прикључен на СДГ директно, без измењивача и да 

 се санитарна топла вода испоручује код више од 30% корисника прикључених 

на СДГ.    

 У наставку је дат кратак опис нишког и новосадског СДГ уз детаљан приказ 

подстаница и начина аквизиције података које су коришћене за израду предиктивних 

термичких модела.  

4.2 СИСТЕМ ДАЉИНСКОГ ГРЕЈАЊА У НИШУ 

Систем даљинског грејања у Нишу почео је са радом изградњом две топлане: “Криви 

вир” и “Југ” осамдесетих година прошлог века. Данас се топлотном енергијом из 

нишких топлана загрева 1.581.053 m2 стамбеног простора и 377.144 m2 пословног 

простора [JKPTN]. Дужина топловодне мреже износи 69 km са 1.114 подстаница 

прикључених на дистрибутивну мрежу. Као енергент се користе природни гас (90%) и 

мазут (10%). 

 Према [JKPTN] укупан инсталисани капацитет свих топлотних извора у СДГ у 

Нишу износи 254 МW. Топлотна енергија се производи у три топлане и једанаест 

котларница. Основни подаци о топланама и котларницама у склопу нишког СДГ дати 

су у Табели 4.1. 
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Табела 4.1 Приказ топлотних извора, инсталисаних снага и горива за топлане и 

котларнице у склопу нишког СДГ [JKPTN] 

 

Назив топлане (ТО) 
/Котларнице (КО) 

 

 

Инсталисана снага 
топлотног извора [MW] 

 

Гориво 

ТО „Криви вир“ 128 Природни гас и мазут 

ТО „Југ“ 67 Природни гас и мазут 

ТО „Мајаковски“ 14 Природни гас 

КО „Сомборска“ 11 Мазут 

КО „Чаир“ 11 Мазут 

КО „Институт“ 8 Мазут 

КО „Мокрањчева“ 3.5 Мазут 

КО „Књажевачка“ 3 Мазут 

КО „Ардија“ 2.8 Мазут 

КО „Ратко Јовић“ 1.9 Природни гас 

КО „Ледена Стена 1“ 1.5 Мазут 

КО „Пантелеј“ 1.1 Мазут 

КО „Паси Пољана“ 0.55 Мазут 

КО „Ледена Стена 2“ 0.45 Природни гас 

 

4.2.1 Аквизиција података из топлотне подстанице у склопу нишког СДГ 

Аквизиција података у нишком СДГ вршена је током грејне сезоне 2009/2010 у 

топлотној подстаници у улици Романијска 3.  
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Слика 4.1 Зграде у Романијској 1 и 3 

 Из топлотне подстанице грејањем се снабдевају станари зграда Романијска 1 и 3. 

Подстаница је преко дистрибутивне мреже прикључена на топлотни извор „Криви 

вир“, инсталисаног капацитета 128 MW. Инсталација подстанице је приказана на 

Слици 4.2. 

 

 

Слика 4.2 Изглед инсталације подстанице у Романијској 3 

 Корисници у Романијској 1 и 3 су индиректно повезани на дистрибутивну мрежу 

(примар). Хидрауличко раздвајање је извршено измењивачем топлоте Schmidth SIGMA 

X13-NCL, инсталисане снаге  650 kW (Слика 4.3). 
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Слика 4.3 Измењивач топлоте Schmidth SIGMA X13-NCL 

 Техничке карактеристике измењивача топлоте дате су у Табели 4.2. 

Табела 4.2  Техничке карактеристике измењивача топлоте Schmidth SIGMA X13-NCL 

 
Карактеристика 
 

 
Вредност 

Улазне температуре 135 0C на примару; 70 0C на секундару 

Излазне температуре 75 0C на примару; 90 0C на секундару 

Пад притиска  10 kPa на примару; 20 kPa на секундару 

Максимални радни притисак 16 kPa 

Максимална радна температура 150 0C 

Протоци 2.7 kg/s на примару; 7.9 kg/s на секундару 

Инсталисана снага 650 kW 

 

 У подстаници није предвиђена припрема санитарне топле воде. Топла вода за 

грејање се у секундарној инсталацији дистрибуира преко двоцевног система грејања до 

ливених радијатора у становима корисника. 
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 За мерење температура у потисном и повратном воду примара коришћени су Pt 100 

сензори Nigos TS-01. За постављање сензора искоришћени су постојећи прикључци 

биметалних термометара. Пре постављања температурних сензора биметални 

термометри су уклоњени. 

 Мерење спољне температуре вршено је преко Danfoss ESM-10 Pt 1000 сензора.  

 Регулација предате количине топлоте остварује се преко Danfoss AVQM пролазног 

вентила са Danfoss AMV моторним погоном Слика 4.4. Поред регулационе функције 

вентил омогућава и механичко ограничење протока што се остварује регулационом 

дијафрагмом. Вентил је са логаритамском карактеристиком и Kvs вредношћу од 16 

m3/h. 

 

Слика 4.4 Danfoss AVQM вентил са AMV моторним погоном 

 Вентил је постављен на повратној грани примара.  

 Предата количина топлоте се мери Danfoss-овим ултразвучним мерачем топлотне 

енергије који се састоји из: 

 рачунске јединице Danfoss INFOCAL 5 (тачност  ±1.5%), 

 сензора за мерење протока Danfoss SONO 2500 CT (опсег мерења ≤ 25 m3/h, 

тачност  ±3%) и 
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 пара температурских сензора Pt 500 (мерни опсег од 00C – 1700C, тачност 

±0.01%). 

 Приказ рачунске јединице и сензора за мерење протока је дат на Слици 4.5. 

 

 

 

 

 

 

 

 

Слика 4.5 Danfoss ултразвучни мерач топлотне енергије: (а) рачунска јединица, (б) 

сензор протока 

 Ултразвучни мерач топлотне енергије је повезан са регулатором. На основу 

измерених вредности протока и температура на напојном и повратном воду примара у 

рачунској јединици се срачунава вредност предате топлотне енергије у подстаници. 

Ове вредности се архивирају у аквизиционом модулу, интегрисаном у регулатору 

Danfoss ECL Comfort 300. 

 Управљање радом подстанице остварује се регулатором Danfoss ECL Comfort 300. 

Регулатор је заједно са припадајућом електроопремом смештен у разводни орман 

(Слика 4.6). Danfoss ECL Comfort 300 је универзални регулатор са великим бројем 

функција који се примењује у системима грејања, хлађења и климатизације. Употребом 

програмских картица могуће је остварити жељене функције регулатора. У конкретном 

случају, за регулатор у подстаници у Романијској 3, инсталирана је програмска картица 

C66 која омогућава регулацију температуре потисног вода секундара према „криви 

клизања“. „Кривом клизања“ се дефинише вредност температуре потиса секундара у 

функцији од спољне температуре. 
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Слика 4.6 Унутрашњост разводног ормана са Danfoss ECL Comfort 300 регулатором 

 

 У регулатор је уграђен додатни аквизициони модул (картица) Danfoss ECA 87 којим 

је омогућено архивирање података релевантних величина из подстанице. Меморијски 

капацитет модула је 130.000 података. Након тога новoприспели подаци замењују 

старе који су архивирани у меморији и који се на тај начин неповратно губе. Због тога 

је било потребно сукцесивно пребацивање података из меморије модула на други 

стабилни медијум. У претходном истраживању [Protić, 2008], трансфер архивираних 

података вршен је преко GPRS модема али се након анализе добијених серија показало 

да постоји велики број недостајућих података и грубих грешака (eng. outliers). Због 

тога је трансфер података у оквиру ове дисертације вршен дирекним, кабловским 

очитавањем са аквизиционог модула коришћењем RS232 протокола и програма 

HyperAccess, а у циљу минимизирања потенцијалних губитака података. 

 У подстаници је вршено мерење и аквизиција следећих величина: 

 спољне температуре, 

 температуре потиса и поврата примара, 

 температуре потиса и поврата секундара и 

 протока и предате топлотне енергије. 

 Величине су мерене у временском интервалу од 15 min. У рачунској јединици 

Danfoss INFOCAL 5 није се срачунавала вредност снаге (топлотног оптерећења) па је 
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ова вредност одређена посредно, након учитавања свих мерења осталих величина. 

Вредности топлотног оптерећења рачунате су по следећем изразу: 

  

 ( ) / 3.600pr ppr pr prn prpQ V c t t    (4.1) 

где је: 

Q - топлотно оптерећење [kW], 

pr



V  - запремински проток на примару у [m3/h], 

pprc
 - специфични топлотни капацитет воде [kJ/kgK], 

prρ
 - густина воде [kg/m3], 

prnt
 - температура напојног вода примара [0C] и 

prpt
 - температура повратног вода примара [0C] 

 Специфични топлотни капацитет и густина воде су срачунати за притисак од 7 bar и 

средњу температуру напојног и повратног вода примара. При одређивању топлотног 

капацитета коришћен је следећи полином:  

 10 4 7 3 5 29.902*10 * 3.321*10 * 4.939*10 * 0.002704* 4.225ppc t t t t          (4.2) 

 За одеђивање густине воде коришћена је зависност: 

 8 4 5 3 27.943*10 * 3.185*10 * 0.00696* 0.04254* 1000pr t t t t          (4.3) 

 Коефицијенти и ред полинома су добијени „фитовањем“ података из референце 

[Stephan et al., 2010] коришћењем софтверског пакета Matlab. У првом случају средње 

квадратна грешка је износила 0.003387 а у другом 0.06909. Повећањем реда полинома 

било је могуће додатно увећати прецизност модела али се од тога одустало јер је 

добијена грешка прихваћена као задовољавајућа. Температура у горњим изразима 

представља аритметичку средину температура напојног и повратног вода примара.  

 Као што је већ речено на почетку, поред аквизиције података из нишког СДГ током 

грејне сезоне 2010/2011 вршена је аквизиција података у новосадском СДГ. У наставку 
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је дат опис СДГ у Новом Саду као и опреме у подстаници 1300 Каплара у којој је 

вршено узорковање података. 

4.3 СИСТЕМ ДАЉИНСКОГ ГРЕЈАЊА У НОВОМ САДУ 

СДГ у Новом Саду са инсталисаном снагом од 877.3 MW је други по величини у 

Србији, одмах после београдског. Према [NST] на СДГ у Новом Саду је прикључено 

101.948 потрошача од чега је 93.971 резиденцијалних (стамбених) и 7.977 пословних 

потрошача. Санитарна топла вода се  испоручује за 32.499 корисника. Укупна дужина 

дистрибутивне мреже даљинског грејања је 219.8 km. На њу је повезано 3.832 

топлотних подстаница.  

 У саставу СДГ у Новом Саду је когенеративно постројење „ТЕ-ТО Нови Сад“, шест 

рејонских топлана: : "Југ", "Север", "Исток", „Запад“, „Петроварадин“ и „Дудара“, и 

једна главна разделна станица. Топлана „Дудара“ се налази у Сремским Карловцима 

али припада ЈКП “Новосадска топлана”. 

 Географски положај топлана на мапи града је дат на Слици 4.7. Врела вода из „ТЕ-

ТО Нови Сад“ се дистрибутивном мрежом дужине 3.3 km транспортује до главне 

разделне станице, одакле се даље дистрибуира ка три топлане: "Југ", "Север"  и  

"Исток" у којима се врши догревање пре коначне испоруке до крајњих потрошача. Гас 

је главни енергент у топлотним изворима у Новом Саду. 

  

Слика 4.7 Географски распоред топлана у оквиру новосадског СДГ [NST] 
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 Основни технички подаци о топлотним изворима дати су у Табели 4.3. 

Табела 4.3 Основне техничке карактеристике топлана у оквиру СДГ у Новом Саду 

[NST] 

 

Назив топлане 

 

 

Инсталисана снага 
топлотног извора 

[MW] 

 

Инсталисана снага 
конзума [MW] 

 

Гориво 

ТО „Југ“ 185 327.49 Природни гас 

ТО „Запад“ 256 228.09 Природни гас 

ТО „Исток“ 104 207.38 Природни гас 

ТО „Север“ 46 96.07 Природни гас 

ТО „Петроварадин“ 11.6 7.94 Природни гас 

ТО „Дудара“ 2.9 1.2 Природни гас 

 

4.3.1 Аквизиција података из топлотне подстанице у склопу новосадског СДГ 

У току грејне сезоне 2010/2011 рађена је аквизиција података у шест подстаница 

новосадског СДГ. Измерени подаци, који су били локално архивирани, у регулаторима 

у подстаницама, даљински су очитавани из диспечерског центра новосадског СДГ. 

Очитавање је вршено на тридесетак дана како би се избегли потенцијални проблеми са 

преоптерећењем локалних меморијских капацитета регулатора. Након завршетка 

грејне сезоне од прикупљених података су формиране јединствене серије. 

Прелиминарном анализом добијених серија утврђено је да је набољи квалитет података 

из подстанице у улици 1300 Каплара 5. Подаци из ове подстанице послужили су за 

даљу анализу и израду предиктивних термичких модела. 

 На Слици 4.8 приказана је зграда у улици 1300 Каплара у којој се налази подстаница 

у којој је вршено мерење и аквизиција података.  
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Слика 4.8 Приказ зграде у 1300 Каплара 5  

 Из подстанице у згради 1300 Каплара 5 врши се снабдевање грејањем и санитарном 

топлом водом станара зграда 1300 Кaплара 1, 3 и 5.  Повезивање инсталације 

корисника (секундарна инсталација) на дистрибутивну мрежу (примарна инсталација) 

извршено је директно, без измењивача топлоте и хидрауличког раздвајања. На улазном 

делу цеви из дистрибутивне мреже у топлотну подстаницу постављена је инсталација 

за редукцију притиска, у којој се притисак са долазних (из дистрибутивне мреже 

примара) 5.2 -5.8 bar редукује на 4 - 4.2 bar. Редукција притиска се врши Данфосовим 

сигурносним умањивачем притиска без помоћне енергије SAVD DN25. Приказ 

хидрауличке инсталације на улазу у подстаницу дат је на Слици 4.9. 

 

 

 

 

 

 

 

Слика 4.9 Хидрауличка инсталација за редукцију притиска 
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 Цев на Слици 4.9 која је лоцирана највише представља потис из дистрибутивне 

мреже. Испод ње је цев којом се дистрибуира санитарна топла вода док је трећа цев 

заједнички поврат за воду из система грејања и санитарне топле воде. Поред ручног 

очитањања притиска постављени су и сензори којима се врши континуално мерење и 

аквизиција вредности притиска: 

 на потисној страни пре и после редукције,  

 у повратној грани и  

 у цеви за довод санитарне топле воде.  

 Одмах након редуцира притиска на напојном воду је постављен ултразвучни мерач 

протока. Вода из дистрибутивне мреже се, након редукције притиска и проласка кроз 

мерача протока, меша са повратном водом из инсталација потрошача у улазима 1300 

Каплара 1, 3 и 5. Пре тога се повратна вода из ових зграда сакупља у заједничком 

сабирнику. Начин мешања је приказан на Слици 4.10. Бројевима 1, 3 и 5 су означене 

цеви повратног вода из секундарне инсталације у зградама 1300 Каплара 1, 3 и 5.  

 

Слика 4.10 Начин мешања воде из потиса дистрибутивне мреже и повратне воде из 

инсталација корисника 

 Један део повратне воде из сабирника се користи за мешање са водом из потиса док 

се остатак шаље у повратну грану (десно у односу на сабирник). Однос повратне воде 

из секундарне инсталације, која ће се искористити за мешање са водом из потиса 

дистрибутивне мреже (примара), и дела који ће бити преусмерен у повратни вод 
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дистрибутивне мреже одређује се у регулатору. На основу разлике између срачунате 

(по криви клизања за дате климатске услове) и измерене вредности температуре потиса 

одређује се количина воде из секундарне инсталације која ће бити предата повратној 

грани примара и враћена у топлотни извор на догревање.  Регулација протока се врши 

преко електромоторног пролазног вентила Danfoss AVQM који је постављен на 

повратној грани (Слика 4.11). 

 

 

 

 

 

 

 

 

Слика 4.11 Приказ пролазног вентила за регулацију протока повратне воде из 

секундарне инсталације 

 Вода која настаје мешањем воде из потиса примара (дистрибутивне мреже) и 

повратне воде из сабирника (Слика 4.10) се дистрибуира до разделника одакле се са 

три пумпе допрема да потрошача (Слика 4.12) у зградама 1300 Каплара 1, 3 и 5. 

 

 

 

 

 

 

 

Слика 4.12 Приказ сабирника из кога се вода допрема до потрошача  
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 Загревање санитарне топле воде се изводи преко плочастог измењивача топлоте 

APV BAKER AS T4 инсталисане снаге 210 kW (Слика 4.13).  

 

Слика 4.13 Плочасти измењивач топлоте за загревање санитарне топле воде и 

резервоар  

 У измењивачу се врши загревање воде из водовода након чега се санитарна 

потрошна топла вода температуре 500C допрема до резервоара запремине 3000 l, 

одакле се дистрибуира до потрошача. Температура санитарне топле воде се подешава 

преко регулатора и одржава константном. 

 Укупна измењивачка површина измењивача је 1,2 m2. Измењивач је пројектован за 

радни притисак од 10 bar и максималну температуру од 950C.  

 Регулација предате количине топлоте у подстаници остварује се регулатором 

Danfoss ECL Comfort 300 (Слика 4.14). Регулатор је модуларног типа са могућношћу 

учитавања различитих програмских картица којима се функције регулатора 

прилагођавају конкретној конфигурацији система грејања код корисника.  
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Слика 4.14 Разводни орман са регулатором Danfoss ECL 300 и интегрисаном 

програмском картицом C66 

 На тај начин ствара се могућност за евентуално касније прилагођење система 

регулације променама у конфигурацији система грејања, без потребе за заменом 

регулатора. Програмским картицама је покривено више различитих типских 

конфигурација у системима климатизације и системима грејања са и без припреме 

санитарне топле воде. Конкретно, у подстаници 1300 Каплара 1-5 постављена је 

картица C66 која омогућава регулацију температуре у секундарној/корисничкој 

инсталацији према “клизном” дијаграму уз могућност одржавањa константне 

температуре санитарне топле воде. 

 У подстаници је вршено континуално узорковање (срачунавање) следећих величина: 

 протока, снаге (топлотног оптерећења) и топлотне енергије, 

 спољне температуре, 

 температуре потисног и повратног вода примара (дистрибутивне мреже), 

 температуре потисног и повратног вода секундара (хидрауличке грејне 

инсталације корисника), 

 притиска у потисном воду пре и након редукције, 
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 притиска у повратном воду као и  

 релевантних величина везаних за утрошак санитарне топле воде. 

 Мерење протока вршено је компактним ултразвучним мерачем топлотне енергије 

Kamstrup Multical 66CDE (Слика 4.15). 

 

Слика 4.15 Ултразвучни мерач протока Kamstrup – Multical 66CDE 

 Ултразвучни мерач топлотне енергије се састоји из мерача протока и два сензора са 

Pt 500 сондама. Резолуција мерења температуре је 0.010C при чему се за прорачун 

узимају осредњене вредности измерене температуре (на напојној и повратној грани) 

која се континулано мери на 10 s. Тачност мерења протока је у складу са стандардом 

ЕN 1434. Прорачун утрошка топлотне енергије рачуна се у складу са стандардом ЕN 

1434-1 по коме је количина топлоте једнака производу запреминског протока, разлике 

температура и коефицијентом k који се одређује према [Adunka, 1999].  

