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Predgovor

Tekst sa nazivom ELEKTROSTATIKA je namenjen studentima Fakulteta
zaStite na radu u Nisu i trebalo bi da posluzi kao pomo¢ pri proucavanju gradiva iz
oblasti teorije elektrostatickog polja, i to prema programu predmeta Elektromagnetna
zraCenja koji se u razli¢itom obimu i sa razliCitim fondom casova izucava na smeru
Zastita na radu i smeru Zastita zivotne sredine. Dobrim delom tekst moze da posluzi
studentima smera Zastita od pozara za oblast koja je za njih od interesa, a to je staticki
elektricitet kao uzrok pozara. Studenti drugih fakulteta kao $to su elektrotehnicki,
prirodno-matematicki ili tehnoski sigurno ¢e u ovom tekstu naci nesto §to do sada nisu
znali.

Kako se radi o izvodima iz predavanja i vezbi, osnovna ideja je bila da jedna
lekcija (ne i jedan Gas predavanja) bude jedna stranica, a to nije bio lak zadatak.
Odredena skraéenja dokaza, ograni¢en broj reSenih primera, mali broj zadataka za
samostalno resavanje i obim teksta pokazuju da je cilj autora bio da studentima pruzi
neophodnu literaturu prilagodenu savremenim metodama ucenja. Istovremeno to znaci
da je ovaj isti tekst dostupan svima koji koriste racunarsku mrezu Fakulteta zastite na
radu.

U Nisu, podetak prole¢a 2004. godine,
Autori ,

dejan.petkovic@ znrfak.ni.ac.rs
dejan.krstic@ znrfak.ni.ac.rs

Predgovor drugom izdanju

U drugom izdanju su ispravljane uocene greske, ali se ne razlikuje od prvog
izdanja. Jednostavno knjiga je doStampana jer su svi primerci bili rasprodati.

U Nisu, oktobra 2010. godine,
Autori

Predgovor treem izdanju

Deset godina nakon prvog izdanja pojavljuje se treée izdanje ovog udzbenika. U
protekloj deceniji na Fakultetu zastite na radu u NiSu je doslo do znacajnih promena u
nastavnim planovima i programima. Ne zele¢i da kvarimo prvobitnu koncepciju
udzbenika sadrzaj smo prilagodili tako da prati predavanja kako iz predmeta
Elektromagnetna zracenja na svim smerovima, tako i iz predmeta Elektrotehnika i
Zastita od atmosferskog i statickog naelektrisanja. Napominjemo da se odredene lekcije
na nizim kursevima ne izu¢avaju. Ovo izdanje sadrzi viSe reSenih primera nego prethodna
dva. Takode, izvodenja su data detaljnije, tj. prilagodena su studentima druge godine
studija jer se pretpostavlja da jo§ uvek nemaju neophodna znanja iz vektorske algebre i
matematicke analize.

U Nisu, Bozi¢ 2014. godine,
Autori






UuvoD







Elektrostatika 11

Uvod - Elektrostatika do Coulomba

U vreme anticke Gr¢ke bile su poznate Cetiri pojave koje su povezane sa elek-
tricitetom. To su munja, svetlucanje oko $iljatih predmeta, ribe koje proizvode
neku vrstu elektriénih udara i privlacenje laganih predmeta (slama) pomocu
protrljanog komada ¢ilibara. Ove pojave su bile uoCene a sa elektricitetom
povezane Citavih 2500 godina kasnije.

Vrhovni bog Grka Zéus je upravljao munjom i vetrom
(davalac kise). Za svetlucanje katarki na brodovima koji su
plovili Mediteranom bio je odgovoran lokalni svetac
Erasmus koji je bio zaStitnik mornara. Aristotel (Aristotle,
384-322, pre n.e.) je opisao ribu torpiljarku ali nije uocio
elektri¢ni organ. Tales iz Mileta (Thalés Miléisos, oko 625-
547. pre n.e.) je znao za privlacnu moc¢ Cilibara koji su
Sirijci zvali kamen kradljivac a Persijanci kradljivac slame
(karuba). Grcki naziv elektron ima znacenje onaj koji
privlaci. U to vreme pominje se kamen /inkurion, koji ima
jos ve¢u mo¢ privlacenja. Verovatno se radi o turmalinu ili
topazu jer se sa privlaenjem pominje i1 zagrevanje
kamena.

U svim dokumentima iz tog perioda koji su sacuvani ot
pominje se samo privlacenje. Odbojne sile tada nisu prime- | Y .
¢ene. Razlog za to je svuda prisutna gravitacija i znatno k—- : es
vecée interesovanje za magnet koji privlaci gvozde ma kako Thalés Miléisos
veliko bilo, dok ¢ilibar privlaci razli¢ite ali samo veoma
lagane predmete. Takode, pojava odbijanja nije mogla da
se uklopi Aristotleovo ucenje i u¢enje njegovih sledbenika.
Tek u Sestom veku nove ere odbijanje kod magneta
pominje hri§¢anin Jovan Filopon.

Arapi su prihvatili helenisticka ucenja o magnetizmu i
elektricitetu, i neizmenjena su ih preneli u hris¢ansku
Evropu. Istina unose i neke zablude. Govorilo se o .
kvalitetu privlacenja. Aristotle

O magnetu nema pouzdanih zapisa, a za Cilibar se kaze da je tu kvalitet
privlacenja toplota jer protrljani ¢ilibar zagreva slamu koju privlaci. Druga velika
zabluda koju su uneli odnosi se na magnet koji gubi privlacna svojstva ako se
protrlja belim Iukom. Ovakvo tumacenje se uklapalo u opS$tu teoriju kvaliteta, jer
u ovom slucaju dolazi do promene kvaliteta. Takva ucenja, preneta su u Evropu
dvanaestog i trinaestog veka, kada je kompas ve¢ uveliko bio u upotrebi, dovela
su do toga da je navigatorima na brodovima bilo zabranjeno da jedu beli luk.
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Doba renesanse je izuzetno znacajno za magnet (kompas) zbog ogromnog
interesovanja za daleka putovanja, ali ne i za elektricitet. Treba ipak izdvojiti da
je Porta (Giovani Battista Porta, 1538-1615) prvi upotrebio gvozdene opiljke da
bi na listu hartije nacinio sliku linija sila, i da je prvi koji tvrdi da beli luk ne utice
na magnet.

Za Gilbertovo (William Gilbert, 1540-1603) delo "De
Magnete" koje je objavljeno 1600. godine se tvrdi da je
bilo savremenije od mnogih dela koja su kasnije napisana.
I pored toga $to u svojim razmatranjima sledi Arisotelovu
Skolu, tvrdeci da se tela ili privlace ili ne, ipak daje puno
doprinosa. Treba istac¢i njegovu pretpostavku da je zemlja
magnet. Njegovo delo podeljeno je u Sest knjiga sa
ukupno 125 poglavlja, i samo jedno poglavlje je
posveceno elektricitetu.

Medutim, i to malo §to je napisao ima izuzetan znacaj. Prvo je ogledima utvrdio,
zatim 1 opisao, da mnoge materije kao Sto su staklo, vosak ili sumpor kada se
protrljaju mogu da privuku druga laka tela i to, ne samo slamu, ve¢ i gvozde,
drvo, ulje ili vodu. Po njemu su to elektri¢ne materije. Drugu grupu neelektri¢nih
materija ¢ine metali, drvo ili kamen. Za ispitivanje privlac¢enja konstruisao je prvi
elektroskop koji naziva versorijum (Lat.: verso - okretati, obrtati). To je bila
rotiraju¢a metalna igla - praktiéno kopija kompasa. Eksperimenti sa verso-
rijumom su mu omogucili da uoci sli¢nosti ali i razlike izmedu magnetizma i
elektriciteta. Zakljucio je da se elektri¢no privlac¢enje ostvaruje fluidom koji ima
materijalnu prirodu, za razliku od onog kod privlacenja magneta koji nije
materijalan. Time je doSao u sukob sa Aristotleovim ucenjem. Ovo delo, za-
snovano iskljucivo na rezultatima koji su rezultat ogleda, ostalo je vazno jos dva
veka.

Cabeo (Nicolo Cabeo, 1585-1650) je 1639. godine objavio delo pod nazivom
Magnetna filozofija koje je vec¢inom prepric¢avanje Gilbertovih ogleda. Medutim,
u delu se nalaze i neki novi podaci. Prvi put se srece termin linije sile (Lat.:
lineae virtutis). Takode, prvi put se pominje da se u svakoj tacki u okolini mag-
neta osecaju dve akcije koje poticu od severnog i juznog pola i da se ukupna sila
dobija slaganjem te dve akcije. Ovakvim, kvalitativno taénim opisom Cabeo
prakti¢no uvodi vektore, ali kvantitativno znatno gresi. U posmatranoj tacki ak-
cije koje poti¢u od dva pola su jednake i ne zavise od rastojanja, i drugo uvek
imaju takav smer kao da su oba pola iste prirode. Cabeo je uocio odbijanje kod
naelektrisanih tela. Medutim, ovom predstavniku jezuitske Skole, nasledniku
Aristotela 1 Gilberta to nije prihvatljivo i prirodno, jer mnogo razli¢itih materijala
ucestvuje u tome. Tako je zbog dogmi propustio priliku da otkrije nesto sasvim
novo.
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Guericke (Otto von Guericke, 1602-1686) je bio
eksperimentator koji je voleo da javno prikazuje razliCite
fizicke fenomene. [zmedu ostalog, napravio je aparat koji je
preteca elektrostaticke masine. To je bila rotirajuca lopta od
sumpora na drvenoj osovini i drvenom postolju. Na povrsSini
kugle se nagomilavao elektricitet ako se jednom rukom
rotira drvena osovina a drugom rukom lagano drzi sama
kugla.

Uocio je postojanje odbojnih sila, fosforescenciju, elektricno praznjenje i efekat
ostrih vrhova. Svoja zapazanja je 1672. godine opisao u delu Novi eksperimenti
ali nije pokusao ni da ih objasni, a jo$ manje da formuli$e neko pravilo ili zakon.
Zbog toga su te iste pojave ponovo bile otkrivene tek posle pedeset godina, a
ovog eksperimentatora ¢ija su osnovna opredeljenja bile diplomatija i politika
retko ko pominje.

Boyle (Robert Boyle, 1627-1691) je utvrdio da se elektri¢na i magnetna sila nista
ne menjaju ako se iz prostora u kome se ogled obavlja izvuée vazduh. To je u oz-
biljnu sumnju dovelo sve modele koji su se oslanjali na Aristotleovo ucenje.
Uocio je da je naelektrisanje vece i trajnije ako je povrSina koja se trlja glatka,
Cista i topla. Ponavljao je oglede Guerickea, ali ni on nije uocio elektri¢nu induk-
ciju, 1 pored toga Sto je imao sve potrebne rezultate.

Gray (Stephen Gray, 1666-1736) je otkrio da elektricitet
moze da se prostire sa jednog tela na drugo. U pocetku je
dosao do sasvim pogresnog zakljucka da se elektricitet moze
prenositi samo vertikalno. Verovatno povucen tim
zakljuCkom, i trazeéi sve vecu visinu, oglede je nastavio sa
sveStenikom Wheelerom (Granvile Wheeler, 1701 - 1770) u
zvoniku crkve.

Zahvaljuju¢i upornosti sveStenika, oglede su ponovili u nekoj Stali gde su
horizontalno postavljali dugacke provodnike obesene o plafon svilenim koncima.
Zakljucili su da se elektricna sposobnost prenosi i horizontalno. Zatim su
poveéavali duzinu provodnika (time i tezinu) pa su svileni konac, koji je bio
preslab, zamenili gvozdenom i mesinganom zicom. Tada nisu dobili ocekivane
rezultate. Medutim, izveli su pravilan zakljuc¢ak. Oni su zakljucili da postoje dve
grupe materijala. U jedni grupu spadaju oni materijali koji provode elektricitet,
kao $to su metali, a u drugu grupu spadaju oni koji ne provode elekektricitet, kao
Sto su svila, konjska dlaka, staklo. Tako, prvi put dobijamo podelu materijala na
provodnike i izolatore.

Daljim istrazivanjima Gray je doSao do zakljucka da se elektricitet zadrzava
samo na povrsini tela. Znajuci da gravitaciono i magnetno privlacenje zavise od
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veli¢ine tela i da se toplotni i magnetni fluidi prostiru kroz zapreminu, zapitao se
kakav uticaj na elektri¢no privla¢enje ima veli¢ina tela. Uzeo je dve kocke od
hrastovine jednakih dimenzija stim $to je jedna bila Suplja a druga puna. Obe
kocke kad su bile naelektrisane pokazivale su ista svojstva. Dakle, nelektrisanje
ne zavisi od zapremine ve¢ samo od povrsine tela. Tako, prvi put dolazimo do
pojma povrSinske gustine naelektrisanja. U nastavku svojih istrazivanja
proucavao je tupe i Siljate predmete. Na oble, tupe predmete varnica skace sa
naelektrisanog tela, a kroz zaSiljene predmete se elektricitet prazni necujno i
polako. Tako, prvi put dolazimo do pasivnog eliminatora statickog naelektrisanja.

Stephen Gray je izvrSio prvo javno naelektrisavanje ljudskog bica.

Gray je neko dete obesio o vrpce na-
¢injene od konjske dlake, tako da
visi u horizontalnom polozaju. Pro-
trljanim staklom mu je dotakao noge
i pri tom su laki predmeti bili
privuceni  glavi. Takav ogled
ponovio je sa dva deteta koja su bila
na podlozi od smole (izolator prema
zemlji) 1 medusobno  vezana
kanapom. Elektricitet se prenosio sa
jednog deteta na drugo dete.

Dve hiljade godina nauka je znala
samo za staticki elektricitet. Defi-
nisuci provodnost, Gray otvara nove
puteve - puteve elektricne struje.
Tako, prvi put dolazimo do pojma o
elektri¢noj struji.

Gray je ustanovio da naelektrisani klju¢ privlaéi lake predmete bez obzira da li
jednovremeno na taj klju¢ deluje neki magnet. Tako, prvi put dolazimo do pojma
o elektromagnetizmu.