Мерење свих температура воде (у примарној и у секундарној инсталацији - и у 

напојној и повратној инсталацији) вршено је са калибрисаним урањајућим сензорима 

температуре Danfoss ESMU 100 (Слика 4.16). 
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Слика 4.16 Danfoss ESMU 100 урањајући сензор температуре 

 Ови сензори су изведени са Pt 1000 сондом и предвиђени су за мерење температуре 

у опсегу од 0 0C  до 140 0C.  Временска константа сензора је 32 s. Тачност сензора 

одговара EN класи 2B.  

 Спољна температура је мерена температурским сензором Danfoss ESMT, који се 

базира на Pt 1000 сонди (Слика 4.17). Опсег мерења је од  -50 0C  до 50 0C  са 

временском константом мањом од 15 min. 

 

Слика 4.17 Danfoss ESMT сензор спољне температуре 

 Мерење притиска вршено је Danfoss MBS трансмитерима притиска. 
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 Сви подаци су мерени у интервалу од 15 min и локално архивирани. Додатно, 

регулатор је повезан са Danfoss WebAccess (Слика 4.18) уређајем што омогућава 

комуникацију са регулатором преко интернета.  

 

Слика 4.18 Danfoss WebAccess уређај 

 Очитавање података вршено је на тридесет дана из диспечерског центра новосадске 

топлане. Анализа података добијених из подстанице приказана је у следећем поглављу. 
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5. РЕЗУЛТАТИ ИЗРАДЕ ПРЕДИКТИВНИХ ТЕРМИЧКИХ МОДЕЛА 

ПОТРОШАЧА 

 

5.1 УВОД 

У овом делу дисертације приказани су резултати добијени при изради предиктивних 

термичких модела потрошача у СДГ.  На основу закључака из другог поглавља, израда 

предиктивних термичких модела потрошача била је ограничена на израду 

предиктивних модела топлотног оптерећења. Са поузданим предиктивним моделима 

топлотног оптерећења, могуће је креирати напредну стратегију управљања СДГ којом 

ће бити могуће усклађивање захтева конзума са производњом топлотне енергије у 

топлотним изворима.  

5.2 ПОДАЦИ КОРИШЋЕНИ ЗА ИЗРАДУ ПРЕДИКТИВНИХ МОДЕЛА 

Подаци коришћени за израду предиктивних термичких модела потрошача добијени су 

експериментално из топлотних подстаница у нишком и новосадском СДГ. Поступак 

аквизиције података описан је у поглављу 4. Мерење и аквизиција података вршено је 

топлотним подстаницама у нишком СДГ током грејне сезоне 2009/2010, а у 

новосадском СДГ током грејне сезоне 2010/2011. Узорковање података вршено је на 15 

min. Уклањање грубих грешака (eng. outliers) није вршено како би се испитала 

робустност примењених алгоритама, јер је примарни циљ спроведеног истраживања 

био у избору метода и дефинисању предиктивних модела са којима је могуће добити 

поуздане предикције у реалном окружењу у коме врло често долази до грешака при 

мерењу и аквизицији података. Додатно, планирано је да се добијени резултати у 

каснијем истраживању користе за формулисање нове стратегије управљања у којој је 

робустност од изузетног значаја. 

 Прелиминарном анализом серија утврђено је да на извесним местима недостају 

подаци. Места са недостајућим подацима су идентификована углавном у ноћном 

периоду (када СДГ није у функцији – нишки СДГ или је у посебном режиму рада са 

константним  параметрима – новосадски СДГ) или у периоду када није било осетних 

промена у топлотном оптерећењу потрошача. Због тога су делови серија код којих су 

постојали прекиди повезани. Начелно се оваквим поступком ремети динамика полазних 
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серија али се због релативно малог броја интервенција може сматрати да је оригинална 

динамика серија очувана. 

 Након креирања континуалних серија релевантних величина са временом 

узорковања од 15 min, извршено je њихово осредњавање на 1h. То је стандардна 

процедура која се примењује код анализе  СДГ јер су, како је већ наглашено, у питању 

системи са великом инерцијом [Nielsen et al., 2000; Madsen 1985; Arvastson, 2001]. 

Свака временска серија је коначно садржала по 3180 опсервација за нишки СДГ 

односно 3517 опсервација за новосадски СДГ.  

5.2.1 Приказ временских серија из топлотне подстанице у нишком СДГ 

Временска серија топлотног оптерећења у нишком СДГ за грејну сезону 2009/2010 

приказана је на Слици 5.1. 

 

 

 

 

 

 

 

 

 

 

Слика 5.1 Приказ временске серије топлотног оптерећења – топлотна подстаница 

нишки СДГ 

 Са слике се најпре може уочити цикличност која одговара интермитентном начину 

рада система – раду система са ноћним прекидима. У току ноћи нема испоруке 

топлотне енергије па је топлотно оптерећење једнако нули. Такође, могу се уочити 
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области у којима је за дужи временски период топлотно оптерећење било константно 

изнад 100 kW. То је период који одговара области између 1.000 – 1.200 и 1.900 – 2.100 

сата рада система. У том периоду су спољне температуре биле јако ниске па је било 

потребе за радом система и у току ноћи. Дескриптивне статистике за ову временску 

серију су дате у Табели 5.1. 

Табела 5.1 Дескриптивне статистике за временску серију топлотног оптерећења  

Променаљива Мin. Маx. Средина 
Стандардна 

девијација 

Топлотно оптерећење [kW] 0.00 239.55 92.83 75.44 

 

 Приказ временских серија за остале релевантне променљиве (спољна температура, 

температура напојног и повратног вода примара и проток) дат је на Сликама 5.2 - 5.5. 

 

 

 

 

 

 

 
 

 

Слика 5.2 Временска серија спољне температуре – топлотна подстаница нишки СДГ 
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Слика 5.3 Временска серија температуре напојног вода примара – топлотна 

подстаница нишки СДГ 

 

 

 

 

 

 

 

 

 

Слика 5.4 Временска серија температуре повратног вода примара – топлотна 

подстаница нишки СДГ 
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Слика 5.5 Временска серија протока примара – топлотна подстаница нишки СДГ 

 Дескриптивне статистике за приказане временске серије су дате у Табели 5.2. 

Табела 5.2 Дескриптивне статистике временских серија - топлотна подстаница нишки 

СДГ 

Променаљива Мin. Маx. Средина 
Стандардна 

девијација 

Спољна температура 
[0C] 

-10.77 19.08 5.31 5.26 

Температура напојног 
вода примара [0C] 

14.02 88.47 52.11 19.34 

Температура повратног 
вода примара [0C] 

12.21 55.42 38.08 8.84 

Проток [m3/h] 0.00 6.57 3.62 2.59 
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5.2.2 Приказ временских серија из топлотне подстанице у новосадском СДГ 

Временска серија топлотног оптерећења у новосадском СДГ за грејну сезону 2010/2011 

приказана је на Слици 5.6. 

 

 

 

 

 

 

 

 

 

Слика 5.6 Временска серије топлотног оптерећења – топлотна подстаница новосадски 

СДГ 

 За разлику од нишког СДГ, периоди без грејања у новосадском СДГ су врло ретки и  

могу се уочити на почетку (између 300 и 700 сата) и пред крај (између 3.400 и 3.500 

сата) грејне сезоне. Оваква временска серија топлотног оптерећења одговара начину 

рада СДГ у  коме нема ноћних прекида у грејању током грејне сезоне, изузев у 

случајевима када је спољна температура изнад дефинисаног лимита. Такође, може се 

уочити и више пикова при чему су најизраженији они око 1.750. и 2.500. h рада система 

где се може уочити да је за дужи временски период вредност топлотног оптерећења 

била изнад 100 kW. 

 У наставку су дати прикази временских серија осталих релевантних величина. 
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Слика 5.7 Временска серија спољне температуре – топлотна подстаница новосадски 

СДГ 

 Дескриптивне статистике за ову временску серију су дате у Табели 5.3 

Табела 5.3 Дескриптивне статистике за временску серију топлотног оптерећења  

Променаљива Мin. Маx. Средина 
Стандардна 
девијација 

Топлотно оптерећење [kW] 0.00 298.38 125.51 62.44 

 

 

 

 

 

 

 

 

 

Слика 5.8 Временска серија температуре напојног вода примара – топлотна 

подстаница новосадски СДГ 
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Слика 5.9 Временска серија температуре повратног вода примара – топлотна 

подстаница новосадски СДГ 

 

 

 

 

 

 

 

 

 

Слика 5.10 Временска серија протока примара – топлотна подстаница новосадски СДГ 

 Дескриптивне статистике за приказане временске серије су дате у Табели 5.4. 
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Табела 5.4 Дескриптивне статистике временских серија - топлотна подстаница 

новосадски СДГ 

Променаљива Мin. Маx. Средина 
Стандардна 

девијација 

Спољна температура 
[0C] 

-7.60 24.40 5.70 6.52 

Температура напојног 
вода примара [0C] 

21.77 102.40 59.80 16.72 

Температура повратног 
вода примара [0C] 

21.10 52.42 36.96 5.81 

Проток [ml/s] 0.00 1630.8 1310.1 282.00 

 

5.3 ВАЛИДАЦИЈА АЛГОРИТАМА 

Пре почетка израде предиктивних модела било је потребно урадити валидацију 

алгоритама који су коришћени за израду модела. За тестирање је изабрана McKey-Glass 

временска серија која се добија из McKey-Glass нелинеарне диференцијалне једначине 

са временским кашњењем. Ову једначину су McKey и Glass предложили као модел за 

регулацију/контролу производње белих крвних зрнаца у људском организму. Општи 

облик једначине је: 

 ( )
d x

F x x bx
d t

    (5.1) 

где је x  густина белих крвних зрнаца, b брзина разарања белих крвних зрнаца (случајна 

променљива) а Ф количина нових белих крвних зрнаца који настају као одговор на неки 

претходни физиолошки захтев за њиховим креирањем. У литератури се најчешће среће 

следећи облик McKey-Glass једначине: 

 
10

( ) 0.2 ( )
0.1

1 ( )

d x t x t
x

d t x t






 

 
 (5.2) 

при чему се узима да је почетна вредност (0) 1.2x  а 17   [Mathworks]. 

 McKey-Glass једначина показује низ својстава која су карактеристична за реалне 

системе попут периодичности и хаотичности. Додатно, ако се из једначине генеришу 

две временске серије са незнатно измењеним почетним условима, са пропагацијом у 
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времену, серије почињу да дивергирају да би после извесног времена могло да се 

констатује потпуно одсуство корелације. Због ових својстава су McKey-Glass једначина 

и серије које се из ње добијају постале јако популарне за валидацију различитих 

предиктивних модела добијених применом метода машинског и статистичког учења. 

Тиме су створени услови за непристрасно тестирање различитих модела. Може се рећи 

да је McKey-Glass добијена из једначине (5.2) референтна серија за испитивање 

перформанси предиктивних модела. 

 Од полазне серије добијене из једначине (5.2) креиране су улазне серије: ( )x t , 

( 6)x t  , ( 12)x t  и ( 18)x t  као и излазна серија ( 6)x t  . Генерисане су серије од 1.000 

података при чему је првих 500 податак коришћено за тренирање а преосталих 500 

података за тестирање (валидацију).  

 Избор улазних и излазних величина за McKey-Glass серију одговара њеној 

димензији уграђивања (енг. embedding dimension) и кашњењу (eng. time delay) [Chen et 

al., 2005]. Користећи тренинг серију података извршена је естимација параметара 

модела. Након тога је извршена предикција користећи тест сет података. Резултати 

предикције изражени преко минималне средњеквадратне грешке (RMSE), приказани су 

у Табели 5.5. 

Табела 5.5 Резултати предиктивних модела примењених у дисертацији за McKey-Glass 

временску серију 

Метод 
RMSE за тренинг сет 
података 

RMSE за тест сет података 

Метод потпорних вектора - 

RBF кернел 
0.01361308 0.01373432 

Неуронске мреже са 
бајесовском 
регуларизацијом 

0.004054 0.006378517 

Boosting са генералисаним 
линеарним моделом GLM 

0.1075523 0.1194056 

  

За упоређивање добијених резултата искоришћен је рад [Chen et al., 2005] у коме је 

поред увођења новог метода, флексибилног модела неуронских стабала (eng. flexible 

neural tree model), дат и преглед резултата предикције за McKey-Glass временску серију 
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за различите методе и моделе из литературе. Литературни резултати релевантни за 

упоређење дати су у Табели 5.6. 

Табела 5.6 Резултати предикције за McKey-Glass временску серију – литературни 

подаци [Chen et al., 2005] 

Метод RMSE  

Полином шестог реда [Chen et al., 2005] 0.04 

Неуронска мрежа са простирањем грешке уназад 
[Chen et al., 2005] 

0.02 

ANFIS (Artificial Neural network Fuzzy Inferential 
System) [Jang et al., 1997] 

0.007 

Класична RBF неуронска мрежа [Cho et al., 1995] 0.0114 

Генетски алгоритам и фази системи [Kim et al., 
1997] 

0.049  

 

 Из Табеле 5.5 најпре се може уочити да су најбољи резултати предикције добијени 

применом неуронских мрежа са бајесовском регуларизацијом. Резултати предикције у 

том случају у великој мери превазилазе резултате осталих метода. Још један важан 

закључак се може извести упоређивањем грешке предикције на тренинг и тест сету 

података. Код методе потпорних вектора са RBF кернелом резултати  на тренинг и тест 

сету података врло мало одступају што указује на изузетно добра генерализациона 

својства овог метода.  

 Додатно, упоређивањем добијених резултата (Табела 5.5) са резултатима из 

литературе (Табела 5.6) може се закључити да је одступање за сличне методе врло 

мало. Међутим, потребно је напоменути да је валидација са подацима из McKey-Glass 

временске серије извршена како би се прелиминарно тестирали примењени алгоритми 

и модели, а не како би се методе и модели унапред рангирали. Сваки анализирани 

процес има низ особености па је немогуће унапред тврдити која метода ће за 

расположиви сет података дати најбоље резултате. Због тога је задатак истраживача у 

проналажењу оних метода које дају најбоље резултате за решавање конкретне класе 

проблема. 

 



200 

 

5.4 КРИТЕРИЈУМИ ЗА УТВРЂИВАЊЕ И ИЗБОР МОДЕЛА СА НАЈБОЉИМ 
ПРЕДИКТИВНИМ ПЕРФОРМАНСАМА  
 
На располагању је велики број статистика којима је могуће испитати предиктивне 

перформансе модела. Традиционални критеријуми попут коефицијента детерминације 

(R) не представљају меродавне показатеље, јер велика вредност овог коефицијента не 

указује нужно на добре предиктивне перформансе модела. Познато је да се увећањем 

степена полинома или степена слободе модела могу добити нереално високе вредности 

овог критеријума док се са друге стране то најчешће одражава на врло лоше резултате 

на тест сету података.  

 Постоји више статистика које се примењују за оцену предиктивних перформанси 

модела. Уобичајено се користи корен средње квадратне грешка (eng. RMSE) који се 

дефинише на следећи начин: 

 

2

1

( )
n

i i
i

P O

RMSE
n








 (5.3) 

где Pi и Oi представљају опсервације и  вредности добијене предикцијом, респективно. 

 Иако овај критеријум има одређене недостатке [Armstrong, 2001], они се пре свега 

односе на анализу предикције за различите серије, што није случај у овој дисертацији. 

Додатно, средње квадратна грешка је и даље једна од најкоришћенијих статистика за 

оцену предиктивних перформанси модела. Због тога је за оцену предиктивних 

перформанси у овој дисертацији усвојен управо овај критеријум. 

5.5 ПОСТУПАК ЕСТИМАЦИЈЕ ПАРАМЕТАРА МОДЕЛА 

Поступак естимације параметара и одређивања предиктивних перформанси модела се 

временом значајно мењао. У првим истраживањима, уобичајени приступ је био да се 

целокупан доступан сет података подели на два дела. Први део (сет) података је 

коришћен за естимацију (оцену или калибрацију) параметара модела, док се други сет 

података користио за утврђивање предиктивних перформанси модела. Први сет се у 

области истраживања података (eng. data mining) и машинског учења назива тренинг 

сетом, док се други назива тест сетом података. Средње квадратна грешка се одређује 

за тренинг и тест сет података, посебно. Најчешће је случај да вредност средње 

квадратне грешке за тренинг сет података буде мања у односу на тест сет података, јер 
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се исти сет података користи за оцену (естимацију, калибрацију) параметара модела и 

за испитивање његових предиктивних перформанси.  

 Међутим, у пракси постоји више потешкоћа са реализацијом овог концепта. Први 

проблем је недовољна величина расположивог сета података. Такође, постоје и 

проблеми око начина поделе полазног скупа података. Уколико се подаци не поделе на 

одговарајући начин, информације о предиктивним перформансама модела могу бити 

потпуно погрешне. Потенцијалан начин за превазилажење ових проблема у процесу 

избора модела је увођење унакрсне валидације (eng. cross validation).  

 Најпростији облик унакрсне валидације је „изостави један“ унакрсна валидација 

(eng. leave-one-out cross validation) код које се један пар (улазно-излазних) података 

изостави и користи као тест сет, док се остали парови података користе за естимацију 

параметара модела. Овај приступ има низ недостатака који су подробно анализирани у 

[Shao, 1993]. 

 Алтернатива која се све више користи је метод унакрсне валидације са k-развоја 

(eng. k-fold cross-validation). У овом случају се целокупан сет података дели на 

одређени (унапрд дефинисани) број сегмената, односно развоја. При томе се један 

развој користи за тестирање модела а преостали за тренирање. Број развоја је врло 

битан. Уколико је он велики,  добијене оцене (eng. estimаtes) ће бити врло прецизне али 

ће имати велику варијансу. Додатни проблем са великим бројем развоја су значајно 

увећани  компјутерски захтеви. Са друге стране, у случају малог броја развоја, 

рачунски захтеви су скромнији али су оцене непрецизније. Подаци из литературе 

[Refaeilzadeh et al., 2009] указују да је десет оптималан број развоја код већине сетова 

података који су добијени узорковањем са реалних система. 

 У новијим радовима, у којима се разматрају подаци пресека указује се на 

ограничења унакрсне валидације са k-развоја [Krstajic et al., 2014]. Додатно се истиче да 

се унапређење предиктивних перформанси модела може добити уколико се поступак 

унакрсне валидације понови више пута. Број понављања се одређује у зависности од 

величине полазног сета података. 

 Иако поступак унакрсне валидације са k развоја и понављањем представља de facto 

стандард за одређивање коначних параметара модела за податке пресека, у случају када 

су подаци индексирани у времену (тј. уколико су расположиви подаци доступни у 
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облику временских серија) унакрсна валидација са k развоја није применљива. Код 

унакрсне валидације опсервације које се користе за тренирање и тестирање се бирају 

случајно, чиме се ремети временски редослед опсервација што чини поступак унакрсне 

валидације неприменљивим за случај са подацима у облику временске серије.  

 Једно од решења проблема валидације модела, за случај када су подаци дати у 

облику временске серије презентовано је у [Hyndman et al., 2014]. Аутори дају 

објашњење за два поступка: приступ са растућим прозором (eng. growing window) и 

клизећим прозором (eng. sliding window). Поступак се може објаснити на следећи 

начин. Најпре се изабере тренинг сет података. Остале вредности, које се надовезују на 

тренинг сет, одређују тест сет података. На основу података из тренинг сета врши се 

естимација параметара модела. Модел се тестира на тест сету података при чему се, 

одређује грешка предикције, најчешће у виду корена средње квадратне грешке. У 

наредном кораку се, за случај процедуре са растућим прозором, полазном тренинг сету 

додаје још један пар опсервација. На тај начин се у свакој наредној итерацији величина 

тренинг сета увећава за један. Поступак естимације се понавља, а добијени модел 

тестира на тест сету који је сада умањен за један. Са процедуром се наставља све док се 

не дође до последњег пара опсервација. На крају се врши осредњавање вредности 

корена средње квадратних грешака из сваке итерације. Та осредњена вредност 

представља корен средње квадратне грешке тренирања. Процедура је рачунски врло 

захтевна и изводљива само за случај када је на располагању мали сет података. Са дуге 

стране, за случај клизећег прозора, такође постоји померање прозора за један према 

тест сету, али за разлику од растућег прозора овде број опсервација у тренинг сету 

остаје константна.  Другим речима, у свакој наредној итерацији се старе опсервације 

одбацују. Процедура је мање захтевна у односу на случај са растућим прозором али и 

даље непрактична за случај када је број опсервација велики.  

 Једно од решење овог проблема, за случај када је број опсервација велики, дато је у 

[Torgo et al., 2010]. Код овог поступка се најпре дефинише величина тренинг, тест и 

валидационог сета. Уколико се целокупни сет података посматра на временској оси, 

дефинише се таква констелација да од нулте тачке на временској оси стартује тренинг 

сет, након њега следи валидациони док је на крају тест сет. Овде је могуће уочити две 

кључне тачке: прву на крају тренинг сета и почетку валидационог сета, и другу на крају 

валидационог и почетку тест сета. Између ових тачака, у области валидационог сета, се 

коришћењем Монте Карло експеримента бирају тачке за које се изводи валидација са 
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растућим односно клизећим поступком, и то тако да су на временској оси све 

опсервације (за величину тренинг сета) улево у односу на ову тачку - тренинг сет, а 

опсервације удесно (за величину тест сета) - тест сет. На овај начин се осигурава 

временска хијерархија. Број тачака који се бира, из области валидационог сета, 

аналоган је са бројем понављања код унакрсне валидације. За сваки од корака се 

одређује средње квадратна грешка или нека друга статистика којом се мере 

предиктивне перформансе модела, а на крају срачунава средња вредност. 

Модификација у односу на класичан приступ са растућим и клизећим прозором је још у 

томе што постоји могућност да се рашћење односно клизање прозора оствари за сваки 

n-ти корак а не за за сваку наредну опсервацију.  

У дисертацији је усвојен овај поступак, али је у извесној мери модификован. 

Модификација се састоји у томе што је најпре целокупни сет података подељен на 

тренинг и тест сет. Тест сет није коришћен за израду и валидацију, већ само за коначну 

проверу предиктивних перформанси модела. На тај начин је у ствари тренинг сет 

третиран као укупан сет података у фази израде и валидације модела. Тренинг сет је 

био подељен односом 0.5/0.25/0.25 на тренинг, валидациони и тест субсет. Примењен је 

поступак са клизним прозором код кога је број опсервација тренинг сета током 

валидације остајао константа. Додатно, свака тридесета опсервација је коришћена за 

реестимацију параметара модела. Коначно, Монте Карло експериментом изабрано је 5 

стартних тачака из валидационог сета. На тај начин је за свако испитивање добијено 

пет модела са различитим предиктивним резултатима. Полазећи од претпоставке да 

онај модел који даје најбоље резултате на тренинг сету, највероватније представља  

модел који ће дати најбоље резултате и на тест сету података, од пет модела изабран је 

онај са којим је добијена најмања средње квадратна грешка. Овај модел је тестиран на 

тест сету података.  

5.6 ИЗРАДА ПРЕДИКТИВНИХ МОДЕЛА ТОПЛОТНОГ ОПТЕРЕЋЕЊА 

 
На самом почетку је било потребно дефинисати хоризонте предикције, односно 

интервале предикције, за које је требало креирати предиктивне моделе. Хоризонти 

предикције су подељени на краткорочне, за 1, 2, 3, 4, 5 сати унапред и дугорочне за  8, 

12 и 24 сати унапред. Основно полазиште је да се краткорочни модели користе у циљу 

управљања СДГ, док су модели са дугорочним хоризонтима предикције предвиђени за 

оперативно планирање радом СДГ.  Различити краткорочни хоризонти предикције су 
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били потребни како би се на адекватан начин третирали корисници који се налазе на 

различитим растојањима од топлотног извора. Топла вода из извора до потрошача 

стиже просечном брзином, па су за различита растојања потребни модели са 

различитим хоризонтима предикције. За СДГ који се разматрају у овој дисертацији 

процењено је да су хоризонти од 5h унапред довољни за прогнозирање топлотног 

оптерећења и за најудаљеније кориснике. Са друге стране предиктивни модели за дуже 

хоризонте развијени су у циљу оперативног планирања рада СДГ. 

 За сваки предиктивни хоризонт, како је то већ наведено, развијен је посебан модел 

који је тестиран коришћењем расположивих података. Oвакав приступ је већ 

примењиван за предикције електричног оптерећења [Ramanathan et al., 1997; Fan et al. 

2012; Fay et al. 2003; McSharry et al. 2005]. 

 Након избора хоризонта предикције, у наредном кораку је било потребно креирати 

сет улазних променљивих. У литератури је на више места дата анализа утицајних 

параметара на термичку динамику зграда.  

 Једна од првих свеобухватних анализа је докторска дисертација [Werner, 1984]. У 

овој дисертацији анализирана је структура модела топлотног оптерећења за шест СДГ у 

Шведској, у којима се испоручује топлотна енергија за грејање и санитарна топла вода. 

Модели су креирани на основу експериментално добијених података који су 

узорковани у периоду од 5 до 11 година. Формирани су модели топлотног оптерећења 

за целокупне СДГ састављени од четири основне компоненте; компоненте која се 

односи на грејање простора, припрему санитарне топле воде, дистрибуционе губитке и 

додатно оптерећење које се односи на радне дане. Као најутицајније величине на 

топлотно оптерећење издвојене су: спољна температура, ирадијанса, ветар као и 

компонента која се односи на понашање корисника. 

 У дисертацији [Benonysson, 1991] се такође анализира предикција топлотног 

оптерећења. Разматрaју се две врсте модела: модели засновани на једноставним 

диференцијалним једначинама и линеарни регресиони модели. Додатно, дата је анализа 

утицајних величина на топлотно оптерећење. Наводи се да најдоминантнији утицај има 

спољна температура. Поред спољне температуре анализира се утицај и других 

климатских променљивих попут брзине ветра, унутрашње температуре, природне 

вентилације, инсолације и температуре напојног вода. Спроведена анализа је показала 

да и краткотрајне и дуготрајне варијације спољне температуре утичу на топлотно 
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оптерећење и да је потребно у моделе укључити оба ефекта. Такође, утврђено је да 

глобална ирадијанса има већи утицај у односу на директну ирадијансу али недостаје 

анализа о стварном утицају ирадијансе на топлотно оптерећење. Увођењем брзине 

ветра није добијено значајно побољшање предиктивних перформанси. Коначно, 

закључује се да се предиктивне перформансе могу значајно унапредити уколико се у 

скуп улазних променљивих укључе и наведене променљиве са кашњењем (eng. lagged).   

 Утицајне променљиве на топлотно оптерећење у системима даљинског грејања се 

такође разматрају у студији [Madsen et al., 1992]. У студији се најпре указује на 

физичку везу између топлотног оптерећења и термичке динамике зграда.  Потом се 

наводи да се утицајне величине могу поделити на оне које се директно везују за 

разматрани објекат и оне које произилазе из његовог окружења. Величине везане за сам 

објекат су осветљење, опрема која генерише топлоту и присуство људи. Поред ових 

величина указује се и на значај величина које произилазе из окружења објекта, уз 

навођење спољне температуре, краткоталасног зрачења, праваца и брзине ветра, 

дуготаласног зрачења и падавина. У наставку се говори о величини и начину утицаја 

побројаних величина. Најпре се анализира утицај спољне температуре - 

најдоминантније величине на брзину одавања топлоте. Констатује се да омотач зграде 

делује као нископропусни филтер (eng. low-pass filter) који пригушује (атенуира) 

дневне флуктуације (високих фреквенција) спољне температуре. Потом се анализира 

утицај краткоталасног зрачења. Указује се на потребу раздвајања директног и дифузног 

краткоталасног зрачења, што није уобичајена пракса у метеорологији. У наставку се 

указује на начин утицаја брзине и правца ветра. Наводи се да ветар утиче на величину 

одавања топлоте на два начина: најпре директно преко величине инфилтрације, а потом 

и преко повећања коефицијента прелаза топлоте са површине спољног омотача зграде. 

На крају дела у коме се разматрају утицајне величине указује се и на начин утицаја 

дуготаласног зрачења и падавина на величину топлотног оптерећења уз констатацију да 

је утицај ових величина минималан.  

 У раду [Dotzauer, 2002] дат је предлог једноставног модела за предикцију топлотног 

оптерећења у СДГ. Као најдоминантније утицаје издваја спољну температуру и 

компоненту којом се описује социјално понашање потрошача. Ова последња је 

потребна како би се на адекватан начин моделирала потрошња санитарне топле воде. 
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 Утицајне величине на топлотно оптерећење се такође анализирају у раду [Wojdyga, 

2008]. У раду се као најутицајније величине на топлотно оптерећење издвајају спољна 

температура, брзина и правац ветра као и ирадијанса. 

 У раду [Jovanović et al., 2015] су за предикцију утрошка топлотне енергије 

коришћене неуронске мреже са директним простирањем сигнала, радијално базисне 

неуронске мреже и ANFIS као и ансамбл методе засноване на комбинацији ове три 

архитектуре. За израду модела су као улазне променљиве коришћене: средња дневна 

спољна температура, средња дневна брзина ветра, укупна дневна ирадијанса, 

минимална дневна температура, максимална дневна температура, релативна влажност, 

дан у недељи, месец у години и потрошња топлотне енергије претходног дана. 

Развијене су три групе модела; прва где су све побројане величине коришћене као 

улази, друга група са седам улазних величина и коначно трећа група са три улазне 

величине. За израду модела је коришћена мала серија (318 узорака за тренинг и 100 

узорака за тестирање). У раду се закључује да су најбољи предиктивни резултати 

добијени за случај коришћена ансамбла. 

 Имајући у виду претходне резултате из литературе и сет расположивих 

експерименталних података одлучено је да се за израду предиктивних модела поред 

претходних вредности топлотног оптерећења користе и спољна температура и 

температура повратног вода примара као и њихове претходне вредности. 

5.6.1 Ауторегресиони предиктивни модели топлотног оптерећења 

Најпре су развијени модели код којих су као улазне величине коришћене искључиво 

претходне вредности топлотног оптерећења. Креирани су модели са 48 односно 24, 

сукцесивних, часовних, претходних вредности топлотног оптерећења. Ове вредности су 

изабране због дневне варијабилности топлотног оптерећења. 

 За сваки сет улазних променљивих креирани су модели коришћењем метода 

неуронских мрежа са бајесовском регуларизацијом, метода потпорних вектора и 

boosting метода. За израду модела (тренинг сет података) коришћено је 2000 

опсервација и за нишки и за новосадски СДГ док је за тестирање коришћено 1180, 

односно 1517 опсервација из нишког односно новосадског СДГ (тест сет података), 

респективно. За израду модела применом неуронских мрежа коришћена је мрежа са два 

скривена неурона. Код методе потпорних вектора коришћен је радијално базисни 
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кернел. σ вредност радијално базисног кернела (ширина кернела) одређена је 

коришћењем хеуристике која је  предложена у раду [Caputo et al, 2002]. Према овој 

методи σ вредност се процењује на основу тренинг сета података, и то тако да  буде 

између 0.1 и 0.9 квантила статистике 
2'x x . Изабрана је средња вредност. И коначно 

код boosting метода коришћени су генералисани линеарни модели. Математичке основе 

примењених модела детаљно су приказане у поглављу 3. 

 Најпре су креирани предиктивни модели, са улазима топлотног оптерећења са 

кашњењем од 1 до 48h. Резултати предикције су приказани у Табели 5.7 

Табела 5.7 Предиктивне перформансе BRNN, SVR и Boosting модела топлотног 

оптерећења за нишки и новосадски СДГ, улазне променљиве – топлотно оптерећење са 

временским кашњењем од 1 – 48h 

Хоризонт 
предикције 

Предиктивне перформансе: метод – SVR 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет  

RMSE [kW] 

тест сет  

RMSE [kW]  

тренинг сет  

RMSE [kW] 

тест сет  

1h унапред 25.124 20.681 23.689 17.469 

2h унапред 31.955 25.329 27.827 20.068 

3h унапред 34.847 26.992 30.358 21.526 

4h унапред 37.286 28.261 32.379 22.729 

5h унапред 38.836 29.150 34.120 23.829 

8h унапред 40.900 30.612 37.896 26.273 

12h унапред 42.278 31.867 41.750 27.265 

24h унапред 44.505 35.108 48.148 30.111 

Хоризонт 
предикције 

Предиктивне перформансе: метод – BRNN 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет  

RMSE [kW] 

тест сет  

RMSE [kW] 

тренинг сет  

RMSE [kW] 

тест сет  

1h унапред 23.821 21.375 18.194 16.652 

2h унапред 35.075 28.195 25.123 20.217 

3h унапред 36.965 30.265 28.777 21.921 
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4h унапред 39.631 31.207 31.685 23.131 

5h унапред 40.706 32.021 34.111 24.539 

8h унапред 41.616 33.063 38.228 26.696 

12h унапред 41.747 33.488 40.711 26.791 

24h унапред 44.039 35.037 46.021 28.414 

Хоризонт 
предикције 

Предиктивне перформансе: метод – Boosting 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет  

RMSE [kW] 

тест сет  

RMSE [kW] 

тренинг сет  

RMSE [kW] 

тест сет  

1h унапред 27.701 25.669 19.510 18.476 

2h унапред 36.157 31.227 26.427 22.662 

3h унапред 38.958 32.862 29.891 24.134 

4h унапред 40.265 33.355 32.360 25.076 

5h унапред 40.734 33.567 34.038 25.673 

8h унапред 40.856  33.624 37.010 26.671 

12h унапред 40.716 33.694 37.733 26.697 

24h унапред 41.215 33.787 40.881 27.498 

 

 Најбољи добијени резултати су приказани подебљано. Резултати су такође 

приказани и графички на Сликама 5.11 и 5.12. 

 

Слика 5.11 Упоредни приказ резултата предикције, нишки СДГ, улазне променљиве – 

топлотно оптерећење са временским кашњењем од 1 – 48h 
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Слика 5.12 Упоредни приказ резултата предикције, новосадски СДГ, улазне 

променљиве - топлотно оптерећење са временским кашњењем од 1 – 48h 

 Из Табеле 5.7 и са Слике 5.11 може се уочити да су најбољи резултати предикције за 

нишки СДГ добијени применом методе потпорних вектора. Ова опсервација важи за 

све предиктивне хоризонте изузев за предикцију 24h унапред, где су најбољи резултати 

добијени применом boosting метода. Такође, може се константовати да су резултати 

добијени применом методе потпорних вектора значајно бољи у односу на резултате 

добијене применом друге две методе. Код података из новосадског СДГ применом 

методе потпорних вектора најбољи резултати су добијени за хоризонте предикције од 

2, 3, 4, 5 и 8h унапред. За предикцију 1h унапред најбољи резултати су добијени 

применом неуронских мрежа са бајесовском регуларизацијом, док су модели добијени 

применом boosting метода дали најбоље резултате за предикцију 12 односно 24h 

унапред. Додатно, резултати добијени применом неуронских мрежа и методом 

потпорних вектора за већину предиктивних хоризоната незнатно одступају, што се 

може лако уочити са Слике 2.12.  

 У наредном кораку су испитане предиктивне перформансе модела код којих су као 

улази коришћене претходне вредности топлотног оптерећења у распону од 1-24h. 

Добијени резултати су приказани у Табели 5.8 и на Сликама 5.13 и 5.14. 
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Табела 5.8 Предиктивне перформансе BRNN, SVR и Boosting модела топлотног 

оптерећења за нишки и новосадски СДГ, улазне променљиве – топлотно оптерећење са 

временским кашњењем од 1 – 24h 

Хоризонт 
предикције 

Предиктивне перформансе: метод – SVR 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW]  

тренинг сет  

RMSE [kW] 

тест сет  

RMSE [kW]  

тренинг сет 

RMSE [kW] 

тест сет  

1h унапред 24.078 19.452 22.305 17.114 

2h унапред 30.128 24.114 25.996 20.508 

3h унапред 32.815 25.992 28.505 22.248 

4h унапред 35.008 27.423 30.275 23.428 

5h унапред 35.702 28.303 32.362 24.634 

8h унапред 35.825 28.341 34.616 27.514 

12h унапред 40.979 31.538 37.573 28.500 

24h унапред 42.722 34.198 44.114 29.179 

Хоризонт 
предикције 

Предиктивне перформансе: метод – BRNN 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет  

1h унапред 24.087 22.872 19.631 16.908 

2h унапред 33.002 28.908 26.292 21.132 

3h унапред 36.436 30.785 29.572 22.241 

4h унапред 38.246 32.112 31.860 23.821 

5h унапред 38.193 32.560 33.854 24.502 

8h унапред 39.366 33.119 37.007 27.137 

12h унапред 40.635 33.138 38.719 27.448 

24h унапред 40. 860 33.938 45.423 28.345 

Хоризонт 
предикције 

Предиктивне перформансе: метод – Boosting 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW]  

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW]  

тренинг сет 

RMSE [kW] 

тест сет 
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1h унапред 28.800 26.992 20.413 18.988 

2h унапред 36.807 32.151 28.293 23.580 

3h унапред 39.256 33.492 31.784 25.238 

4h унапред 40.291 33.942 33.719 25.874 

5h унапред 39.855 34.140 35.383 26.227 

8h унапред 40.038 34.202 37.259 26.961 

12h унапред 40.697 34.072 37.295 27.028 

24h унапред 40.992 34.110 40.308 27.535 

 

 

Слика 5.13 Упоредни приказ резултата предикције, нишки СДГ, улазне променљиве - 

топлотно оптерећење са временским кашњењем од 1 –  24h 

 

 

 



212 

 

 

Слика 5.14 Упоредни приказ резултата предикције, новосадски СДГ, улазне 

променљиве - топлотно оптерећење са временским кашњењем од 1 – 24h 

 И у овом случају су код података из нишког СДГ најбољи резултати добијени 

применом методе потпорних вектора за све предиктивне хоризонте, осим код модела за 

предикцију топлотног оптерећења 24h унапред, где су најбољи резултати добијени 

применом boosting метода. Код података из новосадског СДГ, најбољи резултати 

предикције за хоризонт од 2 и 4h унапред су добијени применом методе потпорних 

вектора. За хоризонте од 1, 3, 5 и 8h унапред, најбољи резултати су добијени применом 

неуронских мрежа док је најмања грешка предикције за хоризонте од  12 и 24h  код 

модела заснованих на boosting методу. Треба напоменути да су разлике у добијеним 

резултатима за метод потпорних вектора и неуронске мреже са бајесовском 

регуларизацијом минорне, што се може видети са Слика 5.13 и 5.14. 