Du Fay (Charles-Francois de Cisterny du Fay, 1698-1739)
se nadovezuje na oglede svog predhodnika Graya, ali za
razliku od njega rezultate do kojih je doSao, u formi osam
saopstenja, podnosi Akademiji nauka u Parizu. Prva cetiri
saopStenja je podneo 1733. i 1734. godine. Jo§ dva
saopStenja podnosi kad je imao 39 godina, samo dve
godine pred smrt.
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Prvo saopstenje je pregled saznanja o elektricitetu za period od Gilberta do
Graya. Drugo saopstenje zasniva se na ogledima koje je izveo. Zakljucio je da se
sva tela mogu naelektrisati. Neka tela, kao S$to su metali ili teCnosti, nije moguce
naelektrisati trljanjem, ali se naelektriSu ako im se prinese neko prethodno na-
elektrisano telo. U treCem saopStenju materijale deli na dve grupe (mada je to pre
njega ucinio Gray). Tela koja je teze naelektrisati trljanjem dalje i obimnije
prenose elektri¢nu materiju. Suprotno, tela koja lakSe postaju elektricna manje su
podobna da prihvate tudi elektricitet i da ga prenesu na daljinu. Kasnije su ove
dve grupe materijala dobile nazive provodnici i izolatori.

Cetvrto saopstenje, O priviacenju i odbijanju elektricnih tela, donosi nov kva-
litet. Jo§ je Guericke uocio da naelektrisano pero $iri svoje dla¢ice. Medutim, Du
Fay ponavlja oglede sa razli¢itim koncima (svila, pamuk, vuna) i donosi opsti
zakljucak.

Kad se neko telo naelektriSe njegovi delovi se medusobno odbijaju i nastoje da
se medusobno §to je moguce vise udalje.

Znajuéi za elektricno privlacenje, visi ogled sa zlatnim listicem. Ako se zlatni
listi¢ naelektriSe staklom njega privlace smolaste materije i obrnuto. Kao da po-
stoje dve razli¢ite vrste elektriciteta. Slede¢im ogledom dokazuje da se obe vrste
elektriciteta mogu preneti na neelektri¢no telo. Konacno ubeden da postoje dve
vrste elektriciteta daje im razliCite nazive: staklasti i smolasti elektricitet. Ponovo
donosi opsti zakljucak.

Jedni i drugi odbijaju tela koja su primila elektricitet iste prirode kao Sto je

njihov, a privlace ona ¢iji je elektricitet suprotan njihovom.

Du Fay je usavrSio Gilbertov versorijum. Od dva zlatna listia napravio je prvi
pravi elektroskop. Proucavao je i provodljivost plamena. Treba napomenuti da u
prvo vreme hipoteza o dve vrste elektriciteta nije nai$la na odobravanje.

Godinu dana pre poslednjeg Du Fayovog saopstenja
Akademiji nauka, 1737. godine, rodio se Coulomb
(Charles Augustin de Coulomb, 1736-1806). Zakonom koji
je formulisao zavrSava se kvantitativna analiza elektro-
statickog polja. Sve nadalje postaje matematicka
nadgradnja koja elektrostatiku stavlja u opsti teorijski
koncept elektromagnetnog polja.

U Srbiji je 1877. godine objavljen prevod knjige A. Gamoa EKSPERIMENTALNA
F1zIKA. U delu IX pod nazivom STATICKI ELEKTRICITET, a koji je podeljen na Sest
glava, jedina formula je upravo Coulombov zakon.
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1 - Coulombov zakon

Proucavanje elektrostatike Cesto pocinje od Coulombovog
zakona koji je rezultat eksperimentalnih istrazivanja iz 1785.
godine.

F :k QIR(’gZ

Dva naeclektrisana tela beskona¢no malih dimenzija, u odsustvu drugih
naelektrisanih tela, deluju jedno na drugo mehani¢kom silom, F, &iji je
intenzitet (jaCina), F', srazmeran proizvodu njihovih elektri¢nih opterecenja, ¢, i
q, » (koli¢ina naelektrisanja ili samo naelektrisanja) i obrnuto srazmeran kvadratu
njihovog medusobnog rastojanja, R.

Pravac sile spaja tacke u kojima se posmatrana tela nalaze i smer je takav da se
tela odbijaju ako su elektrina optere¢enja istog znaka ili privlace ako su ta
opterecenja suprotnog znaka. Ova sila je elektricnog porekla pa su uobicajeni
nazivi elektri¢na sila, elektrostaticka sila, ili Coulombova sila.

R emb B
R - F,=-F, | R,=R, =R ‘

Konstanta € je permitivnost ili propustljivost sredine ili dielektricna konstanta.
Sam naziv dobija smisao pri izucavanju elektrostatickih polja u materijalnim
sredinama u kojima dielektri¢na propustljivost najces¢e i nije konstantna. Na
osnovu merenja brzine svetlosti, koja su obavljena u proslom veku, dobijena je
vrednost ove konstante za vakuum (i priblizno za vazduh).

b C
€, =(8.85419 £ 0.00002)- 107" ——
Nm
U racionalizovanom nacinu pisanja jednacina, koji je _ 1 107 C?
danas opste prihvacen, ova konstanta se piSe u obliku &0 = 367 Nm?

Na ovaj nacin konstanta 471 je eliminisana iz velikog broja jednacina koje se
koriste u elektrostatici i uopste u elekromagnetici.

Tackasta naelektrisanja mogu biti rasporedena po proizvoljnoj niti ili povrsi, ili
pak mogu da budu rasporedena u odredenom delu zapreminine. Tako se dolazi do
pojmova poduzna, povrsinska i zapreminska gustina naelektrisanja:

R i e

U svim slucajevima Coulombov zakon je moguce primeniti na "beskonacno"
male delove. To je princip linearne superpozicije.
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Primer 1.1 - Raspodela naelektrisanja na Stapu

Kad se S$tap duZzine

delovanjem medusobnih odbojnih sila rasporede
duz stapa. U najvec¢em broju slucajeva smatramo
da je raspodela naelektrisanja uniformna i
govorimo o poduznoj gustini
q'=q/L. Kad je duzina $tapa znatno veca od
popre¢ne dimenzije, ova aproksimacija je vrlo
taCna za najveéi deo sredine Stapa.

L naelektriSe nekom
koli¢inom naelektrisanja ¢, ta naelektrisanja se

N2 1| ) [ ] e | [ e | () [ ]

naelektrisanja L, F,
F'y o e ,
F' « Fo

ﬁ q'=q/L ﬂ

3 49 9 9 49 43

F'ys

Do realnije raspodele naelektrisanja moze da se dode ako se Stap podeli na 2N

jednakih odsecaka.

Rastojanje izmedu centara dva susedna odsecka je

a=L/2N, mada to za reSavanje problema nije od znacaja. Svaki odsecak je
tackasto naelektrisanje u njegovom centru. Sto je broj podela veéi aproksimacija
je tacnija. Elektricne sile koje deluju na naelektrisanja na krajnjim odseccima su
u ravnotezi sa mehanickim silama, jer naelektrisanja ne napustaju Stap. Ostala
naelektrisanja su u ravnotezi isklju¢ivo zbog odbojnih sila elektricnog porekla.

Za N =3, a za tackasta naelek-
trisanja ¢, i g, mogu da se
postave dve jednaline sa tri
nepoznata tackasta naelektri-
sanja. Tre¢a jednacina je izraz
za zbir svih nepoznatih naelek-
trisanja.

Sistem jednacina preureden na
oblik pogodan za reSavanje
dovodi do rezultata

q,=0.142¢
q,=0.151¢q
q,=0.207¢g

Iz ovog oblika se lako dolazi
do izraza za elemente matrice u
opsStem slucaju,

i=,LN-1, j=1,N.

Poslednja jednacina je uvek
jednacina zbira.

IO N T
dne, o>\ 17 27
9 L(ﬁ '

2 2+ 2
dney a”\1° 2

29, +2q9,+2q;=¢q

1 1 1
q, 1_2 +4, )

22 2

493 g 1(q9, 4
+= = S+
32j 4, az[lz 22j

9 49 g9 1 (g
+2 458 =2 D
3? 42) 4me, a’ (12)

1 1
Jeafie-3r)-o

1 1 1 1
e o vl el e sy =0

q+q,+q;=1/2

1 1 .
A

Tl iy @i
1 1 L.
(S )

U uravnoteznom stanju raspodela naelektrisanja nije uniformna i najveéa gustina
je na krajevima. Uopste, oStre ivice 1 §iljci sadrZe najvece gustine naelektrisanja.
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Primer 1.2 - Dva ta¢kasta naelektrisanja i elektroskop

Razvoj teorijske elektrostatike neminovno je pratio i razvoj instrumenata za
detekciju i merenje statickog elektriciteta. Prvi metod za merenje bio je zasnovan
na ravnotezi gravitacione i elektricne sile.

To je prvi uo€io Du Fay (Charles Francoide
Cisternais du Fay, 1698-1739).

Ako se dva naelektrisana tela koja slobodno
vise jedno uz drugo, povezu sa naelektrisanim
telom, ona se odbijaju srazmerno naelek-
trisanju.

Dve kuglice istih tezina G, vise na nitima istih
duzina L. Kad se kuglice naelektriSu nekom
koli¢inom naelektrisanja ¢, niti o koje su

kuglice obesene grade ugao o .

Elektricna tj. Coulombova sila F, i horizontalna komponenta gravitacione sile
F, suurazvnotezi.

2
Feng = q %:Gtang.
4ne, R 2

gdesu R= 2Lsin% i G=mg,igdeje m masakuglice.

Odavde je moguce odrediti kolic¢inu naelektrisanja na osnovu ugla koji grade niti
o koje su naelektrisane kuglice obesene,

|q|=4L\ne,G f(a), gdeje f(a)zsin% tan%.

Zadatak 1.1 - Tri tackasta naelektrisanja jednake koli¢ine naelektrisanja se nalaze u
temenima zami$ljenog jednakostrani¢nog trougla ¢ija je stranica a . Odrediti sve sile
medusobnog delovanja.

Zadatak 1.2 - Tackasto naelektrisanje ¢ nalazi se na osi beskonacno tankog kruznog
obruca polupre¢nika a koji je ravnomerno naelektrisan istom koli¢inom naelektrisanja
suprotnog znaka. Odrediti rastojanje od ravni obru¢a gde je privla¢na sila najveca.

Zadatak 1.3 - Beskona¢no dug i prav provodnik zanemarljive debljine naelektrisan je
poduznom koli¢inom naelektrisanja ¢'. Na rastojanju » od ose provodnika nalazi se ta¢-

kasto naelektrisanje ¢ i potrebno je odrediti silu izmedu ova dva naelektrisanja.
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2 - Elektri¢no polje

Elektricno polje je posebno stanje sredine koje se
manifestuje postojanjem mehanicke sile koja deluje na neku
koli¢inu naelektrisanja. Pojam fizickog polja je prvi uveo
Faraday (Michael Faraday, 1791-1867) ali tek pri
proucavanju elektromagnetne indukcije kad je ve¢ bilo
naslu¢eno da su elektricno i magnetno polje neraskidivo
vezani fenomeni i predstavljaju jedinstveno elektromagnetno
polje.

Elektri¢no polje je definisano kao kolicnik mehanicke sile
F kojom polje dejstvuje na probno naelektrisanje g, i same
koli¢ine naelektrisanja koja stvara polje.

Elektricno polje usamljenog tackastog naelektrisanja, ¢,
odreduje se direktno iz Coulombovog zakona.

Linija polja je linija ¢ija se tangenta u svakoj tacki prostora
poklapa sa pravcem vektora polja.

Elektri¢no polje je izvorno polje. Postojanje neke
koli¢ine naelektrisanja je uvek uslovljeno
postojanjem iste koli¢ine naelektrisanja suprotnog
znaka. Dogovorom je usvojeno da su pozitivna
naelektrisanja izvori, a negativna naelektrisanja

ponori elektricnog polja.

Usamljeno tackasto naelektrisanje ne postoji tj.
naelektrisanje suprotnog znaka je veoma daleko
od prostora koji se razmatra.

Fluks je pojam koji, kao i pojam vektorskog polja,
poti¢e iz hidrodinamike i wuveden je zbog
proracuna koli¢ine tecnosti koja protekne kroz
neki poprecni presek (cevi).

Neka se u centru zamisljene sfere polupre¢nika r nalazi tackasto naelektrisanje
g . U svim tackama ove sferne povrSine elektricno polje ima istu jacinu i

radijalan pravac, pa je broj linija polja (fluks) koje prolaze kroz povrsinu cele

sfere @.

®=§EdS = Efds =£s =1 14
S S

e, 7 €
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Primer 2.1 - Ravnomerno naelektrisana kruzna ploca

Kruzna ploca polupreénika a naelektrisana je
povrsinskom gustinom naelektrisanja 1. Svaka

elementarna povrSina dS=rdrd® je tackasto
naelektrisanje koje na simetralnoj osi stvara
elektri¢no polje

n das

= > R=+z+r?
4ne, R

Zbog osne simetrije sve radijalne komponente
vektora elektri¢nog polja se anuliraju, pa polje ima
samo aksijalnu komponentu, - R

n  zrdrdd rﬁiLmﬁ_,
dmey (22 +17) a 0 ’

.=

Konaéno je

rdr n zla
=l zla
£ 47580 J- -[(zzwtrz)y2 280( /(1+(z/a)2J 2¢, PASIS
Kako vektor elektricnog polja ne zavisi od ugaone koordinate, problem je
moguce resiti i posmatranjem niza koaksijalnih kruznih prstenova povrsine
dS =(r+dr)’n—r’n=nQrdr-(dr)) = dS=2nrdr,

$to je ustvari isto kao da je unapred reSen integral po ugaonoj koordinati.

¢ Kad se poluprecnik ploce beskonacno uvecava, a — 0, F=" 7
dobija se izraz za elektri¢no polje naelektrisane ravni. 2¢g,

Elektri¢no polje naelektrisane ravni o¢igledno ne zavisi od rastojanja. Ostavlja se
Citaocu da objasni ovaj rezultat.

¢ Sa unapred poznatom greSkom ravna povrSina kona¢nih dimenzija se moze
tretirati kao beskonacna ravan. Tako ako je rastojanje tacke u kojoj se polje
odreduje deset puta manje od poluprecnika ploce i elektri¢no polje je deset
procenata manje od onog koje bi stvorila beskonacna ravan.