 Након модела са улазним променљивим са померајем од 1 – 48h односно 1-24h 

уназад, креирани су модели код којих су улазне променљиве одређене на основу 

графика аутокорелационе и парцијалне аутокорелационе функције. Ови графици за 

податке из нишког и новосадског СДГ су приказани на Сликама 5.15 - 5.18.  
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Слика 5.15  Приказ аутокорелационе функције за топлотно оптерећење, подаци из 

нишког СДГ 
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Слика 5.16 Приказ аутокорелационе функције за топлотно оптерећење, подаци из 

новосадског СДГ 
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Слика 5.17 Приказ парцијалне аутокорелационе функције за топлотно оптерећење, 

подаци из нишког СДГ 
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Слика 5.18 Приказ парцијалне аутокорелационе функције за топлотно оптерећење, 

подаци из новосадског СДГ 

 За ову групу модела су формирана два скупа улазних променљивих. Први, са мањим 

бројем улазних променљивих, који се састојао од оних помака  (eng. lags) који су се на 

графику парцијалне аутокорелационе функције значајно издвајали у односу на ниво 

значајности. Код тих модела су као улазне променљиве коришћене вредности 

топлотног оптерећења са помаком од -1, - 2, - 4, - 9, - 13, - 17, - 23, -25 и - 49 за нишки 

СДГ, односно помаци - 1, - 2, - 9, - 17 и - 25 за новосадски СДГ. И други, са већим 
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бројем улазних променљивих, код којих су као улазне променљиве коришћени сви 

помаци који су били изнад нивоа значајности. У овом случају као улазне променљиве 

за нишки СДГ селектовани су помаци од - 1 до - 25 и помаци - 47, - 48 и - 49 док су за 

новосадски СДГ коришћени помаци - 1, - 2, - 7, - 8, - 9 као и помаци у распону од - 16 

до - 28. Добијени резултати предикције приказани су у Табелама 5.9 и 5.10. 

Табела 5.9 Предиктивне перформансе BRNN, SVR и Boosting модела топлотног 

оптерећења за нишки и новосадски СДГ, улазне променљиве – топлотно оптерећење са 

временским кашњењем на основу парцијалне аутокорелационе функције (већи број 

улазних променљивих) 

Хоризонт 
предикције 

Предиктивне перформансе: метод – SVR 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет  

RMSE [kW] 

тест сет  

RMSE [kW]  

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 23.243 19.876 21.287 17.809 

2h унапред 29.971 24.655 26.035 21.060 

3h унапред 33.033 26.419 29.14 23.097 

4h унапред 35.706 27.647 30.79 24.063 

5h унапред 37.153 28.526 31.845 25.137 

8h унапред 39.045 30.118 34.754 27.123 

12h унапред 39.653 31.563 40.849 30.504 

24h унапред 42.315 35.019 43.907 29.211 

Хоризонт 
предикције 

Предиктивне перформансе: метод – BRNN 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет  

RMSE [kW] 

тест сет  

1h унапред 22.483 20.777 18.022 17.058 

2h унапред 32.362 27.811 24.286 20.618 

3h унапред 36.041 30.195 28.107 22.663 

4h унапред 38.074 31.595 30.732 24.043 

5h унапред 39.409 32.040 32.35 25.014 
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8h унапред 40.539 33.040 36.029 27.150 

12h унапред 39.966 33.189 42.805 31.990 

24h унапред 41.541 34.693 45.078 28.265 

Хоризонт 
предикције 

Предиктивне перформансе: метод – Boosting 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW]  

тест сет  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 28.433 26.568 19.608 18.473 

2h унапред 36.22 31.458 26.165 22.695 

3h унапред 39.045 33.326 29.851 24.216 

4h унапред 40.18 33.875 32.188 25.148 

5h унапред 40.497 34.095 33.446 25.726 

8h унапред 40.485 34.054 36.281 26.807 

12h унапред 39.811 34.128 45.361 36.597 

24h унапред 40.51 33.904 40.303 27.568 

 

Табела 5.10 Предиктивне перформансе BRNN, SVR и Boosting модела топлотног 

оптерећења за нишки и новосадски СДГ, улазне променљиве – топлотно оптерећење са 

временским кашњењем на основу парцијалне аутокорелационе функције (мањи број 

улазних променљивих) 

Хоризонт 
предикције 

Предиктивне перформансе: метод – SVR 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет  

RMSE [kW] 

тест сет  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 25.931 23.762 26.385 22.182 

2h унапред 31.324 26.148 35.018 31.088 

3h унапред 38.581 30.494 39.648 34.092 

4h унапред 38.687 33.312 43.14 34.183 

5h унапред 38.849 33.465 43.521 34.697 

8h унапред 41.890 33.638 35.211 28.554 
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12h унапред 42.361 35.440 48.885 38.693 

24h унапред 42.563 36.098 43.91 29.534 

Хоризонт 
предикције 

Предиктивне перформансе: метод – BRNN 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 26.701 26.204 21.872 21.739 

2h унапред 32.851 29.435 32.376 30.795 

3h унапред 40.522 38.789 38.09 35.069 

4h унапред 40.473 38.437 40.59 37.144 

5h унапред 48.739 44.408 40.375 36.804 

8h унапред 40.359 33.108 35.523 27.384 

12h унапред 40.17 34.196 48.133 40.584 

24h унапред 40.876 34.281 45.058 28.494 

Хоризонт 
предикције 

Предиктивне перформансе: метод – Boosting 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет 

RMSE[kW]  

тест сет 

1h унапред 29.632 29.370 22.557 22.521 

2h унапред 36.382 32.224 33.971 31.986 

3h унапред 46.971 44.852 40.49 36.914 

4h унапред 53.548 53.782 43.828 39.042 

5h унапред 56.443 56.849 44.813 38.615 

8h унапред 40.464 34.349 36.465 27.407 

12h унапред 40.043 34.661 49.742 41.749 

24h унапред 40.333 33.837 40.172 27.613 

 

 Анализом добијених резултата из Табела 5.9 и 5.10 може се закључити да постоје 

значајне флуктуације и нестабилности у добијеним резултатима. Није могуће издвојити 

метод са којим се за већи број хоризоната предикције добијају најбољи резултати 



218 

 

предикције. То се посебно односи на случај када је мањи сет улазних променљивих 

коришћен за израду модела. 

 Како би се утврдио најповољнији сет улазних променљивих, креирана је Табела 5.11 

у којој је дат упоредни приказ свих претходно добијених резултата предикције.  

Табела 5.11 Предиктивне перформансе модела топлотног оптерећења за различитe 

сетoве улазних променљивих 

Хоризонт 
предикције 

Предиктивне перформансе - RMSE [kW], тест сет 

Подаци - нишки СДГ Подаци - новосадски СДГ  

1 - 48h 1 - 24h PACF11 PACF22 1 - 48h 1 - 24h PACF11 PACF22 

1h унапред 20.681 19.452 19.876 23.762 16.652 16.908 17.058 21.739 

2h унапред 25.329 24.114 24.655 26.148 20.068 20.508 20.618 30.795 

3h унапред 26.992 25.992 26.419 30.494 21.526 22.241 22.663 34.092 

4h унапред 28.261 27.423 27.647 33.312 22.729 23.428 24.043 34.183 

5h унапред 29.150 28.303 28.526 33.465 23.829 24.502 25.014 34.697 

8h унапред 30.612 28.341 30.118 33.108 26.273 27.137 27.384 27.384 

12h унапред 31.867 31.538 31.563 34.196 26.697 27.028 38.693 38.693 

24h унапред 33.787 33.938 33.904 33.837 27.498 27.535 27.613 27.613 

 

 Из табеле се види да су најбољи резултати за нишки СДГ добијени са сетом улазних 

променљивих у којима фигурише топлотно оптерећење са временским кашњењем од 1 

–  24h, изузев за хоризонт предикције од 24h унапред. За податке из новосадског СДГ 

најбољи резултати су добијени за случај када се сет улазних променљивих састојао од 

топлотног оптерећења са временским кашњењем од 1 –  48h. У оба случаја (за нишки и 

новосадски СДГ) најбољи резултати предикције, за највећи број хоризоната 

предикције, су добијени применом методе потпорних вектора. Такoђе, утврђено је да се 

избором улазних величина према графику парцијалне аутокорелационе функције не 

добијају унапређења у предиктивним перформансама модела. 

                                           
1 улазне променљиве – топлотно оптерећење са временским кашњењем на основу парцијалне аутокорелационе 
функције (већи број улазних променљивих) 
2 улазне променљиве – топлотно оптерећење са временским кашњењем на основу парцијалне аутокорелационе 
функције (мањи број улазних променљивих) 
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 Даље унапређење модела може се извести увођењем других, егзогених улазних 

величина у модел.  

5.6.2 Предиктивни модели топлотног оптерећења са егзогеним улазима 

Већ је наведено да је пожељно у улазни сет променљивих уврстити и спољну 

температуру као и температуру повратног вода примара [Madsen et al., 1990; Madsen et 

al., 1992; Andersen et al., 2000; Nielsen, 2000]. Додатно, имајући у виду да су применом 

методе потпорних вектора добијени најбољи резултати, даља унапређења 

подразумевала су искључиво примену овог метода. 

 Прво је било потребно одредити са којим помацима треба уврстити спољну 

температуру и температуру повратног вода примара. Величина помака одређена је на 

основу крос-корелационе функције (eng. cross correlation function). Крос-корелационом 

функцијом се утврђује корелација између две различите променљиве за унапред 

дефинисан број временских помака. Додатно, имајући у виду велику инерцију система, 

која се исказује као време које је потребно да се промена спољне температуре одрази на 

промену у објекту, тестирани су и случајеви са спољном температуром и температуром 

повратног вода код којих су коришћени помаци од 1-12h односно  од 1-24h. 

 Крос-корелационе функције за топлотно оптерећење и спољну температуру, односно 

за топлотно оптерећење и температуру повратног вода примара за податке из нишког и 

новосадског СДГ приказане су на Сликама 5.19 - 5.22. 

6050403020100-10-20-30-40-50-60

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Pomak

K
ro

s 
k
o

re
la

c
ij

a

 

Слика 5.19 Приказ крос-корелационе функције за топлотно оптерећење и спољну 

температуру, подаци из нишког СДГ 
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Слика 5.20 Приказ крос-корелационе функције за топлотно оптерећење и температуру 

повратног вода примара, подаци из нишког СДГ 
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Слика 5.21 Приказ крос-корелационе функције за топлотно оптерећење и спољну 

температуру, подаци из  новосадског СДГ 
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Слика 5.22 Приказ крос-корелационе функције за топлотно оптерећење и температуру 

повратног вода примара, подаци из  новосадског СДГ 

 На основу графика крос-корелационе функције одлучено је да се за податке из 

нишког и новосадског СДГ тестира спољна температура са сукцесивним помацима, и 

то од 1 - 2h, 1 -12h и 1-24h. Улазни сет променљивих је формиран на тај начин што је 

полазном сету, који се састојао од претходних вредности топлотног оптерећења 

(помаком од 1- 24h за нишки СДГ односно 1- 48 h за новосадски СДГ), додате и 

претходне вредности спољне температуре. Добијени резултати су приказани у Табели 

5.12. 

Табела 5.12 Предиктивне перформансе модела топлотног оптерећења за нишки и 

новосадски СДГ, улазне променљиве – топлотно оптерећење са помаком од 1- 24h 

(нишки СДГ) односно 1- 48 h (новосадски СДГ) и спољна температура са различитим 

интервалима временског кашњења 

Хоризонт 
предикције 

Предиктивне перформансе: метод SVR; улазне променљиве: топлотно 
оптерећење - нишки СДГ(помак 1 -24h), новосадски СДГ (помак 1 -48h); 

спољна температура помак 1 - 24h (оба СДГ) 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 24.316 19.365 22.866 16.887 
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2h унапред 28.799 23.251 25.792 18.929 

3h унапред 30.518 25.112 27.788 20.357 

4h унапред 31.814 26.540 29.539 21.633 

5h унапред 32.213 27.571 31.128 22.759 

8h унапред 33.357 29.158 35.588 24.980 

12h унапред 36.690 31.244 40.403 26.677 

24h унапред 40.980 34.329 48.767 29.515 

Хоризонт 
предикције 

Предиктивне перформансе: метод SVR; улазне променљиве: топлотно 
оптерећење - нишки СДГ(помак 1 -24h), новосадски СДГ (помак 1-48h); 

спољна температура помак 1 - 12h (оба СДГ) 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 23.666 18.909 22.526 17.067 

2h унапред 28.497 22.725 25.489 19.492 

3h унапред 30.610 24.569 27.434 20.806 

4h унапред 32.323 25.964 29.005 21.992 

5h унапред 32.848 27.054 30.687 22.998 

8h унапред 33.280 28.961 34.831 25.147 

12h унапред 35.754 31.162 39.524 26.808 

24h унапред 40.848 33.596 48.120 29.801 

Хоризонт 
предикције 

Предиктивне перформансе: метод SVR; улазне променљиве: улазне 
пртоменљиве: топлотно оптерећење - нишки СДГ(помак 1 -24h), 

новосадски СДГ (помак 1 -48h); спољна температура помак 1 - 2h (оба 
СДГ) 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 23.271 18.785 22.481 17.193 

2h унапред 28.341 22.714 25.376 19.711 

3h унапред 30.508 24.438 27.265 21.145 

4h унапред 32.518 25.875 28.956 22.255 
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5h унапред 33.206 26.947 30.545 23.317 

8h унапред 33.957 28.537 34.751 25.462 

12h унапред 37.196 30.782 39.156 26.941 

24h унапред 41.669 33.682 47.565 29.676 

 

 Према подацима из горње табеле најбољи предиктивни резултати за нишки СДГ 

добијени су за случај када су два помака спољне температуре коришћена као додатни 

егзогени улази модела. За податке из новосадског СДГ најбољи резултати су добијени 

за случај када је као егзогени улаз коришћена спољна температура са сукцесивним 

помацима од 1 - 24h. Ова разлика може се објаснити начином рада СДГ. Док је у 

нишком СДГ рад интермитентан, у новосадском СДГ се снабдевање топлом водом 

остварује готово континуално током грејне сезоне, па је утицај инерције израженији. 

 Поред спољне температуре у наставку је тестирано на који начин температура 

повратног вода примара утиче на предиктивне резултате модела. Поред претходних 

вредности топлотног оптерећења (помаком од 1- 24h за нишки СДГ односно 1- 48 h за 

новосадски СДГ) у овом случају су у улазни сет инкорпориране и претходне вредности 

температуре повратног вода примара. Добијени резултати су приказани у Табели 5.13. 

Табела 5.13 Предиктивне перформансе модела топлотног оптерећења за нишки и 

новосадски СДГ, улазне променљиве – топлотно оптерећење са помаком од 1- 24h 

(нишки СДГ) односно 1- 48 h (новосадски СДГ) и температура повратног вода примара 

са различитим интервалима временског кашњења 

Хоризонт 
предикције 

Предиктивне перформансе: метод SVR; улазне променљиве: топлотно 
оптерећење - нишки СДГ(помак 1 -24h), новосадски СДГ (помак 1 -48h); 

температура повратног вода примара помак 1 - 24h (оба СДГ) 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 25.926 21.193 24.371 17.613 

2h унапред 31.549 25.301 28.136 20.031 

3h унапред 33.919 27.215 30.34 21.391 

4h унапред 35.742 28.450 32.299 22.726 
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5h унапред 36.356 29.267 33.812 24.037 

8h унапред 38.225 31.037 37.518 26.433 

12h унапред 41.209 32.312 41.488 27.502 

24h унапред 42.913 33.914 48.355 29.671 

Хоризонт 
предикције 

Предиктивне перформансе: метод SVR; улазне променљиве: топлотно 
оптерећење - нишки СДГ(помак 1 -24h), новосадски СДГ (помак 1 -48h); 

температура повратног вода примара помак 1 - 12h (оба СДГ) 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 24.611 19.969 24.05 17.505 

2h унапред 30.499 24.277 28.046 19.904 

3h унапред 32.912 26.245 30.329 21.268 

4h унапред 34.731 27.648 32.144 22.487 

5h унапред 35.361 28.771 33.779 23.874 

8h унапред 37.308 30.692 37.402 26.181 

12h унапред 41.162 32.198 41.533 27.237 

24h унапред 43.567 33.656 47.894 30.134 

Хоризонт 
предикције 

Предиктивне перформансе: метод SVR; улазне променљиве: топлотно 
оптерећење - нишки СДГ(помак 1 - 24h), новосадски СДГ (помак 1 - 48h); 

температура повратног вода примара помак 1 - 2h (оба СДГ) 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW]  

тест сет 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 24.136 19.513 23.817 17.443 

2h унапред 30.159 24.215 27.910 19.902 

3h унапред 30.205 24.242 30.351 21.239 

4h унапред 35.079 27.444 32.532 22.472 

5h унапред 35.835 28.402 34.041 23.801 

8h унапред 37.406 30.232 38.42 26.155 

12h унапред 40.720 31.719 41.808 27.226 

24h унапред 42.715 33.828 48.198 30.049 
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 Из Табеле 5.13 се види да су најбољи резултати добијени у случају када су полазном 

сету улазних променљивих (топлотно оптерећење - нишки СДГ (помак 1 - 24h), новосадски 

СДГ (помак 1 - 48h)) биле прикључене и претходне вредности температуре повратног 

вода (са временским помаком од 1 и 2h). 

 Коначно је испитано да ли се комбинацијом егзогених улаза (спољне температуре и 

температуре повратног вода примара), који су појединачно дали најбоље резултате, 

модели могу додатно унапредити. Упоредни приказ резултата са тест серије за податке 

из нишког и новосадског СДГ, заједно са претходним резултатима дат је у Табели 5.14. 

У напомени је дато објашњење везано за сет улазних променљивих.   

Табела 5.14 Упоредни приказ предиктивних перформанси модела топлотног 

оптерећења за различитe сетoве улазних променљивих 

Хоризонт 
предикције 

Предиктивне перформансе - RMSE [kW], тест сет 

Подаци - нишки СДГ Подаци - новосадски СДГ  

Ia
3 IIa IIIa IVa Ib IIb IIIb IVb 

1h унапред 19.452 18.785 19.513 18.931 16.652 16.887 17.443 16.931 

2h унапред 24.114 22.714 24.215 22.799 20.068 18.929 19.902 19.002 

3h унапред 25.992 24.438 24.242 24.253 21.526 20.357 21.239 20.362 

4h унапред 27.423 25.875 27.444 25.910 22.729 21.633 22.472 21.728 

5h унапред 28.303 26.947 28.402 26.958 23.829 22.759 23.801 22.772 

8h унапред 28.341 28.537 30.232 28.678 26.273 24.980 26.155 24.993 

12h унапред 31.538 30.782 31.719 31.074 26.697 26.677 27.226 26.825 

24h унапред 33.938 33.682 33.828 33.750 27.498 29.515 30.049 29.644 

                                           

3 Напомена: значење ознака – Ia - топлотно оптерећење са помаком од 1 - 24h; IIa - топлотно оптерећење 
са помаком од 1 - 24h и спољна температура са помаком од 1 - 2h; IIIa - топлотно оптерећење са помаком 
од 1 - 24h и температура повратног вода примара са помаком 1 - 2h; IVa - топлотно оптерећење са 
помаком од 1 - 24h, спољна температура са помаком од 1 - 2h и температура повратног вода примара са 
помаком 1 - 2h; Ib - топлотно оптерећење са помаком од 1 - 48h;  IIb - топлотно оптерећење са помаком од 
1 - 48h и спољна температура са помаком од 1 - 24h; IIIb - топлотно оптерећење са помаком од 1 - 48h и 
температура повратног вода примара са помаком 1 - 2h ; IVb- топлотно оптерећење са помаком од 1 - 48h, 
спољна температура са помаком од 1 - 24h и температура повратног вода примара са помаком 1 - 2h   
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 Из горње табеле види се да су најбољи резултати предикције добијени за случај када 

је поред ендогених величина у сет улазних променљивих била инкорпорирана и једна 

егзогена величина- спољна температура. Инкорпорирање две егзогене величине није 

допринело побољшању резултата предикције. Може се закључити да се најбољи 

предиктивни резултати добијају са следећим сетом улазних величина: 

 за податке из нишког СДГ - топлотно оптерећење са помаком од 1- 24h и 

спољна температура са помаком од 1 - 2h и 

 за податке из новосадског СДГ - топлотно оптерећење са помаком од 1 - 48h и 

спољна температура са помаком од 1 - 24h. 

У наставку се разматра да ли се кроз увођење додатних улазних променљивих могу 

додатно побољшати резултати предикције.  

5.7 ПРЕГЛЕД МОГУЋИХ НАЧИНА ЗА ДОДАТНО УНАПРЕЂЕЊЕ 

ПРЕДИКТИВНИХ МОДЕЛА 

На крају претходног поглавља анализирана је могућност унапређења модела кроз 

увођење егзогених променљивих, спољне температуре и температуре повратног вода 

примара. Закључено је да се увршћивањем спољне температуре у сет улазних 

променљивих могу добити извесна побољшања предиктивних перформанси. Поред 

ових побољшања, у наставку се разматра могућност даљег унапређења добијених 

предиктивних модела кроз увођење додатних променљивих: прогнозираних вредности 

спољне температуре и индикаторских величина (eng. dummy variables). 

5.7.1 Унапређење предиктивних модела топлотног оптерећења кроз увођење 

прогнозираних вредности спољне температуре 

Већ је наведено да вредности топлотног оптерећења у највећој мери зависе од спољне 

температуре. Уколико хоризонт предикције расте, утицај тренутне вредности спољне 

температуре на вредност будућег топлотног оптерећења драстично опада. Због тога се, 

у циљу унапређења предиктивних перформанси модела, као улазне променљиве могу 

увести прогнозиране (предвиђене) спољне температуре које одговарају будућим 

тренуцима, за које се одређује топлотно оптерећење. Ове температуре се могу добити 

из независних предиктивних модела, чији излази представљају улазе предиктивног 

модела топлотног оптерећења. Тачност предикције топлотног оптерећења, по овом 
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поступку, у великој мери зависи од тачности предиктивних модела спољне температуре 

па је због тога посебну пажњу потребно посветити изради ових модела.  

5.7.1.1 Литературни преглед статистичких метода за предикцију спољне 

температуре 

Најпрецизнија предикција спољне температуре се може данас добити из сложених 

нумеричких  модела за прогнозу времена (eng. numerical weather prediction). Ови 

модели се израђују за различите хоризонте предвиђања и географску покривеност. У 

зависности од тога за коју просторну област се модели развијају, они могу бити 

прогностички, мезоскални и микроскални. Мезоскални модели су они који су 

географски ограничени на растојања у распону од 2-2.000 km [Orlanski, 1975]. Они се 

даље деле на α, β и γ мезоскалне моделе у зависности од величине географске 

покривености. За ово истраживање су од посебног значаја γ мезоскални модели код 

којих је географска покривеност у распону од 2-20 km. Сви нумерички модели, без 

обзира на географску покривеност, се заснивају на анализи развоја скупа променљивих 

који описују стање атмосфере, користећи парцијалне диференцијалне једначине из  

науке о преносу топлоте, динамике флуида и хемијских реакција састојака ваздуха 

[Coiffier, 2011]. Поред теоријских поставки код ових модела се додатно унапређење 

постиже асимилацијом података (енг. data assimilation) која подразумева увођење 

опсервација (са различитих локација и за различите временске тренутке) у предиктивне 

моделе. Ови модели дају изузетно прецизне резултате за кратке хоризонте предикције - 

од неколико сати до неколико дана унапред. Наравно, са скраћивањем хоризонта 

предикције расте тачност добијених предвиђања.  

 Главни недостатак овог приступа су велики рачунарски захтеви и немогућност рада 

са овим моделима на стандардним персоналним компјутерима. Због тога се овом 

врстом предикције баве искључиво специјализоване институције, у Србији Републички 

хидрометеоролошки завод. 

 За проблеме предикције топлотног оптерећења, који се разматрају у овој 

дисертацији, израда нумеричких прогностичких модела је непрактична. Због тога је 

било потребно израдити једноставније, статистичке предиктивне моделе који не 

захтевају посебне хардверске ресурсе и који се заснивају на улазима који се релативно 

лако могу узорковати. Прегледом литературе из ове области утврђено је да постоји 

велики број радова и метода које су примењене за израду предиктивних модела спољне 
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температуре. Међутим, упоредна анализа резултата примењених метода није могућа 

како због различите метрике која је примењена за оцену резултата предикције, тако и 

због различитог карактера временских серија коришћених за тренирање и тестирање 

предиктивних модела. Због тога није било могуће са сигурношћу унапред тврдити који 

од примењених метода из литературе може дати најбоље резултате за конкретну серију 

која је моделирана, па је у наставку дат литературни преглед најважнијих метода и 

модела.  

 Један од првих радова у којима се систематски разматра проблем предикције 

климатских променљивих (укључујући и спољну температуру) за потребе испитивања 

динамичких карактеристика зграда је докторска дисертација [Madsen, 1985]. У 

дисертацији се разматрају статистички модели различитих климатских променљивих: 

амбијенталне (спољне температуре), облачности и директног, дифузног и глобалног 

сунчевог зрачења (ирадијације). Даље разматрање је ограничено само на део 

дисертације у коме се разматрају предиктивни модели спољне температуре.  За 

предикцију спољне температуре најпре је коришћен метод случајног хода (eng. random 

walk) следећег облика: 

 1t t tТ Т     (5.4) 

где је tТ спољна температура у тренутку t док t  представља ред некорелисаних 

случајних променљивих. Овај модел је иницијално искоришћен за предикцију спољне 

температуре 1h унапред. Грешка предикције је рачуната на следећи начин: 

 1 1 1
ˆ

t t t t
Т Т   

   (5.5) 

где je 1tТ  опсервација спољне температуре у тренутку t, a 
1

ˆ
t t

Т


представља предикцију 

спољне температуре у тренутку t+1 користећи опсервације до тренутка t. Користећи 

податке о спољној температури за петнаестогодишњи период, са интервалом 

узорковања од 1h, за место Varlose у Данској, добијена је стандардна девијација грешке 

предикције од 0.8340C. Након тога се констатује да серија има нестационарни карактер, 

што је уобичајено за временске серије климатских променљивих, и да се унапређење 

модела може добити кроз израду једноставних ARIMA (eng. Auto Regressive Integrated 

Moving Average) модела. Без увођења сезонске компоненте стандардна девијација 

грешке предикције је смањена на 0.7088 0C. Са сезонском компонентом добијени су још 
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бољи резултати од 0.6148 0C. Даље се констатује да су грешке предикције, користећи 

једноставне моделе, за кратак предиктивни хоризонт задовољавајуће. Међутим, такође 

се указује на потребу развоја суштински другачијих модела за дуже хоризонте 

предикције, будући да једноставним моделима нису обухваћени врло важни ефекти 

попут дневне и годишње варијације спољне температуре. Додатно се наводи да се 

знатно бољи резултати предикције могу добити применом метода код којих постоји 

могућност инкорпорирања других климатских променљивих (егзогених променљивих) 

чије варијације утичу на варијацију спољне температуре.  

 У наставку се најпре разматрају најутицајније климатске променљиве за моделирање 

спољне температуре. Изводи се закључак да је то ирадијанса, односно тренутни флукс 

краткоталасне енергије зрачења. Такође, констатује се да статичке релације, из 

класичне метеорологије, нису довољне за описивање зависности између ирадијансе и 

спољне температуре већ да могу послужити само као индикатор за потенцијално важне 

променљиве при изради предиктивних модела. Потреба за израдом динамичких модела 

се  илуструју компаративним приказом средњих часовних вредности дневних 

температура и ирадијансе, добијених осредњавањем вишегодишњих мерења, на којима 

је јасно уочљив временски помак. Овај временски помак се објашњава постојањем 

топлотних резервоара у систему земља-атмосфера. У наставку се најпре даје приказ 

развијених хомогених временски непрекидних (континуираних) модела. Будући да се 

ови модели заснивају на физичким законитостима, њихова главна предност је 

могућност директне физичке интерпретације параметара модела. Параметри модела су 

естимирани методом максималне веродостојности. За предикције од један сат унапред 

добијена је стандардна девијација грешке предикције од 0.4868 0C што представља 

значајно унапређење у односу на ARIMA модел. У закључку дела у коме се разматра 

ова група модела, наводи се да су модели непримењиви за дуже хоризонте предикције 

будући да у њихову структуру није инкорпорирана компонента која се односи на 

дугорочну варијацију спољне температуре. 

 Даље унапређење се предлаже кроз увођење дискретних модела заснованих на 

преносним функцијама. Најпре се разматрају „чисто“ стохастички модели али се због 

њихових недостатака за адекватно моделирање дугорочних варијација у дањем тексту 

предлаже развој мешовитих стохастичко-детерминистичких модела. Применом ових 

модела добијена је стандардна девијација грешке предикције у распону од  0.35 – 0.57 

0C, при чему мања девијација одговара зимским месецима (од новембра до фебруара). 
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Додатно се констатује да се највећи резидуали јављају у тренуцима изласка и заласка 

Сунца, што је и логично, будући да у тим тренуцима долази до нагле промене 

температуре. 

 У претходним, хомогеним, моделима параметри су били инваријантни што не 

одговара реалности па се коначно унапређење даје кроз развој нехомогених дискретних 

модела за предикцију спољне температуре. Закључује се да се најбољи резултати могу 

добити коришћењем рекурзивних модела са заборављајућим фактором (eng. recursive 

estimation with forgetting factor). Применом ових модела омогућено је не само 

моделирање дугорочне варијације спољне температуре већ и њена подела на део који се 

описује ирадијансом и дела који се описује другим егзогеним променљивим. Додатно, 

развијени су и предиктивни модели спољне температуре за случај када не постоји 

мерење ирадијансе код којих се користе модели за њено срачунавање уз незнатно 

умањење предиктивних перфоманси модела. 

 Предтходно наведени резултати, добијени у дисертацији [Madsen, 1985], 

искоришћени су као полазиште за даља истраживања која су систематизована у студији 

[Madsen et al., 1990]. Потребно је нагласити да су у овој студији, за разлику од [Madsen, 

1985], развијани искључиво предиктивни модели спољне температуре за директну 

примену у управљању СДГ. Ово је важно због величине хоризонта предикције који 

опредељује коначан облик модела јер код спољне температуре постоје две врсте 

варијација, дневна и годишња. Код предиктивних модела спољне температуре, који се 

користе у СДГ, годишња варијација температуре није од значаја будући да СДГ раде 

само у току грејне сезоне (рад СДГ у току летњих месеци, уколико постоји, везан је 

само за испоруку санитарне топле воде,  која не зависи од флуктуација спољне 

температуре). У студији се најпре указује на значај спољне температуре, као 

најдоминантније величине за предикцију топлотног оптерећења, а потом разматрају 

различити типови предиктивних модела спољне температуре. Развијане су две групе 

принципијелно различитих модела. Прва група модела се заснива на методама 

експоненцијалног изравнавања (eng. exponential smoothing) док су друга група модела 

били стохастички непрекидни (континуирани) модели засновани на физичким 

законитостима из метеорологије. За израду и тестирање прве групе модела коришћене 

су опсервације спољне температуре из места Esbjerg у Данској у периоду од јула 1989. 

до августа 1989. године. Временске серије са резолуцијом од 1 h добијене су 

осредњавањем 12 мерења у оквиру сваког сата.  
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 Предиктивни модели спољне температуре су добијени коришћењем четири 

различите процедуре експоненцијалног изравнавања које представљају модификацију 

Wintersov-e. прогнозе. Модификација се састоји у томе што је изостављен тренд, за који 

је претходно утврђено да не доприноси побољшању предиктивних резултата. 

Формиране су две процедуре без и две са скалирајућим фактором профила. 

Скалирајући фактор профила, као један од параметра модела, укључен је како би било 

могуће моделирање наглих промена температуре (нпр. услед појаве облачности). 

Додатне две процедуре добијене су на тај начин што је измењен редослед ажурирања 

нивоа и профила. Поред ових параметара, за сваки од модела су одређиване и 

оптималне вредности константи изравнавања. У процедурама је такође дефинисан и 

начин израчунавања вишекорачних предикција. 

 Модели су развијени за хоризонте предикције од 1 - 20 h унапред. Како се даље у 

студији наводи, за сваку процедуру и хоризонт предикције извршен је избор 

оптималних вредности константи изравнавања. За краће хоризонте предикције добијене 

су више вредности ових константи, док је са повећањем хоризонта предикција опадала 

њихова вредност. На крају се закључује да су за већину предиктивних хоризоната 

најбољи резултати (у виду минималне грешке предикције) добијени са процедуром са 

скалирајућим фактором профила код које се најпре врши ажурирање профила, потом 

фактора профила и коначно нивоа. За израду друге групе модела коришћени су исти 

подаци и методе као и у [Madsen, 1985] тако да у овом делу нема никакве додатне 

анализе и доприноса. 

 У [Søgaard, 1993] приказани су резултати добијени даљим радом на овим моделима и 

њиховом унапређењу, што се посебно односи на моделе експоненцијалног 

изравнавања. Слично као и у студији [Madsen et al., 1990], и у овој дисертацији се 

разматрају две групе модела: статистички (емпиријски) и линеарни стохастички 

континуирани модели. 

 Од статистичких метода коришћени су методи експоненцијалног изравнавања и 

ARIMA модел. У дисертацији су приказани исти модели са експоненцијалним 

изравнавањем као и у [Madsen et al., 1990], па пошто су коришћени и исти подаци за 

естимацију параметара модела приказани резултати у великој мери представљају 

рекапитулацију онога што је већ презентирано у тој студији. Разлика је  у томе што су 

добијени предиктивни резултати модела експоненцијалног изравнавања упоређени са 
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резултатима четири проста модела случајног хода (eng. random walk) у односу на које 

су увек имали боље резултате. У дисертацији је такође приказан и један ARIMA, 

прецизније IMA (eng. Integrated Moving Average) модел изведен из модела 

експоненцијалног изравнавања. Додатно, предложено је формирање модела који би се 

засновао на комбиновању различитих субмодела експоненцијалног изравнавања уз 

одговарајуће пондерисање предикција сваког од конституентних субмодела. За on-line 

ажурирање тежина предложен је рекурзивни алгоритам најмањих квадрата са фактором 

заборављања. У закључку дела дисертације у коме се разматрају статистички 

предиктивни модели спољне температуре наводи се да за краће хоризонте предикције 

(од 1 до 9 h унапред) боље предиктивне резултате дају традиционални ARIMA модели. 

За дуже хоризонте предикције, применом адаптивних модела заснованих на 

комбиновању различитих модела експоненцијалног изравнавања добијени су бољи 

резултати. Поред статистичких модела развијена су и четири линеарна стохастичка 

континуирана модела. Параметризација ових модела извршена је кроз физички 

интерпретабилне параметре. Предиктивне перформансе тестиране су кроз једнокорачну 

предикцију при чему су добијени резултати који су у сагласности са резултатима из  

[Madsen, 1985]. Упоређeње је било могуће будући да су за израду и тестирање модела 

коришћени исти сетови података. Чињеница да ови модели захтевају поред 

температуре и опсервације других климатских величина, у великој мери ограничава 

њихову применљивост у реалним системима, попут СДГ. Додатно, у дисертацији нема 

назнака или конкретних резултата предикције са овим моделима за дуже хоризонте 

предикције. 

 Иако су модели експоненцијалног изравнавања додатно унапређени последњих 

година [Hyndman et al., 2002; 2008; De Livera et al., 2011] у новијим истраживањима за 

предикцију спољне температуре углавном су коришћене методе машинског учења: 

попут неуронских мрежа и регресије базиране на потпорним векторима. У наставку су 

приказани резултати неких од ових истраживања.  

 Велики број радова, у којима се разматра предикција спољне температуре применом 

метода машинског учења, настао је на University of Georgia током претходних 

двадесетак година. Ова група радова је од посебне важности јер је могуће хронолошки 

пратити начин унапређења модела. За израду и валидацију модела коришћени су 

подаци са Мреже за аутоматски мониторинг животне средине (eng. Georgia Automated 

Environmental Monitoring Network), која је успостављена 1991 године, и која тренутно 
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покрива више од 80 метеоролошких станица које су распоређене дуж Џoрџије у 

Америци [Hoogenboom, 2000]. Одређени подаци су расположиви на [GeorgiaWeather]. 

У свакој од ових станица врши се континуални мониторинг и аквизиција следећих 

климатских величина: спољне температуре, релативне влажности, ваздушног притиска, 

правца и брзине ветра, ирадијансе и падавина, са временском резолуцијом од 1s. За 

анализу и израду модела коришћене су осредњене вредности ових величина на 1h. 

 У првим радовима [Jain, 2003; Jain et al., 2003] неуронскe мрежe су коришћене за 

израду предиктивних модела. Креирана је само једна мрежа и као улаз су коришћене 

временски померене (за 6 сати) опсервације спољне температуре, влажности, брзине 

ветра и ирадијансе. Број тренинг парова у овој студији је био ограничен на 32.000 

опсервација (ограничење софтвера). Такође је испитиван утицај појединих улаза на 

предиктивне перформансе модела.  

 Унапређење овог модела дато је у [Smith et al., 2005; 2006]. Радови су доста слични, 

па се због тога њихови резултати у наставку приказују интегрално. У овом радовима се 

разматра могућност побољшања, модела развијених у [Jain, 2003; Jain et al., 2003] кроз 

промену архитектуре мреже и повећање величине тренинг сета и броја временски 

померених улаза. Утврђује се да повећање величине тренинг сета није допринело 

смањењу грешке предикције. Са друге стране, пошто се у раду разматрају подаци у 

току целе године, увођење сезонских променљивих у виду фази променљивих 

допринело је побољшању предиктивних перформанси модела. Такође, слична 

побољшања су добијена увећањем временског помака са 6 на 24 h за улазне 

променљиве (eng. lagged values). Показано је да се за изабрани тип мреже најбољи 

резултати добијају уколико је број неурона унутар слоја ограничен на 30. Коначно, 

закључује се да се даља побољшања могу добити кроз ограничавање величине улазног 

вектора и увођење ансамбла мрежа које би прерачунавале предикције симултано.    