Zadatak 2.1 - U tackama na osi simetrije odrediti elektricno polje koje potice od
ravnomerno naelektrisane kruzne konture.
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Primer 2.2 - Ravnomerno naelektrisana kvadratna ploc¢a

Kvadratna ploca stranice @ naelektrisana je
povrsinskom gustinom naelektrisanja 1. Svaka z

N
&

elementarna povrSina dS =dxdy je tackasto

naelektrisanje koje na simetralnoj osi stvara R
elektri¢no polje

n_ds R=yx*+y*+z*. y

= 2 5
47'[80 R X

Zbog osne simetrije sve radijalne komponente vektora elektricnog polja se
anuliraju, pa polje ima samo aksijalnu komopnentu,

z dxdy
= S:0<x<a, 0<y<x.
£ 4758 ” (2 +y*+27)2° 4

Smenom x =zrcosO, y=zrsin0, dxdyzzzrdrde, se dobija

a

£ _2_nnj4d62sze rdr _ 2n _nj‘4 2zcos0do
©omey . +1)? e, | 4 \ (a®+4z°cos’0)? |

Dobijeni integral se resava smenom 2zsin®=+/a” +4z” sint, tako da je kona¢no

2
E, =2V T aresin |2E/4° |
ng, | 4 (1+4(z/a)
Kada a — o kvadrata plo¢a postaje neograni¢ena ravan i F-"N
dobija se ve¢ poznat rezultat (primer 2.1).

Objasnjenje zaSto jacina elektricnog polja ne zavisi dE

od rastojanja je zasnovano na razmatranju >
naelektrisanja simetri¢no lociranih u odnosu na osu u n

¢ijim tackama se polje odreduje. U tackama vrlo dE
blizu ravni elektricno polje koje potice od udaljenih

naelektrisanja je skoro paralelno ravni i njihovo

rezultantno polje je jednako nuli ili je vrlo blizu nule.

Ostaje uticaj samo jedne tacke, a to je tacka prodora ose kroz ravan. Za tacke
veoma udaljene od ravni uticaj svih tacaka je skoro isti. U konacnom zbiru
razultat je uvek isti. Jasno, ovo razmatranje vazi samo za neograni¢enu ravan. Do
istog rezultata dovodi primena analize koja tek sledi.
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3 - Prostorni ugao, fluks i divergencija

Uvodenje pojma prostornog ugla, koji je u
neposrednoj vezi sa pojmom fluksa, omogucava
razumevanje sustine postojanja fizickog polja i
olakSava reSavanje sloZenih problema teorije polja.
Sve povrSine S oslonjene na konturu C se vide pod
istim prostornim uglom. Prostorni ugao je brojno
jednak delu povrsine sfere koju isecaju zraci iz centra
sfere jedini¢nog poluprec¢nika ka konturi objekta.

Prostorni ugao je fluks vektorske funkcije »*# kroz
zamisljenu povrSinu S. Jedinica za prostorni ugao je
steradijan sa oznakom strad. Pun prostorni ugao se
jednostavno dobija ako je zamiSljena povrsina sfera.

Usled dejstva odbojnih sila na naelektrisanoj metalnoj
sferi naelektrisanja se rasporeduju ravnomerno po
povrsini. Iz proizvoljne tacke u unutraSnjosti sfere,
elementarne centralno simetri¢ne povrsine se vide pod
istim prostornim uglovima, pa je ekvivalentno
elektricno polje koje stvaraju dve takve povrSine
jednako nuli. Isto vazi i za bilo koji drugi par
povrsina.

dEl - _dEZ B 4ne
0

U unutrasnjosti provodnika elektri¢no polje je jednako nuli i nije vazno da li je

taj provodnik pun ili Supalj.

Pojam divergencije neke vektorske z A 12 _ -

funkcije lako je uvesti razmatranjem E, , +dE,

proticanja nestisljivog fluida. Ono S§to - —_

vazi za vektorsku funkciju v(7) kojom ds — ds

je opisano brzinsko polje, vazi i1 za = y,
X

elektri¢no polje E(F).

Prvo se odredi fluks vektora elektricnog
polja za par paralelnih stranica (1 i 2)
elementarnog paralelepipeda. Zatim se
postupak ponovi za preostala dva para

OF
AP = (E, +dE, - E,)dS =—>dV

y

stranica i dobijeni izrazi se saberu da bi
se odredio fluks za elementarnu

ch:(aEx
ox

OF
+—2 +6EZJdV

oy 0Oz

zapreminu. Dobijeni izraz je divergencija | d® =divE dV
vektora u pravouglom koordinatnom .
sistemu, pa sledi i izraz za ukupni fluks | P = J‘diVE dv
gde nije od znacaja sam oblik zapremine. 4
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Primer 3 - Prostorni ugao pod kojim se vidi kruzna ploc¢a

Prostorni ugao pod kojim se kruzna ploca
polupreénika a vidi iz tacke koja pripada
vertikalnoj simetrali ploce i nalazi se na visini z
od ploge je Q=S5/r”, gde je S povrsina koju iz
sfere polupreénika r iseca koaksijalni cilindar
polupreénika a . PovrSina koju iz sfere iseca
cilindar je

S = Ij\/1+[aZJ (%) dxdy, gde je oblast integracije S:x* +y* <a’.

Kako je jednacina gornje polovine sfere

z=q/r2—(x2+y2),

to su potrebni parcijalni izvodi

oz _ x : 82
Ox ,/r2—1x2+y2i W” —ix +y )
paje
rdxdy
T
x +y

Smenama x =pcosB, y=psinO inakon resavanja integrala sledi da je

S=2nr(r—\/r2 —a* )=2nr(r—z)=2nrh ,

gde je h visina kalote. Za prostorni ugao i ja¢inu elektriénog polja u tackama na
osi ploce (videti primer 2) se dobija

S ( Z) z/a nQ n zla
Q=—=2x|1-— |=27|l -———=|, E, = =—| l-——.

r’ r 1+(z/a) dne,  2g, JA+(z/a)
Zadatak 3.1 - Odrediti prostorni ugao ugao pod kojim se vidi poluravan

Zadatak 3.2 - Odrediti div(R)

Zadatak 3.3 - Odrediti div (%J .
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4 - Teorema Ostrogradskyog

Iz dva poslednja izraza za fluks vektora elektriénog polja
sledi teorema divergencije,

©=§$EdS, ®=[divEdy _ | §$E£dS=[divEdy
N Vv N vV

ili teorema poznatija kao teorema Ostrogradskyog

(Mikhail Ostrogradsky, 1801-1862), koja pod odredenin
uslovima vazi i za druga vektorska polja.

Fluks karakteriSe ukupni kapacitet izvora ili
ponora. Kada je @®>0 posmatrana
zapremina sadrzi izvore polja, u slucaju
® <0 zapremina sadrzi ponore polja (ili
negativne izvore), i u slucaju ®=0 u
zapremini nema ni izvora ni ponora ili
zapremina obuhvata i izvore i ponore iste
izdasnosti. Ovo je jo$ jedan dokaz da je
ispravno pozitivna naelektrisanja smatrati
izvorima, a negativna ponorima polja.

Ukupni fluks kao integralna veli¢ina je isto §to i divergencija kao lokalna ili
diferencijalna veliCina.

Elektri¢no polje je izvorno polje. Tamo gde nema izvora ili ponora linije polja su
neprekidne. Jedini izuzetak od ovog pravila su singularne tacke (ili linije) ili
tacke neodredenosti, tj, tacke u kojima polje isCezava, pa pravac linija polja
postaje neodreden. Takva je, na primer, tacka na sredini izmedu dva jednaka
tackasta naelektrisanja istog znaka.

Medutim, na osnovu ukupnog fluksa niSta se ne moze zakljuciti o raspodeli
izvora i ponora u posmatranoj zapremini ¥ . To je moguée pomocu diferenci-
jalnih veli¢ina kao §to je divergencija koja daje vezu izmedu samog izvora i polja
u njegovoj neposrednoj okolini.

Zbog toga fluks treba razmatrati po jedinici zapremine. Ovaj 1S § EdS
koli¢nik izrazava srednju gustinu izvora (ponora). Ve

Ako se posmatra grani¢na vrednost ovog izraza kad zapremina prelazi u tacku, tj.
kad V7 — 0, dobija se izvod fluksa po zapremini §to je divergencija vektora ili
gustina fluksa. Dakle, divergencija vektora je prostorni izvod.

Iz definicije divergencije je jasno da vrednost ove S (R g
oy 9 . . divE =lim —¢p EdS

skalarne veli¢ine uopsSte ne =zavisi od izbora V>0 1

koordinatnog sistema. 5
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Primer 4 - Jedna primena teoreme Ostrogradskyog

Ako se izraz koji iskazuje teoremu Ostrogradskyog u Descartesovom
koordinatnom sistemu,

§Ed§=.|. (aEx_’_aEy_'_aEzjdV
% c\dx 0y oz

diferencira po zapremini V', onda je izvod desne strane jednak podintegralnoj
funkciji, a izvod leve strane upravo predstavlja definiciju divergencije, pa je i to
jedan od razloga S§to se ova podintegralna funkcija Cesto pogreSno smatra
definicijom divergencije.

Iz definicije divergencije je jasno da vrednost ove skalarne velicine uopste ne
zavisi od izbora koordinatnog sistema.

Treba primetiti da ako je
OEx OFEy OEz
+ + =
ox oy oz

na primer,
1 1 1
E =—x, E ==y, E =—z,
73 r 737 3
sledi korisna formula za izraCunavanje zapremine,

v = [[xdydz+ ydvdz+zdxdy.
S
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5 - Gaussov zakon

Neka je S proizvoljna zatvorena povrsina koja
obuhvata usamljeno tackasto naelektrisanje ¢
(naelektrisanja suprotnog znaka su dovoljno
daleko da ne uticu na strukturu polja). Fluks
vektora elektri¢nog polja kroz ovu povrsinu je

®=fEdS=_1 FdS _
N

- I do=2L
4mey o 1 4758

80

To Sto vazi za tackasto naelektrisanje vazi i za bilo koju raspodelu naelektrisanja
koja je zamiSljenom (ili stvarnom) povr§inom obuhvacena.

‘D=§£Ed§=8iojq’dl=é'sfndS=ijpdV=§

To je ustvari Gaussov zakon (Carl Friedrich Gauss,
1777-1855) u integralnom obliku.

®=§Ed§=é

Izlazni fluks vektora elektricnog polja kroz proizvoljnu
zatvorenu povrSinu jednak je koli¢niku koli¢ine na-
elektrisanja koje je tom povrSinom obuhvaceno i di-
elektri¢ne konstante vakuuma.

Ako se na Gaussov zakon primeni teorema divergencije dobija se lokalni ili
diferencijalni oblik ovog zakona.

o = j;EdS” - jdivEdV -4 - ijpdV = [Rar
s 4 €o oy v Eo
] !
divE="
€9
'—|'—|
hm imi
V=0 VS V-0

Do istog rezultata se dolazi i ako se integralni oblik Gaussovog zakona podeli
zapreminom 1 potrazi grani¢na vrednost kad zapremina tezi nuli tj. tacki.
Gaussov zakon je jo§ jedan od razloga zbog koga je teorema divergencije ili
teorema Ostrogradskyog najcesc¢e poznata kao teorema Gauss-Ostrogradskyog.
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Primer 5.1 - Naelektrisani cilindar i koaksijalni cilindri

¢ Neogranic¢eno duga nit naelektrisana je
poduznom gustinom naelektrisanja ¢'.
Oko dela ove niti opiSe se zamisljena
cilindricna povrS poluprecnika » i
kona¢ne duzine L. Ova zamiSljena

povrsina naziva se Gaussova povrsina.

Vektor elektricnog polja ima samo radijalnu komponentu pa fluks postoji samo
kroz omota¢ Gaussove povrSine. U svakoj tacki na omotacu vektor elektricnog
polja ima isti pravac, smer i jacinu, a kolinearan je sa vektorom elementa
povrsine. Jasno, smer vektora elektri¢nog polja zavisi od znaka naelektrisanja.

!

§Ed§=i N Ejdszsi - E2mL = 4L
N

& s, 0 €9

om

¢ Ako je naelektrisanje raporedeno na
cilindru koji nije beskonacno tanak vec
ima kruzni poprecni presek poluprecnika
a , naelektrisanja ¢e biti rasporedena po
povrsini cilindra stvaraju¢i povrSinsku
gustinu naelektrisanja m .

Gaussovom povrSinom u oba slucaja je obuhvacena ista koli¢ina naelektrisanja.

2anL
g=qL=n2anl =  E2rmL=" :n
0

Najveca jacina polja je na povrSini cilindra, r=a.
Dobijeni rezultat je grani¢ni uslov za normalnu (u ovom

slu¢aju 1 jedinu) komponentu vektora elektricnog polja.

¢ Neka su data dva naelektrisana koaksijalna cilindra.
Usled dejstva Coulombovih sila naelektrisanja su
rasporedena po spoljaSnjoj povrSini unutrasnjeg
cilindra, r=a 1 unutraSnjoj povrsSini spoljasnjeg
cilindra, r =b. Kada je r <a Gaussova povrsina ne
obuhvata naelektrisanja, te je u unutrasnjosti
unutrasnjeg cilindra polje jednako nuli. Kada je » > b
Gaussova povrsina obuhvata jednake po koli¢ini i
suprotne po znaku koli¢ine naelektrisanja, pa je opet
polje jednako nuli. Izmedu cilindara elektri¢no polje je
jednako polju koje bi stvarao i usamljeni cilindar.