 Слично као и у [Jain et al., 2003] у раду [Smith et al., 2009] развијене су неуронске 

мреже за предикцију 1 – 12h унапред. За израду и тестирање модела је коришћен исти 

сет полазних променљивих као и у [Jain et al., 2003] стим што je био укључен и 

параметар везан за падавине као и вредности климатских променљивих са временским 

помаком од 2, 4, 6, 12, 18, 24, 30, 36 и 48 h. Исти временски помак је коришћен за све 

променљиве. Укључивањем члана који се односи на падавине побољшани су резултати 

предикције. Супротно очекивањима, применом ансамбл техника редне и паралелне 
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агрегације добијена су незнатна побољшања, уз знатно увећање времена извршавања 

програмског кода. Такође, уочено је да појаве непредвиђених ваздушних фронтова у 

великој мери погоршавају предиктивне резултате. Ова опсервација се подудара са 

закључцима из [Madsen, 1985; Madsen et al., 1990]. У раду није испитивана могућност 

увођења улаза различитих резолуција већ су све величине увођене са истим временским 

помаком, што је резултирало моделом са 258 улаза. 

 Коначно унапређење претходних модела дато је у [Venkadesh et al., 2013]. У раду се 

најпре указује на негативне ефекте укључивања превеликог броја улазних 

променљивих, попут повећања рачунских захтева и смањења предиктивних 

перформанси модела. У том контексту се цитира рад [Tahai et al., 1998] у коме је 

детаљно анализиран утицај улазних променљивих са шумом на умањење 

генерализационих својстава модела на бази неуронских мрежа. Такође, у раду се 

указује на потребу укључивања полазних променљивих са различитим резолуцијама 

узорковања. Циљ студије је био да се испита могућност унапређења већ развијених 

модела кроз увођење додатних улазних променљивих са различитим резолуцијама 

узорковања и накнадну оптимизацију њиховог броја применом еволутивних 

алгоритама. За израду и тестирање модела коришћен је исти сет података као и у [Smith 

et al., 2009] како би се упоредили добији резултати. Са наведеним унапређењем 

добијени су делимично бољи резултати, при чему је процентулано побољшање у осегу 

од 0.3 – 4.59% за хоризонте предикције од 1 -12 h унапред. Најбољи резултати су 

добијени за предикцију 4 h унапред. Иако су предиктивни резулати бољи у односу на 

уобичајени приступ, у реализацији се јављају велики проблеми јер су генетски 

алгоритми компјутерски захтевни.  

 Предикција спољне температуре се такође разматра у раду [Abdel-Aal, 2004]. У овом 

раду се за предикцију користе модели засновани на абдуктивним неуронским мрежама 

које, како се у раду наводи, омогућавају аутоматско креирање модела који обухватају 

све аспекте комплексних и нелинеарних система. Процес је адитиван, при чему се 

полази од једноставних полиномних једначина које се кроз низ итерација усложњавају 

све до тренутка док се не добије репрезентација која на најбољи начин одсликава 

динамику разматраног процеса. Предикција је рађена за хоризонт од 1 – 24 h унапред, 

при чему је за сваки хоризонт предикције развијен посебан модел. Као улаз су 

коришћене температуре са временским помаком  од 1 – 24 h уназад (у односу на 

тренутну опсервацију), минималне и максималне температуре претходног дана као и 
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прогнозиране минималне и максималне температуре за наредни дан. Испитиване су две 

групе модела; једна без и друга са прогнозираним вредностима минималне и 

максималне температуре један дан унапред. У закључку се наводи да се применом 

абдуктивних неуронских мрежа могу добити резултати у сагласности са резултатима 

добијених применом знатно сложенијих модела на бази неуронских мрежа. Међутим, 

нема конкретног навођења радова у којима су исти подаци коришћени за тренирање 

неких других типова неуронских мрежа.  

 У раду [Dombaycı et al., 2009] трослојна неуронска мрежа са директним 

простирањем сигнала коришћена је за предвиђање средње дневне температуре у 

Денизлију у Турској. Као улаз су коришћене средње вредности спољне температуре 

претходног дана као и подаци о месецу у години и дану у месецу. Levenberg–Marquardt-

ов алгоритам је искоришћен за обучавање мреже. У току истраживања вариран је број 

неурона у скривеном слоју од 3 -30, при чему су праћене предиктивне перформансе 

модела. Најбољи предиктивни резултати су добијени са мрежом од 6 неурона, што 

одговара тврдњама из литературе [Mihalakakou et al., 1998] да повећање броја 

скривених неурона не доводи нужно до побољшања предиктивних перформанси.  

 Осим неуронских мрежа у литератури се разматра и примена методе потпорних 

вектора за предикцију спољне температуре. Подаци из радова [Smith et al., 2009; 

Venkadesh et al., 2013] искоришћени су у раду [Chevalier et al., 2011] за израду 

предиктивних модела применом методе потпорних вектора. У раду је коришћен кернел 

са радијално базисним функцијама. Развијанe су две групе модела; једна за 

целогодишње податке и друга која се односила само на податке из зимског периода. 

Изабран је предиктивни хоризонт од 1-12 h. Резултати предикције су упоређени са 

претходним резултатима добијеним применом неуронских мрежа. За тест сет података 

код целогодишњих модела, за већину предиктивних хоризоната, добијени су лошији 

резултати применом методе потпорних вектора него применом неуронских мрежа. Са 

друге стране, за податке из зимског периода резултати добијени применом методе 

потпорних вектора су били бољи за све хоризонте предикције. У раду се даље наводи 

да постоји могућност добијања бољих резултата применом других кернела али то није 

био предмет истраживања у овом раду. 

 Коначно, у [Ortiz-García et al., 2012] се указује на потребу укључивања различитих 

синоптичких ситуација за објашњење епизода екстремних температура, које су 
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најчешћи узрок појаве значајних одступања измерених и прогнозираних вредности 

спољне температуре [Madsen et al., 1990]. Такође, наводи се да различите групе 

синоптичке ситуације могу дати сличне промене спољне температуре. Због тога је, 

користећи Hess-Brezowsky класификацију [Kysely et al., 2006] извршена подела 

синоптичких ситуација у четири групе: зоналну, мешовиту, меридионалну и прелазну 

циркулацију (eng. zonal, mixed, meridonal and transition circulation). Након тога су 

формирани посебни модели за сваку од побројаних синоптичких група, који као улазе 

користе расположиве метеоролошке податке (тренутну спољну температуру,  

релативну влажност, падавине, притисак, глобално зрачење, брзину и правац ветра). 

Расположиви подаци, са интервалом узорковања од 10 min, су најпре осредњени на 

часовне вредности, а потом су формирани модели са хоризонтима предикције од 1 до 6 

h.  Паралелно са овим моделима развијени су и модели користећи машине за екстрeмно 

учење (eng. extreme learning machines ELM) као и моделе са банкама машина за 

екстремно учење (eng. ELM banks). Добијени резултати су упоређени статистичким 

тестирањем, при ћему су најбољи резултати, за све хоризонте предикције, добијени 

применом модела са банкама машина потпорних вектора (eng. SVM banks). 

 Из претходног литературног прегледа потврђује се констатација са почетка 

разматрања да се методе статистичког учења могу користити за израду предиктивних 

модела за краткорочне прогнозе спољне температуре, под условом да нема појаве 

непредвиђених ваздушних фронтова. Због тога се у наставку разматра искључиво ова 

група модела, при чему су за њихову израду коришћене исте методе као и за израду 

модела топлотног оптерећења. Овај избор је у сагласности са литературним 

резултатима. 

5.7.1.2 Анализа временских серија спољне температуре 

Пре израде предиктивних модела спољне температуре, извршена је анализа њене 

варијабилности. Варијабилност климатских променљивих резултат је комплексних 

процеса који се одвијају у природи и за чије описивање још увек не постоје егзактни 

детерминистички модели. Међутим, познато је да спољна температура испољава два 

вида варијабилности: дневну и годишњу (сезонску). За добијање адекватних 

предиктивних модела потребно је на одговарајући начин инкорпорирати у моделе ове 

две врсте варијабилности. Будући да се у овом раду разматрају модели који обухватају 
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само део године у коме има грејања, у моделе није потребно инкорпорирати годишњу 

варијабилност.  

 Додатна карактеристика климатских величина је персистенција (eng. persistence) 

[Madsen, 1985] којa се најбоље може илустровати кроз аутокорелациону функцију. 

Аутокорелациона функција пружа информацију о величини корелације између 

тренутне и претходних опсервација па самим тим указује на величину меморије 

разматраног динамичког система [Box et al., 2011]. Аутокорелациона функција спољне 

температуре за податке из нишке и новосадске топлане дата је на Слици 5.23. 
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Слика 5.23 Приказ аутокорелационе функције за спољну температуру, подаци из 

нишког СДГ 
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Слика 5.24 Приказ аутокорелационе функције за спољну температуру, подаци из 

новосадског СДГ 
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 Персистенција климатских променљивих а нарочито спољне температуре уочљива је 

кроз велику корелацију између временски суседних опсервација. У литератури постоји 

више потврда за ову појаву [Gringorten, 1996; Arvastson, 2001]. Поред персистенције са 

слика се јасно може идентификовати дневна варијабилност, изражена пиковима на 

свака 24h. Такође, може се уочити да се аутокорелациона функција тек после великог 

броја помака (eng. lags) приближава нивоу статистичке значајности (који је на сликама 

обележен црвеном бојом). Ова појава указује на нестационарност посматране 

временске серије [Montgomery et al., 2015]. 

 Због персистенције, у анализу временских серија спољне температуре пожељно је 

укључити и парцијалну аутокорелациону функцију. Парцијална аутокорелациона 

функција се користи за приказивање корелација између различитих опсервација за 

различите временске помаке  [Box et al., 2011]. 
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Слика 5.25 Приказ парцијалне аутокорелационе функције за спољну температуру, 

подаци из нишког СДГ 
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Слика 5.26 Приказ парцијалне аутокорелационе функције за спољну температуру, 

подаци из новосадског СДГ 

 Са графика се може уочити да за одређене помаке постоје значајна одступања у 

односу на ниво значајности који је обележен црвеним линијама. “Пикови“ се код 

временске серије температуре из нишког СДГ јављају за помаке 1, 2, 5, 17, 23 и 48 при 

чему су одступања слична и за новосадски СДГ где се јављају за помаке 1, 2, 6, 18, 25 и 

48. Такође, одступања се јављају и за помаке који се налазе у близини „пикова“. Ову 

опсервацију је пожељно узети у разматрање при избору улазних величина 

предиктивног модела спољне температуре јер се кроз увођење вредности са 

временским помаком/заостајањем (eng. lag) може изврши адекватна параметризација 

меморије посматраног динамичког система. 

5.7.1.3 Израда предиктивних модела спољне температуре 

Код израде предиктивних модела спољне температуре било је потребно на почетку 

дефинисати улазне променљиве. Из прегледа литературе, који је дат у поглављу 5.7.1.1, 

утврђено је да се за израду предиктивних модела користе следеће врсте улаза: 

 ендогени улази (улази засновани на самој серији спољне температуре – улази 

са временским кашњењем, минимуми, максимуми и средње вредности из 

претходног периода), 

 егзогени улази (метеоролошке величине – ирадијанса, брзина и правац ветра, 

облачност, падавине, влажност, ваздушни притисак) и 
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 комбинација ендогених и егзогених улаза. 

 Резултати из литературе потврђују интуитивни закључак да се комбинацијом 

егзогених и ендогених улаза добијају најбоље предикције, наравно уколико се не 

разматрају нумеричке, синоптичке прогнозе које су најпрецизније. Међутим, 

аутоматско узорковање свих релевантних метеоролошких величина за сваку од 

топлотних подстаница је непрактично и превише скупо, па је било потребно развити 

моделе који би се базирали на доступним подацима, а то су модели са ендогеним 

улазима. У наставку је разматрање ограничено на ову врсту модела. 

Поред избора улазних променљивих модела, било је важно на почетку дефинисати 

хоризонт предикције. Он треба да буде у сагласности са хоризонтом предикције 

топлотног оптерећења. Будући да су у овој дисертацији развијани предиктивни модели 

за хоризонте од 1, 2, 3, 4, 5, 8, 12 и 24 h унапред, модели спољне температуре су 

развијани за исте хоризонте предикције. 

За израду модела коришћени су подаци из подстаница нишког и новосадског СДГ. 

Основне информације о овим серијама дате су у поглављу 5.2. Укупан сет података се 

састојао од 3.180 односно 3.517 опсервација за нишки, односно новосадски СДГ. Две 

трећине података коришћено је за израду модела, док је задња трећина (хронолошки) 

искоришћена за њихово тестирање. Примењена је унакрсна валидација, на исти начин 

као и код израде предиктивних модела топлотног оптерећења. Модели су креирани 

коришћењем истих метода као и за израду топлотног оптерећења. Овакав приступ је у 

сагласности са резултатима из литературе. За упоређење перформанси добијених 

модела коришћен je корен средње квадратне грешке (eng. RMSE).  

Најпре су разматрани ауторегресиони модели, који за улазе имају вредности спољне 

температуре са кашњењем. У наставку је дат упоредни приказ ових модела за податке 

из нишког и новосадског СДГ.  

Избор улазних променљивих извршен је у сагласности са графиком парцијалне 

аутокорелационе функције (Слика 5.25 и 5.26). Са ових графика може се уочити да је је 

последњи временски помак који излази из опсега статистичке значајности на 48 h и за 

податке из нишког СДГ и за податке из новосадског СДГ. Због тога су први 

предиктивни модели креирани са улазима спољне температуре са кашњењем од 1 до 48 
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h за оба СДГ. Резултати предикције за овај сет улазних променљивих приказани су у 

Табели 5.15. 

Табела 5.15 Предиктивне перформансе BRNN, SVR и Boosting модела спољне 

температуре за нишки и новосадски СДГ, улазне променљиве - спољна температура са 

временским кашњењем од 1 – 48h 

Хоризонт 
предикције 

Предиктивне перформансе: метод – SVR 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

1h унапред 1.647 0.858 1.911 1.309 

2h унапред 1.872 1.171 2.268 1.570 

3h унапред 2.107 1.480            2.624 1.830 

4h унапред 2.350 1.767 2.928 2.082 

5h унапред 2.540 1.986 3.233 2.290 

8h унапред 3.087 2.474 3.832 2.690 

12h унапред 3.571 2.799 4.354 2.940 

24h унапред 4.676 3.579 5.394 3.158 

Хоризонт 
предикције 

Предиктивне перформансе: метод – BRNN 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C]  

тест сет 

1h унапред 0.377 0.404 0.684 0.606 

2h унапред 0.711 0.756 1.147 1.045 

3h унапред 1.045 1.064            1.510 1.360 

4h унапред 1.335 1.350 1.851 1.639 

5h унапред 1.616 1.563 2.129 1.842 

8h унапред 2.24 2.138 2.776 2.254 

12h унапред 2.759 2.473 3.358 2.562 

24h унапред 3.545 3.098 4.521 2.976 

Хоризонт Предиктивне перформансе: метод – Boosting 
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предикције Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C]  

тест сет 

RMSE [0C]  

тренинг сет 

RMSE [0C] 

тест сет 

1h унапред 0.496 0.550 0.692 0.731 

2h унапред 0.907 0.980 1.065 1.222 

3h унапред 1.266 1.337            1.58 1.602 

4h унапред 1.577 1.634 1.927 1.888 

5h унапред 1.838 1.872 2.224 2.105 

8h унапред 2.363 2.341 2.869 2.448 

12h унапред 2.727 2.614 3.425 2.613 

24h унапред 3.312 3.016 4.353 2.717 

 

Пре анализе резултата из Табеле 5.15 треба напоменути да је за израду регресионих 

модела заснованих на методи потпорних вектора коришћен само радијално базисни 

кернел. Постоји више потврда из литературе да се применом овог кернела могу добити 

добри резултати код решавања регресионих проблема [Ortiz-García et al., 2012; Protić et 

al. 2015a,2015b]. Додатно за израду модела заснованих на неуронским мрежама са 

бајесовском регуларизацијом, коришћена је мрежа sa два скривена неурона. Код 

boosting метода коришћени су генералисани линеарни модели.  

У табели су најбољи резултати, за одређени предиктивни хоризонт, приказани 

задебљано. Прегледнији приказ резултата предикције, за тест сет података, за нишки и 

новосадски СДГ дат је на Сликама 5.27 и 5.28. 
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Слика 5.27 Упоредни приказ резултата предикције, нишки СДГ, улазне променљиве - 

спољна температура са временским кашњењем од 1 – 48h 

 

Слика 5.28 Упоредни приказ резултата предикције, новосадски СДГ, улазне 

променљиве - спољна температура са временским кашњењем од 1 – 48h 

Са графика и из табеле се најпре може уочити да са повећањем хоризонта 

предикције расте грешка, што је било и очекивано. Такође, приметно је да је грешка 

предикције за тренинг сет готово увек већа у односу на тест сет. То својство је 

последица великог броја тестирања у фази валидације, при чему се грешка приказује 

као средња вредност свих тестирања. Најбољи резултати предикције добијени су 

применом неуронских мрежа са бајесовском регуларизацијом, готово за све хоризонте 

предикције, осим за хоризонт од 24h унапред за податке из нишког СДГ односно за 12 

и 24h за податке из новосадског СДГ.  
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 У наставку је анализирана могућност унапређења ових модела кроз увођење 

додатних улазних величина. У постојећи сет улазних променљивих (спољна 

температура са временским кашњењем од 1 – 48h)  увршћене су минималне и 

максималне температуре из претходног дана. Ове променљиве су креиране тако да од 

00:00 часова узимају вредност минимума односно максимума из претходног дана за све 

сате током текућег дана до 24:00 часова. Испитивање је урађено за хоризонт предикције 

од 12 и 24h, где је очекивана грешка предикције највећа. Резултати добијени на овај 

начин су приказани у Табели 5.16. 

Табела 5.16 Предиктивне перформансе SVR, BRNN и Boosting модела спољне 

температуре за нишки и новосадски СДГ, улазне променљиве - спољна температура са 

временским кашњењем од 1 – 48h и две променљиве са вредностима минималне и 

максималне температуре из претходног дана 

Хоризонт 
предикције 

Предиктивне перформансе: метод – SVR 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C]  

тренинг сет 

RMSE [0C] 

тест сет 

12h унапред 3.279 2.798 4.069 2.916 

24h унапред 4.331 3.341 4.379 2.946 

Хоризонт 
предикције 

Предиктивне перформансе: метод – BRNN 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

12h унапред 2.694 2.487 3.275 2.578 

24h унапред 3.213 3.162 3.532 2.824 

Хоризонт 
предикције 

Предиктивне перформансе: метод – Boosting 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

12h унапред 2.751 2.619 3.397 2.724 

24h унапред 3.236 3.124 3.669 2.795 
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 Увођењем минималне и максималне температуре нису остварена побољшања. То се 

може утврдити упоређивањем добијених резултата са резултатима из Табеле 5.15.  

 Даље је испитано да ли смањење броја улазних променљивих утиче на побољшање 

предиктивних перформанси модела. Како је већ речено да спољна температура има 

изражену дневну варијацију, број улазних променљивих је у овом случају био 

ограничен на 24 (временски помак од 1 -24h уназад).  Резултати предикције добијени са 

овим улазним променљивама приказани су у Табели 5.17. 