F=-N4;

€ I
Emax :l
€
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Primer 5.2 - Naelektrisana nit kona¢ne duzine

Nit duzine L naelektrisana je poduznom
gustinom naelektrisanja ¢'. Elementarni
odseCak niti duzine dx se ponasa kao
tackasto naelektrisanje dg =¢'dx, koje u
tacki M (x,y) stvara elekri¢no polje

qgp-d% 1
4ng, R*
Kad se iskoriste geometrijski odnosi koji ) r ) ds
su sa slike o¢igledni, za komponentu sin 0 = R’ $in 0 = dx
elektri¢nog polja koja je upravna na pravac dE
niti se dobija izraz u kome figuriSe sinf=—2,  dx= R_de )
iskljuc¢ivo ugao 0. dE sin®
T g 1
q .
E = —|sin6dd6 = E, = —(cos0, —cosO
7 4me, r! " 4ne, r( : :)

¢ Kad je nit neograni¢eno duga, 6, >0, 6, >n za q 1
elektri¢no polje se dobija izraz koji bi se dobio i primenom E= e 1
Gaussovog zakona u integralnom obliku. 0

¢ Za tacke koje pripadaju simetralnoj ravni niti je
0,=(n-P)/2 1 0,=(n+P)/2, pa se izraz za
elektri¢no polje moze preurediti na oblik

¢ Pravilan N -tougao je upisan u kruznicu polu-
precnika a tako da se stranica se vidi po uglom
o =2n/N . Na osi mnogougla elektri¢no polje ima
samo aksijalnu komponentu koja se dobija
direktnom primenom poslednje formule.

q az sin(rt/ N)
E =—/—
2g, (22 +a’ cosz(n/N))\/z2 +a® TN

¢ Kad se broj stranica mnogougla neograni¢eno g az
uvecava, N — oo, dobija se izraz za elektri¢no polje .= 3 5372

Sy 2gy (z"+a”)
na osi kruznice.
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Primer 5.3 - Zapreminsko naelektrisanje izmedu dva cilindra

Beskona¢no dug cilindar polupre¢nika ¢ homo-
geno je naelektrisan zapreminskom gustinom
naelektrisanja p. Kada se Gaussov zakon u inte-
gralnom obliku,
|
§§E dS=—[pdr,
s

SOV

primeni na zami$ljenu cilindricnu povrSinu
kona¢ne duzine L i poluprecnika »>a postoji
samo fluks kroz omotac cilindra, pa sledi

2
~ a .
Ednl=Fant = E=L 27 r>a.
€ 2y 1
Ako je pak r<a sva naelektrisanja nisu obu-
hvacena zamisljenom povrsinom, pa je

E2rml=Y1nL = Ezirf, r<a.
€ 2g,

Neka je naelektrisana oblast ograni¢ena sa dve
cilindricne povrsine polupre¢nika a,b, a>b i
neka je rastojanje izmedu osa cilindara d . Kako
¢e biti pokazano, polje u unutra$njosti Supljine je
homogeno. Posmatrani elektrostaticki sistem je
potrebno zameniti sa dve zapreminske gustine
naelektrisanja suprotnih znakova i odgovarajucih
poluprecnika cilindara koje ih obuhvataju.

U tacki M koja pripada Supljini ukupno polje je zbir polja koja poti¢u od
zapreminskih naelektrisanja suprotnih znakova.

E’lziﬁ,rlﬁa i Ezz—ifz,rzéb,
2¢g, 2¢g,
pa je ukupno elektricno polje
E=E+E =L (-5)="L"d,
2¢g, 2¢g,

konstantne jacine i u pravcu koji spaja ose cilindara.

Zadatak 5.1 - Odrediti elektri¢no polje koje stvara neograniCena ravan naelektrisana
povrsinskom gustinom naelektrisanja 1. Odrediti elektri¢no polje izmedu dve ravni,

izmedu dva koaksijalna cilindra i izmedu dve sfere.
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6 - Rad sila polja i energija

U fizici mehanicki rad za razliku od intelektualnog rada je obavezno povezan sa
dejstvom neke sile. Sila svojim dejstvom vrsi rad samo ako se to telo pomera ili
deformise, u suprotnom rad ne postoji iako postoji dejstvo sile.

Elementarni rad je definisan kao skalarni proizvod sile F i
vektora pomeraja, d/ . Jagina vektora pomeraja je jednaka
duzini predenog puta, pravac i smer su isti kao pravac i
smer pomeranja tela ili deformacije. Jedinica za rad je Dzul
(Joule), sa oznakom J, (James Joule, 1818-1890).

~ 2
A:jF(f)dl [A]:J:Nmzkgzn
L

S

Energija je brojno jednaka radu i ima istu jedinicu. Medutim, i pored istog
mernog broja i iste jedinice izmedu rada i energije postoji kvalitativna razlika.
Energija odreduje sposobnost nekog sistema da izvr$i rad. Rad je velicina koja
odreduje promenu energije. Ako na sistem deluju spoljasne sile energija tog
sistema se povecava. Obrnuto, sistem moze da izvrsi rad samo smanjivanjem
(troSenjem) svoje energije. Posmatrano mikroskopski postoje samo dve vrste
energije i to su potencijalna i kineticka energija ili energije mirovanja i kretanja.
Sve makroskopske vidove energije (elektri¢na, toplotna, ...) moguce je svesti na
dva mikroskopska, ¢iji zbir podleze zakonu o odrzanju energije.

Helmholtz (Hermann von Helmholtz 1821-1894) je zapisao :
"... Priroda kao celina ima zalihu energije koja se nikako ne
moze ni povecati ni smanjiti, dakle, koli¢ina energija u
neorganskoj prirodi ... je ve€na i nepromenljiva.”

Zakon o odrzanju energije: Ukupna energija izolovanog
sistema je nepromenjiva. Ukupnu energiju nije moguce
unistiti niti je iz bilo Cega stvoriti. Moguce je jedino
pretvaranje jednog vida energije u drugi.

Rad sila elektri¢nog porekla po zatvorenom putu je jednak
nuli. Cirkulacija vektora elektri¢nog polja je jednaka nuli.

§E(?) dl =0
Elektrostaticko polje je konzervativno. ¢

To je direktna posledica zakona o odrzanju energije. Direktne posledice su i da je
elektricno polje u unutrasnjosti provodnika jednako nuli i da postoji samo
normalna komponenta na spoljaSnjoj strani provodnika. Naelektrisanja se
rasporeduju kre¢u¢i se po najkra¢im putanjama koje su odredene najvecim
privlacnim ili odbojnim silama. Tada je utroSeni rad najmanji, pa je
elektrostaticki sistem u ravnotezi ako je potencijana energija polja minimalna.
Elektrostaticko polje opisuje se energijom mirovanja.
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Primer 6 - Rad Coulombove sile

Dva nepokretna tackasta naelektrisanja jednaka po znaku i koli¢ini nalaze se na
medusobnom rastojanju 2a . Na vertikalnoj osi simetrije u tacki M na visini y

nalazi se tackasto naelektrisanje isto po koli€ini ali suprotnog znaka. Potrebno je
izraCunati rad koji izvrse sile polja pomerajuc¢i ovo naelektrisanje iz tacke gde je
sila najveca do tacke u kojoj se naelektrisanje nalazi u stanju labilne ravnoteze.
Privla¢na Coulombova sila medusobnog dejstva ima samo komponentu upravnu
na pravac koji spaja dva nepokretna tackasta naelektrisanja,

. 2¢° .
Fy)=-=1 Y si=-

2
q -
4ne, (y2 + az) € Fs

27
Osim u centru simetrije, y =0, gde se tackasto naelektrisanje nalazi u stanju la-
bilne ravnoteZe, sila na tackasto naelektrisanje je jednaka nuli i u beskonacnosti.
Izmedu dve nule neprekidne funkcije mora da postoji ekstremna vrednost
(Rolleova teorema). Najveca privlacna sila je u tacki gde je prvi izvod funkcije
f(y) jednak nuli. Dakle, u opstem slucaju Coulombova sila nije najveca pri

najmanjem rastojanju. Kako je

"(y =w, to sledi da je najveéa sila u tatkama y=ia—2.
2 2,\5/2
(a”+y7) 2
TraZeni rad je
0 2 0 2
A= [Foya=--1— | L TN YRS
5 2me, ﬁ(a +37) 2ne, a
7 “7

Zadatak 6.1 - Nepokretni kruzni obru¢ poluprecnika a naelektrisan je koli¢inom
naelektrisanja ¢g. Na osi obrua na rastojanju y od centra nalazi se tackasto

naelektrisanje isto po koli¢ini suprotno po znaku. Izracunati rad koji izvrse sile polja
pomerajudi tackasto naelektrisanje iz tacke gde je sila najveca do centra obruca.

Zadatak 6.2 - Jezgro atoma vodonika polazi iz beskonacnosti pocetnom brzinom v ka
nepokretnom tackastom naelektrisanju ¢ . Izjednacavajuci kineticku energiju Cestice i rad
izvrSen protiv sila polja odrediti rastojanje na kom ée se Cestica zaustaviti.

Zadatak 6.3 - Dve paralelne ravni na medusobnom rastojanju d naelektrisane su istim
povrsinskim gustinama naelektrisanja koje su suprotne po znaku +mn. Sa negativno
naelektrisane ravni iz stanja mirovanja krec¢e elektron. IzraCunati brzinu elektrona
neposredno pre udara u pozitivno naelektrisanu ravan.

Zadatak 6.4 -Tackasto naclektrisanje g krece se po liniji polja ravni naeclektrisane
nepoznatom povrsinskom gustinom naelektrisanja n. Ako je poznata duzina predenog

puta s iukupan izvrSeni rad A4, izraunati povrSinsku gustinu naelektrisanja ravni n.
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7 - O izracunavanju rada i energije

U Descartesovom (Rene Descartes alias Cartesius Renatus,
1596 -1650) koordinatnom sistemu je

F=xX+y) F(F)=F,3+F, dl =dxf+dy P,

pa se za rad sila polja imedu tacaka 4 i B dobija
krivolinijski integral druge vrste,

A=[Fdl = [F dv+F,dy=-[F, dv+F,dy.
C AB BA

Promena znaka je u potpunoj saglasnosti sa fizickim tumacenjem - to je rad koji
moze biti i pozitivan i negativan tj. dobijen i ulozen.

Kako je dx =cosad/, dy =sinad/ to je
d/
A=.[(Fxcosoc+Fysinoc)dl=J.F(F)dlzJ.F(x,y)dl, dy
AB AB AB
Sto je krivolinijski integral prve vrste. dx

Ako je C proizvoljna zatvorena kontura koja ogranicava povrSinu S, tada se
elementarnim razmatranjem pokazuje da je

ifodx+Fy dy=jsj (%—%—i}}dxdy

$to je poznato kao Greenova formula (George Green, 1793-1841).

U elektrostatickom polju (kao i u gravitacionom) rad sila po ’__!
zatvorenoj konturi je jednak nuli. To znaéi da rad ne zavisi
od putanje integracije ve¢ samo od koordinata pocetne i LO

krajnje tacke.Na primer, za konturu sa slike ¢e biti

A=FLcosO+ FLcosn/2+ FLcosmt+ FLcos3n/2=0.

Ako je samo jedan od A=§dex+Fyd}’=0 do=F, dx+F,dy

uslova ispunjen, tada su c

ispunjeni i1 ostali (ovde oOF, OF, A= [do=o(4) —o(B
bez dokaza). E:a_xy I ¢=0(A)-0(B)

AB

1z Greenove formule se pogodnim izborom podintegralne funkcije dobija korisna
formula za izraCunavanje povrsine:

ﬁz—yfc+xj/ } . §xdy—ydx=2j.dXdy - §=%§F><di
5 c
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Primer 7 - Izra¢unavanje rada u elektri¢cnom polju

U prostoru izmedu elektroda cilindricnog voda
poluprecnika elektroda a i b respektivno, nalazi se /\
taCkasto naelektrisanje ¢ . IzraCunati rastojanje ¢ za koje

7

je rad sila elektricnog polja od @ do c¢ istikaood ¢ do b.

Elektricno polje u koaksijalnom vodu je radijalno i dobija
se primenom Gaussovog zakona

, B\
Fogs— 4 _q'7 = q 7
fE B= = Bwi= = E-gl N

Komponente elektri¢nog polja u Descartesovom koordinatnom sistemu su

| o
N2

Fo 4 F_ 4 T _ g xityy

- 27 2 2
2ne, r 2me, rT 2mEy xXT+y

!

Ex>2+Eyj/,

pa sledi da je rad

"rxdx+yd
Aqu.(ExderEydy):zqq Y
v MEy v X+

Za reSavanje integrala je potrebno poznavati jednaCinu putanje duz koje se
integrali. Integral se jednostavno reSava smenama x =rcos0, y =rsinf.

Medutim, kao S$to je poznato elektrostaticko 5
polje je konzervativno i lako se proverava da OE, OE, ¢ ( xX—y J

rad ne zavisi od putanje integracije ve¢ samo o ox  2me
. A 0

od koordinata krajnjih tacaka.

Posto je ispunjen jedan od potrebnih uslova ispunjeni su i svi ostali, pa se rad

izraCunava kao integral totalnog diferencijala potencijala. Za dve proizvoljne

tacke koje su odredene poluprecnicima r, <r, rad (napon) ¢e biti

xt+y?

B B 12 ] ’
A, = (Fal =q[EFal =49 [97 2 99 1,75
ab 2 2
v y mey ;T ng, Iy

Rad od tacke na spoljasnjoj strani unutrasnje > A, = qq' ns
elektrode » =a do tacke u polju r=c je: ac 2ne, a
Rad od tacke u polju »=c¢ do tacke na unutrasnjoj 4. -4 q 1 b

. [ . > CB — n—
strani spoljasnje elektrode r =5 je: 2ne, ¢

1z jednakosti ova dva izraza sledi: » c=.ab
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8 - Stokesova formula, rotor vektora

Uopstavanje Greenove formule na trodimenzionalni slucaj
dovodi do Stokesove formule (George Gabriel Stokes,
1819-1903). U elektrostatickom polju rad po zatvorenoj
putanji je jednak nuli pa slede izrazi analogni onima koji
se dobijaju u dvodimenzionalnom slucaju.

Rad u ravni Rad u prostoru

A=§dex+Fydy A=§dex+Fydy+dez
C C

A= ”(ax 6yjdxd ”[ 1: Jddz ”(GF a;;]dxdz

Stokesova formula dovodi do ideje da je integral na desnoj moguce interpretirati
kao fluks nekog novog vektora kroz povrSinu S koja je ograni¢ena konturom C .

Taj novi vektor nazvan je rotacija ili vrtloznost x
vektorskog polja ili rotor vektora. U Descartesovom ot F = 0
koordinatnom sistemu ovaj vektor je moguce zapisati Ox
u formi simbolicke determinante. F

\‘:11\8)|Q)‘<>
,\:T] S])lg) N>

Stokesova formula (teorema): Cirkulacija vektora F
duz zatvorene konture C je jednaka fluksu vektora § Fdl = j rot FdS

rot F kroz proizvoljnu povr§inu S koja se oslanja na

konturu.

Elektrostaticko polje je bezvrtlozno jer je rad sila

polja po zatvorenom putu jednak nuli, rot£=0

Medutim, u opstem slucaju (na primer, magnetno polje) cirkulacija vektora nije
jednaka nuli.

Ako se elementarna kontura, AC , po kojoj se racuna cirkulacija, steze (obim tezi
nuli) onda i povrSina, AS, koja je ogranic¢ena konturom tezi nuli i obe strane u
izrazu za cirkulaciju vektora teze nuli. Medutim, ako se obe strane ove jednakosti
podele sa AS, tada je grani¢na vrednost konacna i definiSe projekciju vektora

rot F na pravac normale elementarne povrSine AS . Rotor vektora je prostorni
izvod i ne zavisi od izbora koordinatnog sistema.

§]3df —rot FAS =ftot FAS = AI.SI‘TOE
C

AC
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Primer 8 - Elektrostati¢ko polje koje ne mozZe da postoji

Neka se elektrostaticko polje menja po zakonu
E =kx$, k = Const. Kako je

X y z
rothi i i=k£;«r&0,

ox 0Oy oz

0 x O

to znaci da postojanje ovakvog elektrostatickog polja nije moguce jer je rezultat
suprotan &injenici da je elektrostati¢ko polje konzervativno, tj. da je rot E =0 .

Zadatak 8.1 - Odrediti rotor vektora polozaja, 7 = XX+ yy+zZ .

" r
Zadatak 8.2 - Odrediti rotor vektora -
B

Zadatak 8.3 - Izratunati rot(grad).

o1
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9 - Energija, potencijal i napon

U gravitacionom polju potencijalna energija tela se odreduje
u odnosu na neki referentni nivo. Za referentni nivo izabran
je nivo mora. Potencijalna energija je zbir energije na
referentnom nivou i rada koji je ulozen na podizanje tela.
Time se ukupna energija sistema povecava, a oblik i duzina
putanje nisu od znacaja.

UlozZeni rad treba uzeti sa negativnim znakom jer se vrsi
protiv sila polja. Vrednost integrala je negativna, jer su
vektori sile i puta antiparalelni, i zbir je pozitivan.

Dakle, potencijalna energija nije jednoznacno odredena i zavisi od izbora
referentnog nivoa. Energije raCunate za razliCite referentne nivoe se razlikuju za
aditivnu konstantu.

Ako se usvoji da je rad koji je prethodno ulozen da bi se telo P
dovelo do referentnog nivoa jednak nuli, ili ako se smatra da Ay = IF dl
je povrSina mora na nultoj visini, tada je prvi sabirak jednak M

nuli pa se za potencijalnu energiju dobija poznat izraz. 1 P
Potpuno ista razmatranja vaze za elektrostaticko polje, samo | — Ay = | E d/

$to se u elektrostatickom polju ne pomera masa ve¢ probno
naelektrisanje. Referentna tacka je najcesc¢e u beskonacnosti.

Potencijal neke tacke u elektrostatickom polju je brojno
jednak radu koji izvrSe sile polja pomerajuci pozitivno
jedinicno naelektrisanje iz te tacke do referentne tacke.
Elektrostaticko polje je potencijalno polje.

Jedinica za potencijal je volt sa oznakom V (A4lessandro
Volta, 1745-1827). Odavde sledi i jedinica za elektri¢no
polje koja se u praksi najcesce i koristi,
[4] T Nm N
[(P]:—:—:—: , _— .
4] ¢ ¢ C m

Razlika potencijala je srazmerna razlici potencijalnih oo
energija i to je elektri¢ni napon, ili samo napon. Uy = I Ed!

M

Tacke na istom potencijalu obrazuju ekvipotencijalne linije i ekvipotencijalne
povrsine. Posto je napon izmedu dve tacke koje pripadaju istoj ekvipotencijalnoj
povrsini jednak nuli, na osnovu definicije napona, sledi da je vektor elektricnog
polja uvek normalan na ekvipotencijalnu povr§inu. U unutrasnjosti provodnika
elektri¢no polje je jednako nuli, §to znaci da su sve tacke na istom potencijalu
koji je jednak potenijalu povrSine.
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Primer 9 - OdrZanje koli¢ine naelektrisanja

Balon (na primer, od sapunice) poluprecnika a i male debljine zida Aa<<a,u
odnosu na referentnu tacku nalazi se na potencijalu ¢,. Nakon rasprskavanja
balon se pretvara u kapljicu sfernog oblika polupre¢nika b koja ¢e sadrzati istu
koli¢inu naelektrisanja, ¢, kao i balon ali ¢e biti na nekom drugom potencijalu
0, - Kako je

a

b

qli q

a P = 4ne,

= 1 to sledi, 0, =0,
4ne, a

a

Posto zapremina koju zauzima materijal balona mora biti ista kao i zapremina
koju zauzima materijal kapljice to je

4 3 3 4 3
—nla’ —(a—Aa)’ |=—nb",
3 ( ( ) ) 3
odakle je moguce izracunati polupre¢nik novonastale kapljice,

b=(3a’Aa—-3aAa*+Aa’)"">.

Kad se zanemare stepeni viSeg reda male veli¢ine Aa za potencijal kapljice se
dobija

a
(pb_(pg (3a2Aa)l/3 .

Zadatak 9.1 - Dve provodne sfere €iji su poluprecnici a <b povezane su provodnikom
zanemarljive debljine ¢ija je duzina znatno veca od oba poluprecnika, R >>a,b. Ako je
ceo sistem naelektrisan koli¢inom naelektrisanja g =gq, + ¢, odrediti silu istezanja
provodnika na kome je koli¢ina naelektrisanja zanemarljiva

Zadatak 9.2 - Odrediti potencijal koji stvara nit duzine L koja je ravnomerno
naelektrisana poduznom gustinom naelektrisanja ¢'. Potencijal odrediti u tacki u ravni

simetrije.

Zadatak 9.3 - PoduZno naclektrisanje ¢’ ima oblik polukruznice polupre¢nika a .
Odrediti potencijal tacke u centru.

Zadatak 9.4 - Kruzna plo¢a polupre¢nika a ravnomerno je naelektrisana povrSinskom
gustinom naelektrisanja 1. Odrediti potencijal u tackama koje pripadaju vertikalnoj osi

ploce.

Zadatak 9.5 - 2N jednakih po koli¢ini tackastih naelektrisanja pravilno je rasporedeno
po obimu zamisljene kruznice poluprecnika a . Odrediti potencijal u centru kruznice

a) ako su naelektrisanja istog znaka,

b) ako se znak naelektrisanja naizmeni¢no menja.
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10 - Gradijent potencijala

Potencijal je definisan kao krivolinijski integral
vektora elektri¢nog polja. Obrnuto, elektri¢no
polje je izvod funkcije koja opisuje potencijal.
Kako je izvod konstante jednak nuli, sledi da
su funkcije ¢, i ¢, =¢, +C potpuno ravno-
pravne jer jednoznacno opisuju elektri¢no
polje.

Potencijal tackastog naelektrisanja u tacki M
u odnosu na referentnu tacku P je

Fp A - T
(rdl g dr
2 - 2
dng, Y r 4ne, Y r
r r

Ekvipotencijalne povrSine su koncentricne
sfere u ¢ijem se zajednickom centru nalazi

y . ¢y —do
tackasto naelektrisanje.

Za referntnu tacku u beskonanoti, r, — oo, nulta ekvipotencijala je sfera

beskonacnog poluprecnika. Medutim, pri elektricnim merenjima najcesSce se
smatra da je povrSina zemlje na nultom potencijalu. Za tacke M i N koje su na
beskona¢no malom rastojanju je

Oy =@y +do, dop=0y -0, =—Edl
U Descartesovom koordinatnom sistemu je
E=EX+Ej+Ez2, dl =dci+dyj+dzz, dp=—Edx—E,dy-E.d
d(ng—;pdx-lrg—;l)dy-lrg—(zpdz , Ez—(g—f£+g—;pﬁ+2—(zp£j, E=—grad ¢
Kako je do¢ totalni diferencijal skalarne

dp do . do . A
funkcije od tri promenljive, sledi: dl  dn cos(,1) dn 1= erade

Elektriéno polje je degradijent
elektricnog skalar potencijala.

E:—grad(p:—%ﬁ
n

Brzina promene skalarne veli¢ine duz pravca zavisi od tog pravca. Najveca brzi-
na promene je u pravcu koji je normalan na ekviskalarnu povr$inu i jednaka nuli
kad je taj pravac neka od tangenti na ekviskalarnu povrsinu. Gradijent skalarne
funkcije je prostorni izvod.
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Primer 10 - Odredivanje polja iz potencijala

Dva jednaka taCkasta naelektrisanja +g
nalaze se na medusobnom rastojanju 2a.
Potrebno je odrediti elektriéno polje u
tatkama koje pripadaju osi simetrije, y.

o

Potencijal u bilo kojoj tacki M (0, y) je zbir

naelektrisanja, a a

potencijala koje stvara svako od tackastih *q 0 5

2g 1 _ ¢ 1
4ng, R 2me, (a” +y?)

o(y) =

/2 °
Elektri¢no polje je jednako degradijentu potencijala,

Ez—grad(pz—(g—(p)2+g—(p)?+g—(p2j :
X V z

Posto je potencijal funkcija koja zavisi samo od jedne koordinate y, to sledi

Ez—grad(pz—a—(pf/— 9 J %

oy a 2me, (a2 +y2)3/2 -

Obrnuto, elektri¢ni skalar potencijal iz elektri¢nog polja se dobija kao

" q 1
2ng, (a® +y?)

1/2

T d 1
o=[Edi=-1 Yy -4
y

2msy | (a®+y?)*"? 21, (a2 4y |y

Zadatak 10.1 Ako je R=+/(x—x)’+(y—y)’ +(z-2)* izradunati gradR u
takama M (x,y,z) i M'(x',).z').

. . . 1
Zadatak 10.2 Ako je R= \/(x—x')2 +(y—y) +(z—2)* izraCunati grad; u

tatkama M (x,y,z) i M'(x',y',z").
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11 - Helmholtz, Poisson i Laplace

Elektriéni skalar potencijal nije jednoznacno odreden jer zavisi od izbora
referentne tacke. Medutim, elektri¢no polje, kao izvod potencijala, i pored toga je
jednoznacno.

Prema Helmholtzovoj teoremi vektorska |
funkcija je jednoznacno odredena ako njena rh_fg E(r)= rh_l)l;—n =0,n>1
vrednost u beskonac¢nosti tezi nuli najmanje r

kao 1/r° i ako su u svim tatkama iz oblasti lim £(7) =0

definisanosti poznati prostorni izvodi. r

Elektrostaticko polje je jednoznac¢no odredeno . (7)
. . . . . . . . d' E(_’) — p
jer su ispunjeni svi uslovi teoreme koja je ovde v L(r e
prikazana bez dokaza. 0

Diferencijalni oblik Gaussovog zakona i ¢injenica da je elektricno polje odredeno
kao degradijent potencijala dovode do parcijalnih diferencijalnih jednacina
drugog reda koje su poznate kao Poissonova (Denis Poisson, 1781-1847) i
Laplaceova (Pierre Simon Laplace 1749-1827),za p#0 i p=0 respektivno.

diVE:i E:—grad(p

div(grad ) = A div(grad) =0

€

Izraz div(grade) je prostorni izvod drugog reda i nazivan je laplasien skalarne
funkcije ¢ . Diferenciranja drugog reda primenjuju se prema tabeli koja sledi.

skalarno polje ¢ vektorsko polje E
Operator .
grad div rot
grad grad (div E)
div div(grad o) div(rot E) =0
rot rot(gradp) =0 rot (rot £)
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12 - Greenovi identiteti

Za proizvoljnu vektorsku funkciju E koja je zajedno sa svojim prvim izvodima
neprekidna u delu prostora V' koji je ogranicen zatvorenom povrSinom S vazi
teorema divergencije ili teorema Ostrogradskyog.

§Ed§=jdivEdV
S V

Neka su y 1 ¢ skalarne funkcije €iji su prvi i drugi izvodi neprekidni u
posmatranoj oblasti i neka je

E=ygrad g,
tada iz teoreme divergencije sledi identitet
§\ugrad(p ds = Idiv(wgradqﬂdV .
S 4

Kako je
div (y grad ¢) = grad y grad ¢ + y div (grad )

sledi prvi Greenov identitet

ii;"fg_@dS = §wgrad¢d§ = I(gradwgrad(p +y div(gradg))dV
s n S

14

Ako funkcije v 1 ¢ zamene mesta dobija se
ff(pg—WdS = i#;(pgradw ds = I(gradw grad @ + @div (grad\y))dV .
s o s v

Oduzimanjem poslednja dva identiteta dobija se drugi Greenov identitet,
poznatiji kao Greenova teorema ili teorema Green-Ostrogradskyog.

§(w grad—@grady)dsS = I(\V div (grad o) —@div(grad y))dV
s %

§ (Wa_@_(pa—"’jds = [ (y div (grad ¢) ~ @div (grad yr))d¥
< on on 5
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13 - ReSenje Laplaceove i Poissonove jednacine

Svaka funkcija koja je u datoj oblasti neprekidna i
koja ima neprekidne izvode prvog i drugog reda i
koja zadovoljava Laplaceovu jednadinu je
harmonijska funkcija. Elektri¢ni skalar potencijal je
harmonijska funkcija. Ako je 7' vektor poloZaja
tacke izvora i 7 vektor polozaja tacke u polju,

R=7—-7', tada funkcija w=1/R zadovoljava

Laplaceovu jednacinu u svim taCckama osim u tacki
izvora, ¥ =7'. Dokaz je jednostavan:

div(grad%) = div[—%) = —%divﬁ —Rgrad%z _3F+3F =0.
Neka je funkcija ¢ elektricni skalar potencijal koji zadovoljava Poissonovu
jednacinui y funkcija koja zadovoljava Laplaceovu jednacinu i uslove pod koji-
ma su izvedeni Greenovi identiteti, u svim tackama osim u tacki R =0 koju je
potrebno iskljuciti iz dela zapremine, na primer sfernom povr§inom S’ polupreé-
nika a . Opste reSenje Poissonove jednacine sledi iz Greenove teoreme.

:ﬁ [wa—(P—(pa—Wde - J ydiv(grad) —ediv(grady) [dV

on on 14 -pleg 0
U U

1
j;[l@_@_@i(ij]ds ey
s\ R On on\ R gy R
Neka se povrSina S uvecava, na primer

kao sfera, po zakonu R*. Podintegralna lim (l@_(p_(p o (lDdS:O
funkcija istovremeno opada bar kao 1/R*> | #7° 5 \R on~ On\R
tako da integral po ovoj povrSini iS¢ezava.

S+S8’

Na povrsini sfere S' je R=a i 0/0n=-0/0R, jer je normala na tu povrsinu
usmerena ka centru sfere. Ako se za potencijal i izvod potencijala u pravcu
radijusa usvoje srednje vrednosti, ceo izraz ide ispred znaka integrala, pa sledi

lim (—la—(p—i(p)dS =—lim (la—(p+i(pj4na2 =—4ne
a a

r
Konacno reSenje Poissonove jednaCine je na o(r) = 1 J‘ p(r’) v
osnovu Helhomltzove teoreme jednoznacno. 4me 5,
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14 - Provodnici

Kad se provodno telo naelektriSe, usled dejstva odbojnih elektrostatickih sila
dolazi do rasporedivanja naelektrisanja po povrsini tela. U unutras$njosti
provodnika nema slobodnih naelektrisanja i elektricno polje je jednako nuli. Zato
je svejedno da li je provodnik masivan ili $upalj. Suplje provodno telo, za
unutrasnjost, predstavlja savrSenu zastitu od spoljasnjeg elektrostatickog polja.