Табела 5.17 Предиктивне перформансе BRNN, SVR и Boosting модела спољне 

температуре за нишки и новосадски СДГ, улазне променљиве - спољна температура са 

временским кашњењем од 1 – 24h 

Хоризонт 
предикције 

Предиктивне перформансе: метод – SVR 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

1h унапред 1.374 0.692 1.701 1.248 

2h унапред 1.652 0.995 1.936 1.526 

3h унапред 1.942 1.332 2.209 1.815 

4h унапред 2.220 1.641 2.498 2.050 

5h унапред 2.390 1.880 2.774 2.171 

8h унапред 2.720 2.433 3.367 2.490 

12h унапред 3.062 2.853 3.853 2.731 

24h унапред 4.080 3.618 5.040 3.072 

Хоризонт 
предикције 

Предиктивне перформансе: метод – BRNN 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

1h унапред 0.379 0.410 0.664 0.607 

2h унапред 0.729 0.774 1.134 1.040 

3h унапред 1.066 1.107 1.590 1.363 

4h унапред 1.382 1.406 1.882 1.642 
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5h унапред 1.612 1.636 2.214 1.839 

8h унапред 2.178 2.241 2.770 2.346 

12h унапред 2.700 2.582 3.350 2.582 

24h унапред 3.583 3.098 4.663 2.915 

Хоризонт 
предикције 

Предиктивне перформансе: метод – Boosting 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

1h унапред 0.519 0.557 0.714 0.752 

2h унапред 0.969 1.007 1.236 1.285 

3h унапред 1.354 1.385 1.659 1.684 

4h унапред 1.666 1.682 2.006 1.968 

5h унапред 1.874 1.914 2.145 2.173 

8h унапред 2.361 2.346 3.003 2.477 

12h унапред 2.773 2.605 3.417 2.624 

24h унапред 3.449 2.974 4.284 2.722 

  

Најбоље добијене вредности су приказане у табели задебљано. Такође, због лакшег 

прегледа, упоредни приказ резултата је дат на Сликама 5.29 и 5.30. 

 

Слика 5.29 Упоредни приказ резултата предикције, нишки СДГ, улазне променљиве - 

спољна температура са временским кашњењем од 1 – 24h 
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Слика 5.30 Упоредни приказ резултата предикције, новосадски СДГ, улазне 

променљиве - спољна температура са временским кашњењем од 1 – 24h 

 Слично као и за случај када су као улазне променљиве коришћене спољне 

температуре са кашњењем од 1 – 48h најбољи предиктивни резултати, за податке из 

нишког и новосадског СДГ, су добијени код модела са неуронским мрежама. Изузетак 

је само у случају када је хоризонт предикције био 24h. У том случају су бољи резултати 

добијени boosting методом. 

 Накнадно је анализирано да ли се увођењем минималне и максималне температуре 

из претходног дана, у редукован сет улазних променљивих могу добити побољшања. 

Резултати добијени увођењем ове две променљиве у иницијални сет улазних 

променљивих, приказани су у Табели 5.18. 

Табела 5.18 Предиктивне перформансе SVR, BRNN и Boosting модела спољне 

температуре за нишки и новосадски СДГ, улазне променљиве - спољна температура са 

временским кашњењем од 1 – 24h и две променљиве са вредностима минималне и 

максималне температуре из претходног дана 

Хоризонт 
предикције 

Предиктивне перформансе: метод – SVR 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

12h унапред 3.032 2.775 3.735 2.742 
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24h унапред 3.82 3.252 4.233 2.939 

Хоризонт 
предикције 

Предиктивне перформансе: метод – BRNN 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

12h унапред 2.656 2.653 3.197 2.596 

24h унапред 3.251 3.014 3.364 2.699 

Хоризонт 
предикције 

Предиктивне перформансе: метод – Boosting 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

12h унапред 2.808 2.603 3.392 2.546 

24h унапред 3.317 3.132 3.668 2.813 

 

 Упоређивањем добијених резултата са резултатима из Табеле 5.17 може се 

закључити да нема побољшања у добијеним резултатима.  

 У наставку су испитане предиктивне перформансе модела код којих је улазни сет 

променљивих (величина корака кашњења) одређен на основу парцијалне 

аутокорелационе функције (Слике 5.25 и 5.26). Са ових графика се може уочити да се за 

сет података из нишког СДГ издвајају пикови на помацима - 1, - 2, - 5, - 17, - 23 и - 48  

односно - 1, - 2, - 6, - 18, - 25 и - 48 за новосадски  СДГ. Управо су ова кашњења 

искоришћена за формирање сета улазних променљивих. Резултати предикције су 

приказани у Табели 5.19. 

Табела 5.19 Предиктивне перформансе BRNN, SVR и Boosting модела спољне 

температуре за нишки и новосадски СДГ, улазне променљиве - спољна температура са 

временским кашњењем на основу парцијалне аутокорелационе функције 

Хоризонт 
предикције 

Предиктивне перформансе: метод – SVR 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

1h унапред 1.370 0.675 1.684 1.041 
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2h унапред 1.585 1.021 1.975 1.408 

3h унапред 1.843 1.428 2.275 1.683 

4h унапред 2.106 1.774 2.560 1.902 

5h унапред 2.277 2.025 2.808 2.081 

8h унапред 2.674 2.496 3.441 2.560 

12h унапред 3.161 3.069 4.166 3.353 

24h унапред 4.414 3.538 4.915 3.177 

Хоризонт 
предикције 

Предиктивне перформансе: метод – BRNN 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

1h унапред 0.382 0.418 0.645 0.620 

2h унапред 0.753 0.803 1.137 1.114 

3h унапред 1.149 1.137 1.544 1.492 

4h унапред 1.429 1.469 1.877 1.725 

5h унапред 1.697 1.703 2.161 1.867 

8h унапред 2.358 2.277 2.811 2.305 

12h унапред 2.773 2.841 3.76 3.127 

24h унапред 3.478 3.073 4.722 2.819 

Хоризонт 
предикције 

Предиктивне перформансе: метод – Boosting 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

1h унапред 0.507 0.563 0.694 0.774 

2h унапред 0.944 1.016 1.189 1.328 

3h унапред 1.322 1.402 1.591 1.722 

4h унапред 1.633 1.716 1.93 1.984 

5h унапред 1.883 1.961 2.222 2.150 

8h унапред 2.379 2.406 2.912 2.548 

12h унапред 2.809 2.866 3.573 3.199 
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24h унапред 3.347 3.022 4.352 2.709 

 

Упоредни приказ добијених резултата дат је на Сликама 5.31 и 5.32. 

 

Слика 5.31 Упоредни приказ резултата предикције, нишки СДГ, улазне променљиве - 

спољна температура са временским кашњењем према парцијалној аутокорелационој 

функцији 

 

Слика 5.32 Упоредни приказ резултата предикције, новосадски СДГ, улазне 

променљиве - спољна температура са временским кашњењем према парцијалној 

аутокорелационој функцији 

 Слично као и у претходним случајевима најбољи резултати предикције добијени су 

применом модела заснованих на вештачким неуронским мрежама са бајесовском 
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регуларизацијом, за све предиктивне хоризонте изузев за 24h унапред где су најбољи 

резултати добијени применом boosting метода. 

 Како би се створио најбољи увид у предиктивне перформансе различитих BRNN у 

Табели 5.20 је дат упоредни приказ резултата предикције, за тест сет података из 

нишког и новосадског СДГ, за различите облике улазног сета променљивих.  

Tабела 5.20 Предиктивне перформансе BRNN модела спољне температуре за 

различите сетове улазних променљивих4 

Хоризонт 
предикције 

Предиктивне перформансе - RMSE [0C], тест сет 

Подаци - нишки СДГ Подаци - новосадски СДГ  

1 - 48h 1 - 24h PACF 1 - 48h 1 - 24h PACF 

1h унапред 0.404 0.410 0.418 0.606 0.607 0.620 

2h унапред 0.756 0.774 0.803 1.045 1.040 1.114 

3h унапред 1.064 1.107 1.137 1.360 1.363 1.492 

4h унапред 1.350 1.406 1.469 1.639 1.642 1.725 

5h унапред 1.563 1.636 1.703 1.842 1.839 1.867 

8h унапред 2.138 2.241 2.277 2.254 2.346 2.305 

12h унапред 2.473 2.582 2.841 2.562 2.582 3.127 

24h унапред 3.016 2.974 3.022 2.717 2.722 2.709 

 

 Из табеле се јасно уочава да су најбољи резултати предикције, и за податке из 

нишког и новосадског СДГ, добијени за случај када су као улазне променљиве 

коришћене вредности спољне температуре са кашњењем од 1 - 48h.  

 Коначно је тестирана могућност финалног унапређења BRNN модела кроз 

подешавање (eng. tuning) параметара модела. У случају BRNN модела то се односи на 

број неурона. У Табели 5.21 приказани су резултати предикције за хоризонт предикције 

од 8h унапред за податке из нишког и новосадског СДГ за случај када је вариран број 

скривених неурона од 2 до 5. Такође, треба напоменути да су претходно приказани 

резултати добијени са неуронским мрежама са 2 скривена неурона. 

                                           
4 48h се односи на случај са низом од 48 сукцесивних претходних вредности спољне температуре, 24h на низ од 24 
претходне температуре, док се ознака PACF односи на случај где су улазне променљиве изабране у складу са 
парцијалном аутокорелационом функцијом. 
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Табела 5.21 Предиктивне перформансе BRNN модела спољне температуре за нишки и 

новосадски СДГ, улазне променљиве - спољна температура са временским кашњењем 

од 1 – 48h и променљиви број неурона 

Број 
скривених 

неурона 

Предиктивне перформансе: метод – BRNN, хоризонт предикције 8h 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

RMSE [0C] 

тренинг сет 

RMSE [0C] 

тест сет 

2 неурона 2.240 2.138 2.776 2.254 

3 неурона 2.633 2.326 3.043 2.369 

4 неурона 2.830 2.352 3.380 2.392 

5 неурона 2.990 2.380 3.724 2.355 

 

 Из добијених података може се закључити да се са повећањем броја скривених 

неурона нису добила никаква побољшања док је време извршавања програмског кода 

драстично повећано. 

 Разматрање о предиктивним моделима спољне температуре може се закључити 

констатацијом да су за расположиви сет података најбољи предиктивни резултати 

добијени применом вештачких неуронских мрежа са бајесовском регуларизацијом. Ова 

констатација важи за све испитиване хоризонте предикције, и то за сет података и из 

нишког и из новосадског СДГ, изузев за хоризонт од 24h, где су најбољи резултати 

предикције добијени применом boosting метода. У наставку су приказани резултати 

унапређења предиктивних модела топлотног оптерећења кроз увођење излаза из 

предиктивних модела спољне температуре, за одговарајуће хоризонте предикције. 

5.7.1.4 Резултати добијени унапређењем предиктивних модела топлотног 

оптерећења кроз увођење прогнозираних вредности спољне температуре 

У овом одељку се разматра могућност унапређења предиктивних модела топлотно 

оптерећења приказаних у поглављу 5.6 кроз увођење прогнозираних вредности спољне 

температуре. Серије прогнозираних вредности спољне температуре су добијене из 

предиктивних модела који су описани у претходном поглављу. Улазном сету 

променљивих за најбоље предиктивне моделе топлотног оптерећења, развијеним у 

поглављу 5.6, придружена је још једна променљива са прогнозираним вредностима 
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спољне температуре за хоризонт за који је модел креиран. Добијени резултати су 

приказани у Табели 5.22. 

Табела 5.22 Предиктивне перформансе модела топлотног оптерећења за нишки и 

новосадски СДГ са прогнозираним вредностима спољне температуре као додатним 

регресорима 

Хоризонт 
предикције 

Предиктивне перформансе: метод SVR; улазне променљиве: топлотно 
оптерећење - нишки СДГ(помак 1 -24h), новосадски СДГ (помак 1 -48h); 

спољна температура - нишки СДГ(помак 1 -2h), новосадски СДГ (помак 1 
-24h) и прогнозиране вредности спољне температуре 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 22.964 18.301 22.665 16.416 

2h унапред 27.371 21.381 24.994 17.839 

3h унапред 28.865 22.290 25.967 18.143 

4h унапред 30.221 22.752 26.715 18.357 

5h унапред 30.458 22.909 27.209 18.499 

8h унапред 30.391 23.296 28.544 18.967 

12h унапред 31.919 25.007 30.111 19.277 

24h унапред 33.785 26.031 33.227 19.966 

 

 Резултати су такође приказани на дијаграмима растурања (eng. scatter plot) (Слике 

5.33 и 5.34) на којима је дато упоређење осмотрених и прогнозираних вредности 

топлотног оптерећења за хоризонт предикције од 8h унапред, за тест сет података из 

нишког и новосадског СДГ. 
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Слика 5.33 Дијаграм растурања за предикцију топлотног оптерећења, хоризонт 

предикције 8h, подаци - нишки СДГ 

 

 

Слика 5.34 Дијаграм растурања за предикцију топлотног оптерећења, хоризонт 

предикције 8h, подаци - новосадски СДГ 

 Упоређивањем ових падатака са подацима из Табеле 5.14 уочава се да су увођењем 

прогнозираних вредности спољне температуре предиктивне перформансе значајно 

побољшане. Добијени резултати су у сагласности са опсервацијом са почетка 

разматрања да је спољна температура најутицајнија климатска променљива на рад  
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СДГ. Са повећањем поузданости прогнозираних вредности спољне температруре расте 

и тачност предикција топлотног оптерећења. 

 У наставку се анализира могућност даљег унапређења кроз увођење индикаторских 

(eng. dummy) променљивих. 

5.7.2 Резултати добијени унапређењем предиктивних модела топлотног 

оптерећења кроз увођење индикаторских величина 

Са дијаграма растурања (Слике 5.33 и 5.34) из претходног поглавља може се уочити да 

постоје одређене вредности са великим одступањем. То се пре свега односи на случај 

када су мале осмотрене вредности топлотног оптерећења (блиске или једнаке нули)  

прогнозиране великим вредностима. Ова појава је израженија код података из нишког 

СДГ, што је највероватније последица немогућности алгоритма да се брзо адаптира на 

нагле промене топлотног оптерећења које су узроковане радoм система са ноћним 

прекидима (интермитентни рад). Због тога је уведена индикаторска величина, која у 

ствари представља синтетичку, бинарну променљиву са вредностима 0 и 1. Вредност 1 

је додељена за случај рада СДГ, а 0 за случај прекида у раду СДГ. Индикаторска 

величина је придружена иницијалном сету улазних променљивих, са којима су 

добијени најбољи резултати у поглављу 5.6. Добијени резултати су приказани у Табели 

5.23. 

Табела 5.23 Предиктивне перформансе модела топлотног оптерећења за нишки и 

новосадски СДГ са индикаторском величином као додатним регресором 

Хоризонт 
предикције 

Предиктивне перформансе: метод SVR; улазне променљиве: топлотно 
оптерећење - нишки СДГ(помак 1 -24h), новосадски СДГ (помак 1 -48h); 

спољна температура - нишки СДГ(помак 1 -2h), новосадски СДГ (помак 1 
-24h) и индикаторска величина 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 18.842 16.565 22.980 16.428 

2h унапред 20.990 18.954 25.866 18.503 

3h унапред 22.173 20.206 27.780 19.795 

4h унапред 23.309 21.153 29.400 21.063 

5h унапред 24.085 21.997 30.839 22.138 
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8h унапред 25.241 23.410 35.065 24.093 

12h унапред 27.450 25.647 39.644 25.789 

24h унапред 30.951 27.487 49.029 28.642 

 

 Као што је и интуитивно било очекивано, увођењем индикаторске величине 

резултати су драстично побољшани у нишком СДГ, где је режим рада интермитентан. 

Са друге стране, код предиктивних модела из новосадског СДГ, са повећањем 

хоризонта предикције дошло је до значајног пада перформанси модела. То се може 

објаснити чињеницом да се топла вода у новосадском СДГ обезбеђује и у току ноћи, па 

увођење индикаторске величине потенцијално може да буде контрапродуктивно.  

 Коначно, тестирано је да ли се једновременим увођењем и прогнозираних вредности 

спољне температуре и индикаторске величине резултати могу додатно побољшати. Ова 

анализа је урађена само за предиктивне моделе за нишки СДГ, пошто је показано да 

увођење индикаторских величина за податке из новосадског СДГ утиче на смањење 

предиктивних перформанси модела. Добијени резултати су приказани у Табели 5.24. 

Табела 5.24 Предиктивне перформансе модела топлотног оптерећења за нишки СДГ са 

прогнозираним вредностима спољне температуре и индикаторском величином као 

додатним регресорима 

Хоризонт 
предикције 

Предиктивне перформансе: метод SVR; улазне променљиве: топлотно 
оптерећење - нишки СДГ(помак 1 -24h); спољна температура - нишки 
СДГ(помак 1 -2h), прогнозирана спољна температура и индикаторска 

величина 

Подаци - нишки СДГ 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 18.531 15.955 

2h унапред 19.867 17.502 

3h унапред 20.511 18.011 

4h унапред 20.883 18.161 

5h унапред 21.35 18.185 

8h унапред 21.368 18.354 

12h унапред 21.626 19.705 
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24h унапред 22.907 20.289 

 
 Због прегледнијег приказа, у Табели 5.25 дат је упоредни приказ свих претходно 

добијених резултата, за податке из нишког и новосадског СДГ. 

Табела 5.25 Упоредни приказ предиктивних перформанси различитих модела 

топлотног оптерећења за податке из нишког и новосадског СДГ 

Хоризонт 
предикције 

Предиктивне перформансе - RMSE [kW], тест сет 

Подаци - нишки СДГ Подаци - новосадски СДГ  

Ia
5 IIa IIIa IVa Ib IIb IIIb 

1h унапред 18.785 18.301 16.565 15.955 16.887 16.416 16.428 

2h унапред 22.714 21.381 18.954 17.502 18.929 17.839 18.503 

3h унапред 24.438 22.290 20.206 18.011 20.357 18.143 19.795 

4h унапред 25.875 22.752 21.153 18.161 21.633 18.357 21.063 

5h унапред 26.947 22.909 21.997 18.185 22.759 18.499 22.138 

8h унапред 28.537 23.296 23.410 18.354 24.980 18.967 24.093 

12h унапред 30.782 25.007 25.647 19.705 26.677 19.277 25.789 

24h унапред 33.682 26.031 27.487 20.289 29.515 19.966 28.642 

 

 Из табеле се види да су најбољи резултати добијени за следећи сет улазних 

променљивих: 

 за податке из нишког СДГ - топлотно оптерећење са помаком од 1- 24h,  спољна 

температура са помаком 1 - 2h, прогнозираним вредностима спољне температуре 

и индикаторском величином и 

                                           

5 Напомена: значење ознака – Ia - топлотно оптерећење са помаком од 1 - 24h и спољна температура са 
помаком од 1 - 2h;  IIa  -  топлотно оптерећење са помаком од 1 - 24h, спољна температура са помаком од 
1 - 2h и прогнозирана спољна температура; IIIa - топлотно оптерећење са помаком од 1 - 24h, спољна 
температура са помаком од 1 - 2h и индикаторска величина; IVa - топлотно оптерећење са помаком од 1 - 
24h, спољна температура са помаком од 1 - 2h, прогнозирана спољна температура и индикаторска 
величина; Ib - топлотно оптерећење са помаком од 1 - 48h и спољна температура са помаком од 1 - 24h; IIb 

- топлотно оптерећење са помаком од 1 - 48h, спољна температура са помаком од 1 - 2h и прогнозирана 
спољна температура IIIb - топлотно оптерећење са помаком од 1 - 48h, спољна температура са помаком од 
1 - 2h, прогнозирана спољна температура и индикаторска величина. 
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 за податке из новосадског СДГ - топлотно оптерећење са помаком од 1 - 48h, 

спољна температура са помаком 1 - 24h и прогнозираним вредностима спољне 

температуре.  