Na povrsini provodnika tangencijalna komponenta elek-

tricnog polja je jednaka nuli. U suprotnom bi bilo stalnog E = ‘Exn =0
kretanja naelektrisanja 1 nikada ne bila postignuta =M
ravnoteza. Normalna komponenta elektricnog polja je E,=En _g

jednaka koli¢niku povrsSinske gustine naelektrisanja i )
dielektri¢ne konstante. Sve tacke na povrsini provodnika U= &ﬂdS
su na istom potencijalu. To je ekvipotencijalna povrSina. 4me, ¢

Kad se provodnik unese u elektrostaticko polje pod dejstvom polja dolazi do
kratkotrajnog kretanja elektrona u provodniku koje traje sve do uspostavljanja
novog ravnoteznog stanja. Naelektrisanja ¢e biti rasporedena tako da uslovi
elektrostaticke ravnoteze budu obezbedeni. Nova raspodela naelektrisanja na
provodniku koji je unet u elektrostaticko polje je nazvana elektrostaticka
indukcija ili influencija.

NERN
FEETLL
111
|11
LT
LT

Pre unoSenja u polje Posle unosenja u polje Detalj povrsine

Ako se naelektrisano telo unese u unutraS$njost Supljeg provodnog nenaelek-
trisanog tela na unutras$njoj povrsini Supljeg tela ¢e se pojaviti naelektrisanja
suprotnog znaka koja ¢e biti rasporedena tako da budu ispunjeni uslovi
elektrostaticke ravnoteze.

Posto je Suplje telo prethodno bilo nenaelektrisano na
spoljaSnoj povrsini ¢e biti rasporedena naelektrisanja
jednaka po znaku i koli¢ini onom koje je u telo uneto
i to bez obzira na oblike i medusobni polozZaj tela.
Ovakav eksperiment je izveo Faraday pa je pojava
naelektrisanja na spoljasnjoj povrSini nenaelek-
trisanog tela koje obuhvata neku koli¢inu naelek-
trisanja poznata kao efekat Faradayevog pehara.
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Primer 14.1 - Dve paralelne ravni
Dve neograni¢ene ravni na rastojanju d 3 +n _U
priklju¢ene su na napon U. Raspodela |7~ d 11 (Li
potencijala odredena je reSenjem Laplaceove E
jednagine koje zadovoljava graniéne uslove | y=0lr v v v v v v,0=0
na povrSinama ravni. -n X
U Descartesovom koordinatnom sistemu potencijal Fp
zavisi samo od jedne koordinate, na primer y, pa —(sz
Laplaceova jednacina ima samo jedan sabirak. dy
Resenje je linearna funkcija od y koordinate. o(y)=Cy+C,
Iz grani¢nog uslova @(y =0)=0 se dobija C,=0
Iz grani¢nog uslova ¢(y=d)=U se dobija G :%
N . "
Konacno resenje je o=U i
= do . U .
Elektri¢no polje je degradijent potencijala i usmereno E= _EJ’ = _Ey
je od ravni na viSem potencijalu ka ravni na nizem
potencijalu. E- 1%
d
Ako su ravni kona¢nih dimenzija i imaju povrSinu §
) o . g4
onda iz Gaussovog zakona sledi izraz za jacinu
. . €S
elektri¢nog polja.
: : : . U__4
Poredenjem poslednja dva izraza se dobija =
d g,
Odavde sledi odnos ¢/U koji je za dati sistem g
konstantan. Kasnije ¢e biti pokazano da je taj odnos % = SOE = Const

kapacitivnost, u ovom slu¢aju ravnog kondenzatora.
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Primer 14.2 - Koaksijalni vod

Dva neograni¢eno duga koaksijalana cilindra
poluprecnika @ 1 b priklju¢ena su na napon U .
Raspodela  potencijala  odredena je reSenjem
Laplaceove jednaine koje zadovoljava grani¢ne

uslove na elektrodama.
Ap=0, ¢(a)=U i ¢(b)=0.

U polarno-cilindri¢cnom koordinatnom sistemu (videti
prilog) potencijal zavisi samo od radijalne koordinate
r, pa Laplaceova jednacina ima samo jedan sabirak.
Izraz u zagradi mora da bude jednak konstanti, pa se
posle integracije dobija opSte reSenje.
Zadovoljavanjem grani¢nih uslova se dobija sistem
od dve linearne jednacine iz koji se odreduju
konstante integracije.

Zamenom vrednosti za konstante u opSte reSenje
dobija se izraz za raspodelu potencijala.

Elektricno polje je odredeno kao negativan izvod
potencijala u pravcu normale,

Izraz za elektricno polje se dobija i direktnom
primenom Gaussovog zakona u integralnom obliku.

Odavde je potencijal odreden kao linijski integral
vektora elektri¢nog polja.

Napon izmedu elektroda se dobija kada je rastojanje
jednako polupre¢niku spoljasnje elektrode.

Odnos ¢'/U je za dati sistem konstantan. Kasnije ¢e
biti pokazano da je taj odnos poduzna kapacitivnost.

Najveéa jaCina elektricnog polja je na spoljasnjoj
strani unutrasnje elektrode.

Polupre¢nik unutraSnjeg provodnika je moguce
dimenzionisati tako da ta vrednost bude najmanja.

Iz nule prvog izvoda se dobija uslov za minimum
maksimuma jacine elektricnog polja.

Tako se dobija i najmanja moguca vrednost jaine
elektricnog polja u koaksijalnom vodu za zadati
napon.

>

|

i(rd_@) o
dr\ dr

¢o(r)=C/Inr+C,

U=Clna+C,
0=C,Inb+C,
In(r/b)
In(b/ a)
o
In(b/a) r
o
2ng, v
-1 lni
2neg, a
U= q lné
2ne, a
,_q _ 2mg,
U In(b/a)
E‘max:Ll
In(b/a) a
max :0
da
bla=e
Emaxv :egzg
e b a

Za r <a i r>b polje je jednako nuli, $to se lako vidi iz Gaussovog zakona.
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Primer 14.3 - Koncentri¢ne sfere

Dve koncentri¢ne sfere prikljuene su na napon U . Raspodela potencijala
odredena je reSenjem Laplaceove jednacine koje zadovoljava grani¢ne uslove na
elektrodama, Ap=0, ¢(a)=U 1 ¢(b)=0.

potencijal zavisi samo od radijalne koordinate », pa P
Laplaceova jednacina ima samo jedan sabirak.

Izraz u zagradi mora da bude jednak konstanti, pa 1
se posle integracije dobija opste resSenje.

U sfernom koordinatnom sistemu (videti prilog) d ( , d(p]
r =0

B
Zadovoljavanjem granicnih uslova se dobija sistem U=-C P +C,
od dve linearne jednacine C¢ijim reSenjem su P )
odredene konstante integracije. 0=-C,—+C,
b
Zamenom vrednosti za konstante u opSte resenje _.,ab (1 1
.. . . > o=U ———
dobija se izraz za raspodelu potencijala. b—a\r b
Elektricno polje je odredeno kao negativan izvod > E-U ab i;
potencijala u pravcu normale, T b—ar?
Izraz za elektricno polje se dobija i direktnom N
primenom Gaussovog zakona u integralnom P E= 4 r_zr
obliku. ‘
Odavde je napon izmedu sfere odreden kao linijski _q (1 1
) » . » U= ———
integral vektora elektricnog polja. 4ne,\a b
Odnos ¢g/U je za dati sistem konstantan. Kasnije > C—dne ab
¢e biti pokazano da je taj odnos kapacitivnost. - %b—a
Najveca ja¢ina elektricnog polja je na spoljasnjoj > _ b
strani unutrasnje elektrode. e a(b-a)
Najveca jacina elektri¢nog polja bi¢e najmanja ako
e . . . 2U 4U
spoljasnja elektroda ima dva puta veci polupre¢nik P max . = —— =——
min a a

od unutrasnje (videti prethodni primer).

Za r <a i r>b polje je jednako nuli, $to se lako vidi iz Gaussovog zakona.

¢ Kada se poluprecnik spoljasnje elektrode neograni¢eno uvecava, b — oo,
sistem dve koncentri¢ne sfere degeneriSe u jednu usamljenu sferu.

Usamljena naelektrisana sfera

a - a . I q 1.
=U= E=U-= E= —7r C=4ne
¢ r rzr 47[80 7‘2 04
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15 - Elektri¢na indukcija

Na osnovu rezultata Faradayevog eksperimenta i ideje
o elektricnom polju Maxwell (James Clarck Maxwell,
1831-1879) je smatrao da je unoSenje naelektrisanja u
neku zapreminu praceno izlaznim pomeranjem iste
koli¢ine naelektrisanja kroz povrSinu kojom je ta
zapremina ograniena. Sta viSe ta povr§ina moze biti
zamiSljena, pa tako i dolazi do uspostavljanja elektric-
nog polja u celom prostoru.

Razraduju¢i ovu ideju Maxwell je uveo vektor ~
elektricnog pomeraja ili vektor elektri¢ne indukcije, D.

Vektor D ima prirodu povrSinske gustine naelektrisanja
i intenzitet mu je brojno jednak koli¢ini naelektrisanja C?
koja se pomeri kroz jedinicnu povrSinu koja je [D ]

normalna na pravac pomeranja.

<

m

U vakuumu vektori £ i D su kolinearni pa uvodenje jos jednog vektora na prvi
pogled izgleda suvi$no. Divergencija vektora elektricne indukcije je

divD=div(g)E) =g, divE=p = divD=p

gde je p zapremenska gustina slobodnih naelektrisanja. U materijalnim

sredinama pojavi¢e se i vezana naelektrisanja koja su izvor elektri¢nog polja ali
nisu izvor polja elektricne indukcije, i to je suStinska razlika izmedu ovih
veli¢ina. Matemati¢ku formulaciju uticaja sredine u kojoj postoji elektricno polje
je dao Maxwell. Zato se vrlo Cesto za teoriju elektromagnetnih polja kaze
Faraday-Maxwellova teorija.

"Pre nego Sto sam zapoceo izucCavanje elektriciteta reSio sam da ne Citam mate-
matiku o tome dok ne proCitam Faradayeva Eksperimentalna istraZivanja
elektriciteta. Bio sam svestan da se pretpostavljalo da postoji razlika izmedu
Faradayevog nacina shvatanja pojava i na¢ina matematicara, tako da ni on ni oni
nisu bili zadovoljni jezikom onog drugog. "Kad sam preveo, ono §to sam smatrao
Faradayevom idejom, u matematicku formu, nasao sam da se rezultati dva
metoda uglavnom podudaraju tako da se iste pojave mogu objasniti i isti zakoni
delovanja mogu izvesti i jednim i drugim metodom." ... "Faraday je svojim
misaonim okom video linije sila kako prozimaju ceo prostor tamo gde su
matematicari videli centre sila koje deluju iz daleka. Faraday je video medijum
tamo gde oni nisu videli niSta sem odstojanja. Faraday je trazio sediste fenomena
u realnim delovanjima koja se prostiru kroz medijum, dok su se oni zadovoljili da
ga nadu u dejstvu na daljinu kojem su podvrgnuti elektri¢ni fluidi."
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16 - Kapacitivnost

Elektriéna kapacitivnost ili samo kapacitivnost je sposobnost tela da zadrzi
naelektrisanja. Svako telo koje moze da se naelektriSe ima svojstvo
kapacitivnosti.

Za usamljeno provodno telo kapacitivnost se Cesto naziva
sopstvena kapacitivnost i jednaka je kolicniku koli¢ine c=1
naelektrisanja i potencijala provodnika. ¢
Kapacitivnost je brojno jednaka koli¢ini naelektrisanja koje je potrebna da bi
provodnik sa nultog potencijala bio doveden na jedini¢ni potencijal u odnosu na
referentne tacke. Kapacitivnost je za dato telo konstantna.

U sistemu jedinica SI, jedinica za kapacitivnost je farad i ima C
oznaku F po Michaelu Faradayu. [C] - v =F
1z izraza za kapacitivnost provodne sfere sledi:

¢ Farad je velika jedinica i tek sfera poluprecika od devet Fo_4 i
miliona kilometara ima kapacitivnost od jednog farada. dmg, r?
¢ Kapacitivnost dela provodnika je manja od kapacitivnosti g 1
celog provodnika. ¢p= T
¢ Kapacitivnost je dimenziono duzina. 0

¢ Latinska re¢ capacitas sa znaCenjem "prostor u kome ima | C=4ne,a ‘
mesta za mnogo stvari" je usvojena za elektri¢nu veli¢inu.

¢ Jedinica za dielektricnu konstantu koja je u upotrebi je e ]:E
farad po metru. o m

Kad provodno telo nije usamljeno potencijali tela zavise od koli¢ina
naelektrisanja na svim telima. Vazi i obrnuto, potencijal posmatranog tela zavisi
od naelektrisanja na tom telu ali i od naelektrisanja na susednim telima. Dakle,
moguce je napisati dva sistema jednacina.