5.7.3 Коначно унапређење предиктивних перформанси модела 

У преходном излагању, на основу добијених резултата, закључено је да се најбоље 

предиктивне перформансе добијају применом методе потпорних вектора. Сви 

претходно тестирани модели, добијени применом методе потпорних вектора, заснивали 

су се на радијално базисном кернелу.  Хипер-параметар модела σ одређен је на основу 

тренинг сета података и хеуристике која је предложена у [Caputo et al., 2002]. Поред 

овог параметра, модел одређују и регуларизациони параметар C (eng. cost) и параметар 

  који дефинише величину несензитивне области. Код предиктивних модела 

приказаних у претходном поглављу усвојене су вредности за C = 1 и   = 0.1. Оба ова 

параметра је могуће подешавати али је препорука из литературе [Chang et al., 2011] да 

се фиксира вредност   а подешава вредност регуларизационог параметра C. У наставку 

је тестирано да ли се избором неких других вредности регуларизационог параметра C 

добијени резултати могу побољшати. Вредност   је остала фиксирана на  0.1. 

 Најпре је било потребно одредити вредности регуларизационог параметра са којим 

се  добијају најбољи резултати предикције за тренинг сет података. Тачност предикције 

мерена је преко квадрата средње квадратне грешке. Полазна претпоставка је била да ће 

модели са вредношћу регуларизационог параметра са којим се добијају најбољи 

резултати за тренинг сет података, дати најбоље резултате и за тест сет података. 

Тестирање је вршено методом претраге по мрежи (eng. grid search). Дискретизација 

простора параметара вршена је на логаритамској мрежи са основом 2. Тестирање је 

вршено за следеће вредности регуларизационог параметра: 0.25, 0.5, 1, 2, 4, 8, 16, 32, 

64, 128, 256, 512, 1020 и 2050 за хоризонте предикције од 1h и 24h унапред. Добијени 

резултати су приказани на Сликама 5.35 и 5.36. 
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Слика 5.35 Грешка предикције за различите вредности регуларизационог параметра C 

– подаци нишки СДГ 

 

Слика 5.36 Грешка предикције за различите вредности регуларизационог параметра C 

– подаци новосадски СДГ 

 Са графика се види да су најбољи предиктивни резултати, за податке из нишког 

СДГ, добијени са вредношћу регуларизационог параметра C = 4. За податке из 

новосадског СДГ најбољи резултати су добијени за случај C = 2. Са овим вредностима 
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регуларизационог параметра извршено је додатно тестирање предиктивних модела. 

Добијени резултати су приказани у Табели 5.26. 

Табела 5.26 Предиктивне перформансе модела топлотног оптерећења за нишки и 

новосадски СДГ са прогнозираним вредностима спољне температуре и индикаторском 

величином (нишки СДГ) као додатним регресорима и измењеним вредностима 

регуларизационог параметра C 

Хоризонт 
предикције 

Предиктивне перформансе: метод SVR; улазне променљиве: топлотно 
оптерећење - нишки СДГ(помак 1 -24h), новосадски СДГ (помак 1 -48h); 

спољна температура - нишки СДГ(помак 1 -2h), новосадски СДГ (помак 1 
-24h), прогнозирана спољна температура и индикаторска величина 

(нишки СДГ) и вредностима регуларизационог параметра: нишки СДГ: 
C= 4, новосадски СДГ: C= 2 

Подаци - нишки СДГ Подаци - новосадски СДГ  

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

RMSE [kW] 

тренинг сет 

RMSE [kW] 

тест сет 

1h унапред 18.274 15.044 22.228 15.926 

2h унапред 19.774 16.610 24.227 17.243 

3h унапред 20.247 17.016 25.051 17.569 

4h унапред 20.493 17.145 25.735 17.832 

5h унапред 20.862 17.270 26.034 18.052 

8h унапред 20.764 17.484 27.231 18.398 

12h унапред 20.855 18.883 28.555 18.534 

24h унапред 22.921 19.476 32.333 19.746 

 

 Упоређивањем добијених резултата са резултатима из претходних поглавља може се 

уочити да су најбољи предиктивни резултати добијени у последњем случају.   

5.8 РЕЗУЛТАТИ ИЗРАДЕ ПРЕДИКТИВНИХ ТЕРМИЧКИХ МОДЕЛА 

ПОТРОШАЧА – РЕЗИМЕ И ЗАКЉУЧНА РАЗМАТРАЊА 

У оквиру овог поглавља приказани су резултати добијени применом предиктивних 

модела топлотног оптерећења потрошача у СДГ. За израду модела коришћени су 

експериментални подаци из нишког и новосадског СДГ, два географски удаљена и 

функционално различита система. Развијено је више класа предиктивних модела 
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заснованих на савременим методама статистичког учења: неуронским мрежама са 

директним простирањем сигнала и бајесовском регуларизацијом, методи потпорних 

вектора и boosting методи. Избор метода извршен је у складу са позитивним 

литературним резултатима добијеним њиховом применом код решавања проблема у 

домену сличном разматраном. Хоризонти предикције су изабрани у складу са 

очекиваном инерцијом СДГ, односно потребним временом да се промена на извору 

детектује код најудаљенијег потрошача. Код израде предиктивних модела усвојен је 

адитивни приступ који је подразумевао да се модели добијени у једном кораку даље 

усложњавају, увођењем додатних улазних променљивих, једино уколико је то било 

оправдано значајним побољшањем предиктивних перформанси.  

Најпре су разматрани ауторегресиони предиктивни модели. Развијени су модели код 

којих су као улазне величине коришћене претходне вредности топлотног оптерећења 

(са помаком од 1-24h и 1-48h). Најбољи предиктивни резултати, за већину хоризоната 

предикције, добијени су применом методе потпорних вектора за оба разматрана СДГ. 

Након тога је испитано да ли се ограничавањем броја улаза предиктивни резултати 

могу унапредити. Селекција улазних величина извршена је на основу графика 

аутокoрелационе и парцијалне аутокорелационе функције. На основу добијених 

резултата утврђено је да редукција броја улаза не доприноси побољшању предиктивних 

перформанси модела. 

 Даље унапређење подразумевало је увођење додатних, егзогених променљивих у 

ауторегресионе моделе са којима су добијени најбољи резултати. Као егзогене 

величине уведене су спољна температура и температура повратног вода примара. 

Егзогени улази су уведени у модел са кашњењем које је одређено на основу графика 

крос-корелационе функције. Због инерције система, такође су разматрани и модели код 

којих је кашњење ових величина износило 1- 12 h и 1- 24h. Најбољи предиктивни 

резултати добијени су са спољном температуром као егзогеним улазом. Увођење 

температуре повратног вода примара није утицало на побољшање предиктивних 

перформанси модела.  

 Следећи корак унапређења односио се на увођење прогнозираних вредности спољне 

температуре. Због тога су у оквиру истраживања развијени и предиктивни модели 

спољне температуре. Ови модели су развијани коришћењем истих метода које су 

коришћене за израду предиктивних модела топлотног оптерећења. Из практичних 
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разлога (неекономичност узорковања других потенцијално релевантних егзогених 

величина: влажности ваздуха, брзине и праваца ветра, ирадијансе, облачности, 

количине падавина) истраживање је било ограничено на ауторегресионе моделе. 

Најбољи резултати добијени су применом неуронских мрежа са директним 

простирањем сигнала и бајесовском регуларизацијом и сетом улазних променљивих у 

којима фигурише спољна температура са временским кашњењем од 1 – 48h. Ова 

опсервација важи и за нишки и новосадски СДГ. Додатно је утврђено да повећање броја 

скривених неурона (од полазна два) не доприноси побољшању предиктивних 

перформанси. 

Због интермитентног карактера рада система (са ноћним прекидима), у улазни сет 

променљивих је у наредном кораку уврштена и индикаторска, бинарна, величина којом 

се означава рад односно прекид у раду система. То је допринело, очекиваном, 

побољшању предиктивних перформанси модела топлотног оптерећења за нишки СДГ 

док је ефекат био супротан за модел из новосадског СДГ.  

Коначно су за моделе из претходног корака, утврђене оптималне вредности 

регуларизационог параметра C. Са овим моделима су добијене најбоље предиктивне 

перформансе. 

Упоређење резултата предикције полазних (ауторегресионих) и коначних модела 

дато је у Табели 5.27. Најбољи резултати су приказани задебљано. Лако се може уочити 

да је низом сукцесивних корака остварено значајно унапређење предиктивних 

преформанси полазних модела.  

Табела 5.27 Упоређење предиктивних перформанси полазног ауторегресионог модела 

и коначног предиктивног модела топлотног оптерећења за нишки и новосадски СДГ 

Хоризонт 
предикције 

Предиктивне перформансе - RMSE [kW], тест сет 

Подаци - нишки СДГ Подаци - новосадски СДГ  

Полазни 
ауторегресиони 

модел 

Коначан 

модел 

Полазни 
ауторегресиони 

модел 

Коначан 

модел 

1h унапред 19.452 15.044 16.652 15.926 

2h унапред 24.114 16.610 20.068 17.243 

3h унапред 25.992 17.016 21.526 17.569 
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4h унапред 27.423 17.145 22.729 17.832 

5h унапред 28.303 17.270 23.829 18.052 

8h унапред 28.341 17.484 26.273 18.398 

12h унапред 31.538 18.883 26.697 18.534 

24h унапред 33.938 19.476 27.498 19.746 

 

Легенда:  

Полазни ауторегресиони модел за нишки СДГ: метод SVR; улазне променљиве: топлотно 

оптерећење помак 1 - 24h; 

Полазни ауторегресиони модел за новосадски СДГ: метод SVR; улазне променљиве: 

топлотно оптерећење помак 1 - 48h; 

Коначан модел за нишки СДГ: метод SVR; улазне променљиве: топлотно оптерећење помак 

1 - 24h, спољна температура помак 1 - 2h, прогнозирана спољна температурa, индикаторска 

величина и вредност регуларизационог параметра: C = 4; 

Коначан модел за новосадски СДГ: метод SVR; улазне променљиве: топлотно оптерећење 

помак 1 - 48h, спољна температура помак 1 - 24h, прогнозирана спољна температура и вредност 

регуларизационог параметра: C = 2. 

 

Узимајући у обзир велику варијабилност расположивих серија топлотног 

оптерећења из нишког и новосадског СДГ (Табеле 5.1 и 5.3) добијена грешка 

предикције се може сматрати прихватљивом. Треба имати у виду да пре израде модела 

није вршено препроцесуирање података, уклањање грубих грешака нити било каква 

трансформација података у циљу редукције варијансе. Од посебне важности је 

чињеница да су применом методе потпорних вектора и адекватним избором улазних 

променљивих добијени модели са изузетним генерализационим својствима. До ових 

закључака се може доћи једноставном анализом резултат из Табеле 5.27. Флуктуација 

средње квадратне грешке, за велики распон хоризоната предикције, је незнатна. Због 

тога се, са великом сигурношћу, и за будуће сетове података из ових подстаница може 

очекивати слична грешка предикције.  

Такође, треба нагласити да су најбољи предиктивни резултати за податке из 

функционално различитих СДГ добијени применом исте методе – методе потпорних 

вектора. Тиме је потврђен потенцијал ове методе за израду предиктивних модела 

топлотног оптерећења потрошача у СДГ.  
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6. ЗАКЉУЧАК 

6.1 ДИСКУСИЈА И ЗАКЉУЧНА РАЗМАТРАЊА 

У дисертацији је најпре извршен преглед традиционалних и модерних извора топлоте 

који се користе у СДГ. Из тог прегледа и упоређивањем резултата анализе са 

тренутним стањем у Србији изведени су одређени закључци.  

 Начин садашњег функционисања СДГ у Србији је неодржив. Потребна је хитна 

миграција са традиционалних на „стратешке”  изворе топлоте [Werner, 2004] попут 

когенеративних система (са природним гасом или биомасом као горивом), 

геотермалних, инсинерационих и соларних система. Пракса из земаља ЕУ, у којима 

постоје СДГ, показује да ови системи могу бити одрживи и прихватљиви за кориснике 

али само уз јасну енергетску стратегију државе и усклађену акцију државних 

регулаторних тела и локалне самоуправе.  

Супституција постојећих извора топлоте изворима који ће се базирати на употреби 

„отпадне“ топлоте из когенеративних постројења и обновљивим изворима енергије 

захтева велике инвестиције које се могу реализовати једино под условом да се у новој 

енергетској стратегији државе јасно дефинише улога СДГ и потреба њихове 

трансформација у когенеративне системе. Ово подразумева и увођење подстицаја за 

употребу обновљивих извора енергије за производњу топлотне енергије, увођење 

еколошких такси за употребу фосилних горива као и усаглашавање тренутне 

„субвенциониране“ цене струје са тржишном.  

Поступак супституције топлотних извора у српским СДГ, иако неизбежан 

дугорочно гледано, због низа финансијских и бирократских проблема врло је тешко 

реализовати у тренутним околностима. Због тога је потребно тражити решења којима 

је могуће у кратком року и уз минимална улагања оптимизирати рад СДГ. Унапређење 

тренутно неефикасног начина управљања у СДГ представља једну од опција. У 

дисертацији се предлаже концепт управљања код кога је фокус на усклађивању 

потребне и произведене количине топлоте. За реализацију тог циља потребно је 

познавање будућих топлотних потреба потрошача, кроз њихове предиктивне термичке 

моделе. Управо је израда предиктивних термичких модела потрошача у СДГ, као једне 
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од кључних фаза у реализацији напредне стратегије управљања, била тежиште рада у 

овој дисертацији.  

У току рада на овој дисертацији развијено је више класа предиктивних модела 

базираних на методама статистичког учења и експерименталним подацима добијеним 

директним мерењем у топлотним подстаницама у СДГ. Модели су били засновани на 

методама са којима су постигнути прихватљиви резултати у научним областима које су 

сличне разматраној. Поступак израде модела био је отежан чињеницом да СДГ 

представљају комплексне систем са израженом инерцијом што је консеквентно 

изражено кроз велику варијабилност и нелинеарност временских серија коришћених за 

израду модела. Ово се посебно односи на израду предиктивних модела у нишком  СДГ 

код кога је рад интермитентан, са ноћним прекидима. Потребно је нагласити да је 

тежиште било на развоју једноставних, робустних модела који се лако могу 

имплементирати на рачунарима просечних перформанси. Показано је да се применом 

методе потпорних вектора, уз адекватан избор улазних величина, добијају најбољи 

резултати  предикције. Потврђена је констатација из литературе о доминантном 

утицају спољне температуре на карактер и величину топлотног оптерећења па самим 

тим и њен значај у предиктивним моделима топлотног оптерећења. Додатно, утврђено 

је да се увођењем прогнозираних вредности спољне температуре предиктивни 

резултата могу значајно побољшати. Предиктивни модели спољне температуре 

развијани су независно при чему су најбољи резултати предикције добијени применом 

вештачких неуронских мрежа са директним простирањем сигнала и бајесовском 

регуларизацијом са само два неурона. 

Претходно изражене констатације је могуће систематизовати на следећи начин: 

 СДГ у развијеним земљама ЕУ представљају једну од најекономичнијих и 

еколошки најприхватљивијих опција за снабдевање потрошача топлотном 

енергијом. Будућност ових система у ЕУ по најновијим истраживањима, 

сценаријима и пројекцијама осигурана је и у енергетским системима до 2050. 

године у којима се рачуна са смањењем потреба за топлотном енергијом од 25% 

и потпуно декарбонизованом производњом електричне енергије [Lund  et al., 

2010]. Перспективе СДГ у Србији зависиће директно од могућности смањења 

тренутно неприхватљиво високих трошкова у производњи топлотне енергије. 
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Редукцију трошкова је потребно првенствено остварити миграцијом ка 

ефикаснијим начинима производње топлотне енергије (нпр. у когенеративним 

постројењима). Други начин представља унапређење постојећег неефикасног 

начина управљања у СДГ. Тежиште новог начина управљања СДГ треба да буде 

на примени савремених метода управљања којима ће бити могуће ускладити 

захтевану и произведену количину топлоте у СДГ. Уштеде ће бити евидентне 

одмах након увођења унапређења, али ће пун ефекат достићи након превођења 

топлана у когенеративна постројења. Централно место у напредним стратегијама 

управљања СДГ имаће предиктивни термички модели потрошача.  

 Најбољи резултати код израде предиктивних модела топлотног оптерећења, у 

оквиру спроведеног истраживања, добијени су применом методе потпорних 

вектора. Доминантан утицај на квалитет модела има одговарајући избор улазних 

променљивих. Утврђено је да се најбољи резултати добијају уколико се у модел 

укључе претходне вредности топлотног оптерећења и спољна температура. 

Потврђено је да се увођењем прогнозираних вредности спољне температуре 

резултати могу додатно унапредити. Утврђено је да се применом неуронских 

мрежа са директним простирањем сигнала и бајесовском регуларизацијом могу 

развити прогностички модели спољне температуре задовољавајућих 

предиктивних перформанси. Такође, за предиктивне моделе у оквиру нишког 

СДГ утврђено је да се због интермитентног карактера рада система квалитет 

модела може значајно унапредити уколико се у модел укључи и индикаторска 

величина којом се дефинише статус функционисања система. 

 Иако су у оквиру дисертације развијани предиктивни модели топлотног 

оптерећења потрошача у СДГ, поступак израде модела и примењене методе могу 

се искористити и за моделирање топлотног оптерећења код објеката код којих 

постоје други начини обезбеђења топлотне енергије за грејање. Додатно, 

примењене методе се уз извесне измене могу применити за израду предиктивних 

статистичких моделе и у другим доменима, који не морају нужно да буду 

повезани са енергетским сектором.  

 На крају, може се закључити да су методом потпорних вектора добијени 

кредибилни предиктивни модели потрошача у СДГ и да се они могу 
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искористити за креирање нове, интелигентне стратегије управљања која ће се 

базирати на реалним захтевима корисника. На тај начин створиће се услови за 

оптималније и економичније функционисање СДГ а самим тим и за остварење 

значајних уштеда.  

6.2 БУДУЋА ИСТРАЖИВАЊА 

Будуће истраживање биће трасирано у више правца.  

 Са једне стране наставиће се даљи рад на истраживању могућности за унапређење 

развијених предиктивних модела. Треба нагласити да је, у оквиру ове дисертације, за 

израду модела коришћена релативно кратка серија, настала једногодишњим 

узорковањем. Претпоставка је да се вишегодишњом аквизицијом података добијени 

резултати могу значајно унапредити, јер се стварају могућности за боље разумевање и 

интерпретацију динамике разматраног процеса. 

 За реализацију новог, напредног и интелигентног система управљања потребно је 

поред термичких модела потрошача постојање адекватног модела дистрибутивне 

мреже СДГ. Због тога ће израда модела дистрибутивне мреже такође представљати 

један од важних сегмената будућег рада. 

 Коначно фокус будућег истраживања ће бити на имплементацији добијених 

резултата у конкретно управљачко окружење. То подразумева превођење развијених 

модела у простор стања чиме ће се створити могућности за примену алгоритама за 

секвенцијалну адаптацију параметара модела попут Калмановог филтра, проширеног 

Калмановог филтра или честичног филтра. Овај аспект представљаће окосницу даљег 

истраживања.  
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