. Nepoznata naelektrisanja Nepoznati potencijali
Primer:
Medusobni ¢ =a19,+a49, g1 =b;, ¢ +b, 0,
uticaj ¢, =0a5 9, Tayq, 42 = by 0 + by, 9,
dva tela a;; - potencijalni koefeicijenti b;; - koeficijenti indukcije

Ocigledno koeficijenti b;

protivurecnost izmedu njihove prirode i negativnog znaka koji se javlja kod
medusobnih koeficijenata, prethodni sistem jednadina je potrebno napisati u
obliku koji ima 1 svoje fizicko znacenje.

imaju prirodu kapacitivnosti. Da bi se izbegla

_Sada su kpeﬁcugn‘u delimi¢ne kapac1t1vn0§t}: Sa ¢ =C 0, +Cp (@, —9,)
jednakim indeksima su sopstvene, a sa razli¢itim _C c
indeksima su medusobne kapacitivnosti. 92 =C51 (9 =)+ C 9

Ako se jednacine podele dielektricnom konstantom tada one predstavljaju
raspodelu fluksa u sistemu.
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Primer 16 - Obrtni elipsoid, sfera, cilindar i disk

Usamljeno linijsko naelektrisanje duzine 2c¢ je ravnomerno naelektrisano
poduznom gustinom naelektrisanja ¢'. U nekoj tacki polja potencijal u odnosu

' 2 2
J' . o= q 1nx+c+\/(x+c) +y ,
47T80 \/(x x)? +y? 4ne, x—c+\/(x—c)2+y2

gde je integral reSen smenom x—x'=ysht, dx'=—ypcht. Ekvipotencijalne

na tacke u beskona¢nosti j e

povrsine se dobijaju iz uslova ¢ = const. ili

x+c+y(x+c) +y?
x—c+\/(x—c)2 +y?

ili prema oznakama sa slike

= const.

ntxte o

rntx—c

Takode, sa iste slike je o¢igledno

y2 = ”12 —(XJFC)2 i y = rz —(x— c) odakle sledi
R 4e) (=0 o g e L) _ k. Iz prvog i poslednieg
rn+(x—-c) n—-(x+c) —(x+0¢)
odnosa se dobija 7, =kr, +k(x—c)—(x+c), r,=kn-k(x+c)+(x—c),

. k+1 . . " L
paje n+r = 2ck— = const. Ekvipotencijalne povrSine su rotacioni elipsoidi

¢ije su zize u tackama na krajevima linijskog naelektrisanja. Prema tome svaki
rotacioni elipsoid Cija se povrSina poklapa sa nekom od ekvipotencijalnih
povrSina i koji je naelektrisan koli¢inom naelektrisanja ¢ =2cq’ je na
potencijalu koji je jednak potencijalu bilo koje tacke koja pripada toj povrsini. Na
primer, za elipsoid ¢&ije su poluose a i b, a ekscentricet ¢? =a” —b?, i za tacku
x=a, y=0, iz izraza za potencijal bilo koje tacke u polju sledi

2 2
S U O .. TN O PR LAl M
8neg, ¢ a-c ¢ 4tc A /az_bz
a—c¢ b

Iz izraza za kapacitivnost obrtnog elipsoida sledi izraz za kapacitivnost sfere
poluprecnika a, tj. za ¢ —>0 tj. b >a sledi C=4nga; Za a=0 se dobija
kapacitivnost diska poluprecnika b, tj. C=8¢,b. Takode je moguce dobiti

priblizne izraze za kapacitivnost veoma izduzenog rotacionog elipsoida oblika
olovke ili kapacitivnost kruznog cilindra oblika olovke.
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17 - UopStenje pojma kapacitivnosti - kondenzator

Za sistem od dva naelektrisana tela moguca su =U=0¢,
dva slucaja. U nesimetricnom slu¢aju su poten-
cijali tela jednaki. ReSavanjem poslednjeg sis- ?9
tema jednacina (lekcija 16) sledi da kapacitivnost C, X 7_
izmedu tela ne postoji (u elektrostatickom smislu 0
to je samo jedno provodno telo), ali postoji kapa- =
citivnost tela prema tackama na nultom poten- U "—Cﬁ c
cijalu. ].Ek\'/ive'llentna kapacmvnqs't je paralelna 0 nT T2
veza delimi¢nih sopstvenih kapacitivnosti.
C, =Gy
O0=¢,+¢9,=(C;; +C,))U=CU ¢, 2
U simetri¢nom slucaju je & a
G=—¢=9 1 ¢-¢,=U. C“T 7_C22
Ovakav sistem od dva provodna naelektrisana tela o=0
je mnazvan kondenzator jer u elektrostatici ® Ci
naelektrisanja ne napustaju elektri¢no odvojena ! C 1
. . 5 . 12
naelektrisana tela i na njima se skupljalju (zgu- @2&
$njavaju) tj. kondenzuju. Cp

Ako se jednacine poslednjeg sistema saberu sledi veza iz koje je ocigledno da su
potencijali tela suprotnog znaka. Kad se doslo do saznanja o elektri¢noj struji,
provodna tela su nazvana elektrodama. Faraday je pri proucavanju elektrolize
pozitivnu elektrodu nazvao anoda, a negativnu elektrodu katoda. Ako se prva
jednacina pomnozi sa C,,, a druga sa C,,, pa se zatim od prve jednaCine oduzme

druga, i imaju¢i u vidu da je C), =C,, =C, sledi da je

GGy
G +Cy

Prvi sabirak je kapacitivnost kondenzatora. Drugi sabirak je ukupna kapacitivnost
oba tela prema tatkama koje su na nultom potencijalu. Sopstvene delimicne
kapacitivnosti su, preko tacke nultog potencijala u serijskoj ili rednoj vezi. U
elektrotehnici sopstvene delimicne kapacitivnosti vrlo Cesto stvaraju neZeljena
dejstva i zato su nazvane parazitne kapacitivnosti. Ako su dimenzije elektroda i
njihovo medusobno rastojanje znatno manje od rastojanja do tacaka koje su na
nultom potencijalu tada su parazitne kapacitivnosti zanemarljive u odnosu na
kapacitivnost kondenzatora. Medutim, moguce je posti¢i potpunu nezavisnost
elektrodnog sistema od rasporeda ostalih tela. To se postize stavljanjem
elektrodnog sistema u metalni oklop. Oklapanje elektrodnog sistema predstavlja
savrSenu elektrostaticku zastitu. Isti je slucaj i kad jedna elektroda obuhvata
drugu, na primer sferni kondenzator ili koaksijalni vod.

Q=q=(C12+ ]Uz(C+Cp)U
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Primer 17 - Kapacitivnost kondenzatora

Za elementarne geometrije elektroda (ravna, cilindri¢na, sferna) izrazi za jacinu
elektriénog polja i raspodelu potencijala su izvedeni u ranijim lekcijama i to
primenom Gaussovog zakona i reSavanjem Laplaceove jednacine. 1z tih izraza se
jednostavno dobijaju i izrazi za kapacitivnost odgovarajuc¢ih kondenzatora.

Ravan kondenzator Cilindri¢ni kondenzator Sferni kondenzator
_n g 1 po_d iz
€ 2rne, ¥ 4ne, r
U="Ng-_9 4 U9 1, __4 b-a
€ €05 2ne, a 4ne, ab
q S . 2mg, ab
= —= —_ = = 4
C=uTy In(b/a) C =dme, —
¢ Iz izraza za kapacitivnost sfernog kondenzatora se dobija i C=4
. . . =4ng,a
kapacitivnost usamljene sfere ako se pustida b — .
¢ Iz kapacitivnosti usamljenog elipsoida se dobija isti rezultat, C=8%a
ali se dobija i kapacitivnost kruznog diska poluprecnika « . 0

¢ Neka u kondenzatoru postoji neutralna elektroda tj. Py
elektroda koja nije prikljucena na neki napon a koja kon- SOH
denzator deli na dva dela. Primena Gaussovog zakona ‘
pokazuje da je u oba dela kondenzatora elektri¢no polje i
istog pravca, smera i jaCine jer je zamiSljenom zatvorenim |
povr§inom S, uvek obuhvacena ista koli¢ina naelektri-

sanja. Medutim, napon u kondenzatoru je podeljen.

U_Ed_Ed+Ed, _nd+d, _d 4

9 q ns

g NS _SOS €S

”””””” D

dl 7d2
L_t 1

= T T A
C C] C2

Dobijena je formula za ekvivalentnu kapacitivnost redne veze dva kondenzatora.
Neutralna elektroda ne menja kapacitivnost kondenzatora (videti primer 18).

Zadatak 17.1 - Proceniti kapacitivnosti usamljenih elektroda oblika kvadrata i
oblika kocke kao srednju vrednost upisanih i opisanih krugova, odnosno sfera.

Zadatak 17.2 - Kondenzatorska kaskada se sastoji od
n jednakih celija, kao Sto je to prikazano na slici.
ekvivalentnu  kapacitivnost
kaskade. Pretpostaviti da se ekvivalentna kapacitivnost
ne menja ako se izostavi jedan kondenzator.

Izracunati

beskonacne

c cC

T
il

T 9.

ot of
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18 - Energija elektrostatickog polja - 1

Energija elektrostatickog sistema je brojno jednaka ¢=0
radu koji je uloZen za naelektrisavanje tog sistema. ——
Neka sistem sadrzi samo jedno telo koje se nalazi dg
na potencijalu @. Dovodenjem koli¢ine naelek- dg dg

trisanja dg od referentne tacke do tela izvrsi se dg

elementarni rad i za istu brojnu vrednost se uve- \ q
¢ava i energija. Na kraju procesa je

t 1§ 14> 1

.([(P q c .([q q S C 2 q¢
U polju koje stvara sistem od N naelektrisanih 1 & 1
tela izmedu kojih postoji zapreminska gustina | W = 5 Z q:9; + EJ podV
naelektrisanja izraz za energiju postaje uproscen. =l v
Energiju je mogucée izraziti 1 preko jacine 1 5
elektri¢nog polja (detaljno izvodenje izraza je ovde W= ESOJ.E dv
izostavljeno, videti 29). 4

Oba izraza za energiju su potpuno ravnopravna u pogledu izraCunavanja, ali
drugi izraz ima fizicko tumacenje. Energija je lokalizovana u polju. Za energiju
koja je sadrzana u polju ravnog kondenzatora na oba nacina se dobija isti rezultat,

= 1 1 1 . 5
2;%6], S (@01 =q92)=—qU =
2
W:lsojEdezlsoU—zsalleUz.
2% 204 2

Ako se u elektrostaticko polje unese nenaelektrisano telo ili telo na nultom
potencijalu tada se energija lokalizovana u polju menja.

¢ Energija se povecava ako potencijali ostaju nepromenjeni (izvor napajanja je
stalno prikljucen),
AW =W, —W, =%U2(C—C12) >0, U =const.
¢ Energija se smanjuje ako koli¢ine naelektrisanja ostaju nepromenjene (izvor
napajanja je pre unosenja novog tela iskljucen),

1 11
AW =W, -W,=—q*| ————|<0, g=const.
2°\C C,

Thompsonova teorema (ovde bez dokaza) - Raspodela naclektrisanja na
provodnim telima je uvek takva da je energija u polju minimalna.
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Primer 18 - Promena energije u ravnom kondenzatoru

Ravan kondenzator sacinjen od pravougaonih elektroda povr$ina S, koje se
nalaze na medusobnom rastojanju d,, i prikljucen je na izvor napajanja U, . Kad

se paralelno sa elektrodama u polje kondenzatora jednim delom unese neutralna
provodna ravan do¢i ¢e do promene energije.

Pre unoSenja neutralne elektrode kondenzator je imao kapacitivnost C,, i energija
sadrzana u polju je bila W¥,.
S, 1 , g 1

Co=¢,—2, Sy=la, W,=—CU;==—22=—¢qU,.
ood0 0 02002C0 2‘100

Posle unosenja neutralne elektrode ekvivalentan sistem se sastoji od meSovite
veze tri kondenzatora c¢ije su kapacitvnosti (videti sliku) i ekvivalentna
kapacitivnost sledece:

GG,
c,+C,

[—x)a X xa 2x
CIZSO( p ) Z(I—TJCO, szgom:TCO’ CeZC]+
0 0

— -
S e j_TCZ

I-x X

Kako je kondenzator stalno prikljuen na izvor napajanja energija ostaje
nepromenjena, jer je i ekvivalentna kapacitivnost jednaka pocetnoj, Sto je u
suprotnosti sa poznatim rezultatom da je moralo do¢i do promene energije. Prvo,
pri proracunu su zanemareni efekti krajeva a unoSenjem nove elektrode ovi efekti
se povecavaju. Drugo, uneta elektroda zauzima zapreminu u kojoj je prethodno
postojalo polje, §to je takode zanemareno. Sa elektrodom kona¢ne debljine dobija
se rezultat koji je u saglasnosti sa poznatim. Neka elektroda koja se unosi u polje
ima debljinu d =d,/n, n>1. Sada je:

1
cl=(1—§jc0, =2 " ¢, ce=[1+§ﬂjco>co.

Ako je kondenzator stalno prikljucen na izvor napajanja,
napon ostaje isti, ekvivalentna kapacitivnost je vecéa i
energija se povecava.

w :%CEUOZ > W,

Ako je kondenzator iskljucen sa izvora napajanja, koli¢ine 1 qg
naelektrisanja ostaju iste, ekvivalentna kapacitivnost je W= 5? <W,

veca, a energija se smanjuje. e
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19 - Energija i sila
U nekim sluc¢ajevima je moguée odrediti rezultantnu silu i rezultantne momente

na osnovu poznate ukupne energije elektrostatickog sistema. Metod je poznat kao
metod virtuelnih pomeraja i zasnovan je na zakonu o odrzanju energije.

Pomeraji koji su moguéi ali nisu i ostvareni (za- (P
misljeni pomeraji) daju moguénost za odredivanje |
0
g

n

rezultantnih sila 1 momenata. Ako neko telo u
elektrostatickom sistemu izvrSi virtuelni pomeraj

energija elektrostatickog sistema ¢e se promeniti. >

G
7
f

Ako je pomeraj izveden tako da nije doSlo do pretvaranja

energije u neki drugi makroskopski vid, onda je promena 04=fodg
energije dW jednaka izvrSenom radu d4 . Rad je rezultat delo- 54

vanja neke uopstene ili generalisane sile f duz neke uopstene f= 5o

ili generalisane koordinate g . s

Ako je uopstena koordinata duzina tada je f sila, i ako je uopStena koordinata
ugao tada je uopstena sila f momenat.

Pozitivan prirastaj energije moze nastati samo na racun ulozenog rada koji izvrsi
spoljasnja mehanicka sila protiv sila polja (generatori su iskljuceni, koliCine
naelektrisanja ostaju nepromenjene). Smanjenje energije sistema, ili negativani
prirastaj, znaci rad sila polja (generatori su ukljuceni, potencijali ostaju nepro-
menjeni i koli¢ine naelektrisanja se menjaju na racun energije generatora).
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Primer 19 - Obrtni kondenzator

Za merenje napona moguce je iskoristiti kondenzator promenljive kapacitivnosti.
Neka su elektrode kondenzatora oblika kruznog isecka poluprecnika a .

Kada je jedna od elektroda obrtna a druga nepokretna
kapacitivnost ovog kondenzatora zavisi od povrSine
preklapanja S, odnosno od ugla preklapanja o i
meduelektrodnog rastojanja d ,

S a’o —a—

C=¢g—=¢,—. d
‘d " 2d

Kondnzator je priklju¢en na nepoznati napon U .
Energija sadrzana u polju kondenzatora je , W

Obrtne elektrode

1 2 1 (12 2
W==CU"=—¢,—U"a.
2 4 " d
Ocigledno, u ovom slucaju je generalisana koordinata

ugao i generalisana sila je moment, tj.

ow
_8_’ q = const. ,
g 1
f= N Mza_WZ—Soa_UZ.
ow o 4 d
+——, @ =const.
og

U ravnoteznom stanju ovaj moment je uravnotezen mehanickim putem, obicno
momentom spiralne opruge sa linearnom karakteristikom, M = ko .

g2 [kad
a\ g

Zadatak 19.1 - Odrediti silu izmedu elektroda ravnog kondenzatora pri stalnom
napajanju.

Tako se dobija da je skretanje obrtne elektrode srazmerno
kvadratu napona na koji je kondenzator prikljucen.

Zadatak 19.2 - Ravan kondenzator ¢ije elektrode su pravougaonog oblika dimenzija a i
b na medusobnom rastojanju d , stalno je priklju¢en na izvor napajanja U . Odrediti
silu koja je potrebna da se jedna od elektroda pomeri u pravcu koji je upravan na polje.
Efekat krajeva zanemariti.

Zadatak 19.3 - Jedna elektroda ravnog kondenzatora je nepokretna dok je druga obesena
o oprugu. Kada je kondenzator iskljuéen sa izvora napajanja rastojanje izmedu elektroda
je x. Kada se kondenzator priklju¢i na napon U opruga se istegne za Ax. Ako je
opruga sa linearnom karakteristikom F = o, odrediti vrednost priklju¢enog napona.
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20 - Tackasti simetricni elektri¢ni dipol

Kad je rastojanje d izmedu dva tackasta
naelektrisanja —g 1 +¢ 2znatno manje od
rastojanja bilo kojeg od njih do tacke u polju
R, R, << d tadaje

RR,~r* i R,—R ~dcos0.

Ova dva naelektrisanja Cine elektri¢ni dipol

¢iji je moment

p=qd.
Elektri¢ni potencijal u udaljenim tackama je

g R,—R  q dcos®6 1 pr
= _3.

(P_4TC80 R,R,  4mg, 1° _4TE80 r

Elektri¢no polje je degradijent potencijala. U sfernom koordinatnom sistemu je

- ! %(20059?+sin6@).
or r 00 47580 r

Kakoje d =d cos07—dsin00 i sin00=cos07—d to se zamenom dobija

B 1 (3pr0059;_£362,) 4 Ee 1 (3(191’)r_£)

4me, r r dneg, r

Do istog rezultata dolazi se jednostavnije primenom pravila vektorske analize.
pro .. 1 1 - .3 1.
gradp—3 =(pr)grad—+—grad(pr)=—(pr)—<+—5p,
r roor roor
gde je iskoriS¢ena Cinjenica da je p konstantan vektor. Zamenom u izraz za
elektri¢no polje se dobija poznati rezultat.

Tacke u kojima se odreduje potencijal nisu obavezno znatno udaljene od dipola.

U opstem slucaju je

2 -1/2 2

9 s
Q= re+lz-— —|r+z+—
4me, 2 2

Osim u beskonacnosti (» — o) potencijal je jednak nuli i u tackama koje
pripadaju simetralnoj ravni, jer je =0 za z=0.

-1/2

Prethodna razmatranja dovode do zakljuc¢aka koji su iskazani kroz tri teoreme
koje su posledica zakona o odrzanju energije.
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Primer 20 — Dipol, sila, moment

Tackasti simetri¢ni elektri¢ni dipol rastojanja izmedu naelektrisanja d nalazi se
u koordinatnom pocetku i usmeren je u pravcu z-ose. Na rastojanju z od
koordinatnog pocetka je tackasto naelektrisanje (. Naci intenzitet vektora
elektri¢nog polja u koordinatnom pocetku.
~ 1 1 . ~ 1 R 1 .
Oq 99 . A= 9q ., Oq

z.

1 4ne, R’ 47180( d)z ’ 4ne, R; 4me, d\’
—_— J’_i
2 2

]3:%1+42=Qq 1 3 1 . Oq 2zd P

Ako je d <<z tada je

Fo 04 22
4ne, z

20p

z, odnosno F = 3
4ne,z

gde je p=gqgdz moment dipola. Za elektri¢no polje i moment se dobija

E=—2P_ i ji=pxE=0.
4neyz




Elektrostatika 61

21 - Tri teoreme

¢ Teorema o metalizovanju ekvipotencijalnih povrsina. Elektrostaticko polje
ostaje neizmenjeno ako se deo jedne ili viSe ekvipotencijalnih povrSina zameni
beskonac¢no tankim slojem provodnika jer je i provodnik ekvipotencijalan, a po
teoremi o jednoznacnosti reSenja Laplaceove ili Poissonove jednaine nece biti
promena ni u jednoj tacki polja.

Ako se metalizuje neka =zatvorena ekvipotencijalna
povrsina na njenoj spoljasnjoj strani je naelektrisanje koje
je jednako po koli¢ini i znaku obuhva¢enom naelektrisanju.
Na unutrasnjoj strani je isto toliko naelektrisanje suprotnog
znaka. Ako se metalizuje neka od ekvipotencijalnih povrsi-
na taCkastog naelektrisanja, dolazi se do zakljucka da je
polje naelektrisane sfere isto kao i polje tackastog naelek-
trisanja koje je obuhvaéeno sferom (videti: Faradayev
eksperiment sa peharom)

¢ Teorema ekvivalencije. Sve raspodele izvora elektri¢nog polja, koje u nekom
prostoru stvaraju isto elektricno polje su u odnosu na taj prostor ekvivalentne.
Preciznije, za ekvivalenciju je dovoljno da razliite raspodele naelektrisanja
stvaraju iste tangencijalne komponente vektora elektri¢nog polja.

¢ Teorema lika u ravnom provodnom ogledalu. To je specijalan slucaj
teoreme ekvivalencije ili teoreme o metalizovanju ekvipotencijalnih povrSina. U
delu prostora koji je ograni¢en beskona¢nom provodnom ravni na nultom poten-
cijalu postoje izvori elektricnog polja.

Uticaj ravni na raspodelu polja je moguce zame- originali
niti likovima izvora polja u odnosu na ravan, tj.
naelektrisanjima koja su suprotnog znaka i koja
su simetri¢no rasporedena u odnosu na ravan. U
cilindricnom koordinatnom sistemu ¢iji koor-
dinatni pocetak pripada provodnoj ravni funkcija
koja opisuje raspodelu potencijala kad je uticaj
ravni zanemaren je @;(r,z). U delu prostora gde

polje realno postoji je:

dor2)| _

Or.2)=¢(r20)-¢(r-2),  @(r.2)]_, =0, 5
v z=0

Da bi funkcija ¢(r,z) predstavljala stvarnu raspodelu potencijala u delu prostora
gde izvori polja postoje, potrebno je da budu zadovoljeni grani¢ni uslovi. Oba
uslova su ocigledno zadovoljena, pa je na osnovu teoreme o jednoznacnosti
reSenja Laplaceove jednacCine funkcija @(r,z) 1 jedino moguce reSenje.
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Primer 21.1 - Sila izmedu povrSinskog i tackastog naelektrisanja

Iznad provodne ravni, koja je naelektrisana povrSinskom gustinom naelek-
trisanaja m, na visini /4 se nalazi tackasto naelektrisanje ¢ . Sila koja deluje na

tackasto naelektrisanje se sastoji od dve komponente. Prva komponenta, Fj,

potice od povrSinskih naelektrisanja na ravni i moze da bude privlacna ili
odbojna,

+q12, gn>0
| = .
—qtz, gn<0

€

Druga komponenta, F,, poti¢e od naelektrisanja koja su indukovana prisustvom
tackastog naelektrisanja, i dobija se primenom lika u ravnom provodnom

ogledalu, iuvek je privlacna,
_4q 1
4n (2h)

A
4me, (2h)

|

2 f=—1’liifa gde je n;
80

Za ukupnu silu se dobija

+Lm-m)z gn>0
F_.' = 80 .
~Lm+n) 2 gn<0
€
Kad su naelektrisanja suprotnog znaka, gn <0, sila je uvek privla¢na i orijenti-
sana ka ravni. Kad su naelektrisanja istog znaka, gn > 0, moguca su tri slucaja.

n>mn, P Silaje odbojna.

Sila je jednaka nuli i tackasto naelektrisanje se nalazi u stanju
labilne ravnoteze.

Sila je privlacna i pored cCinjenice da su naelektrisanja istog
znaka.

n=n »
n<m, »
Poslednja dva slucaja nisu moguca bez dejstva sila neelektri¢nog porekla.

Zadatak 21.1 - Poduzno naclektrisanje ¢’ nalazi se na jednakim rastojanjima od dve

ravni koje se seku po pravim uglom. Primenom teoreme lika u ravnom provodnom
ogledalu odrediti potencijal i elektricno polje.

Zadatak 21.2 - Kruzni obru¢ ¢iji je polupre¢nik a, nacinjen od provodnika ¢iji je
polupre¢nik b, naelektrisan je koli¢inom naelektrisanja g i nalazi se paralelno sa
savr§eno provodnom zemljom na visini /. Odrediti raspodelu potencijala i elektri¢nog
polja u tackama koje pripadaju osi obruca.
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Primer 21.2 - Gromobransko uze

Iznad provodnika dalekovoda montiran je uzemljeni
provodnik. Ceo sistem se nalazi u atmosferskom
homogenom elektriénom polju,

0
E,=-Ez, @, :—ondz —E,z.

Pod dejstvom stranog polja u provodniku se indukuju

naelektrisanja gustine ¢'. Ta naelektrisanja indukuju Az
istu koli¢inu naelektrisanja suprotnog znaka koje je —4 R’l
raporedeno po povrsini zemlje, i €iji uticaj je moguce — M
zameniti elektricnim likom. Potencijal koji u pro- h ~0
izvoljnoj tacki M stvara ovaj elektrostaticki sistem je *=1
5 y
’ ’ 2 2 R2
h
p=Eyz+—L In-2=fpz+-2 lny2 +(Z+h)2 :
2ne, R, dne, Yy +(z—h) ——T +q'
Na povrs$ini uzemljenog provodnika, na primer Ey(h—a)+ q In 2h—a _ 0
u tacki y=0, z=h—a, potencijal je jednak 2ng, a
nuli. Ako je ~>>a, §to je inaCe slucaj kod — Eh
realnih sistema, iz gornjeg uslova sledi izraz za 4 =78 5y
poduznu gustinu indukovanih naelektrisanja. ln7

Zamenom u pocetni izraz dobijaju se Egh - P4 (z4h)

konacni izrazi za potencijal i elektricno o=FE;z— 5 5
polje. Na osi sistema y =0 postoji samo 21n% yo+(z—h)
z -komponenta elektri¢nog polja. a
- E, 4yzh? . Uzemljeni  provodnik
== y znatno slabi primarno
y 2h 2 257 4,2 1N\2 p
=" +EE) G+ E=h)) polje. Sa realnim poda-
a s s s cima oko 60%. Zato pre
E —_Ez+ E, 2h°(y"—z"+h") P svega i1ma  zaStitnu
T L P (0 (- h)) ulogu tj. shwzi kao
a gromobran.
_q 1 Ejh Jednostavnije nego da se potrazi moduo vektora elek-
E = i, g
P 2me, v 2h tricnog polja do pribliznog rezultata se dolazi iz izraza
rin— oy . N S
a za elektri¢no polje poduznog naelektrisanja.

Na povrsini zastitnog provodnika polje ima veoma veliku vrednost pa u njegovoj
okolini vazduh postaje provodan (£, ~30kV/cm ) i dolazi do sporog ili brzog

praznjenja atmosferskog naelektrisanja u zemlju.
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22 - Povrsinski elektri¢ni dipol - dvojni elektri¢ni sloj

Sistem od dve povrsine koje su ravnomerno naelektrisane povrsinskim gustinama
naelektrisanja +m 1 —n, 1 ¢ije je medusobno rastojanje d znatno manje od od

udaljenosti tacaka u kojima je potrebno odrediti elektri¢no polje i potencijal, ¢ine
povrsinski elektri¢ni dipol ili dvojni elektri¢ni sloj.

Ovaj zamisljeni elektrostaticki sistem pruza mo-
guénost da se u elektrostatickim sistemima opisu
razdvojne povrSine, i jo§ opstije da se uticaj
izvora elektricnog polja na neki deo prostora
zameni povrSinskom raspodelom naelektrisanja
po povrsini koja razmatrani deo prostora
ograniCava. U sustini dvojni elektri¢ni sloj je
poseban slucaj teoreme ekvivalencije.

U odnosu na referentnu tacku u beskonacnosti, potencijal koji ovaj elektrostaticki
sistem stvara u nekoj tacki polja M je prema principu linearne superpozicije zbir
potencijala koji poti¢u od svakog sloja posebno,

nﬁnﬁ_n[l lde

" Rl R2

_471:30 v R 4me, v R _4nao <

Za udaljene tacke (d << R,, R, ) u polju je:

R~R,=R i L_L:RZ_Rlzﬂg dcos(zn,R)
R R

i za potencijal se dobija

0= nd j cos(n,R)dS= nd J RdS
47'C80 S Rz 47[80 S RZ

1z bilo koje tacke vidi se samo jedna strana dvojnog sloja, pa je jasno da prostorni

ugao Q predstavlja ugao pod kojim se vidi kontura na koju se oslanja dvojni

elektri¢ni sloj.

Na osnovu definicije prostornog ugla se dobija konacan izraz za nd
potencijal koji dvojni elektricni sloj stvara u udaljenim =
tackama.

4neg,

Proizvod debljine sloja i povrSinske gustine naelektrisanja je elektricni moment
sloja ili povrSinski elektri¢ni moment.

— = d U
Za napon izmedu slojeva i potencijal se dobija U=Fd= 2— , 0= EQ
0
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Primer 22 - Dvojni elektri¢ni sloj oblika kruga

Dve ravne povrSine oblika kruga polupre¢nika a nalaze se na medusobnom
rastojanju d i naelektrisane su povrSinskim gustinama naelektrisanja +m i — 1.

U tackama koje pripadaju osi dvojnog elektricnog sloja potencijal je

d
(p_n

= Q,
4ne,

gde je

Q=2nf1-——24 |
V1+(z/a)?
prostorni ugao pod kojim se vidi kontura ovog sloja.

Do istog rezultata je moguée doc¢i i na osnovu potencijala koji stvara usamljena
kruzna ploca,

o= a7 ) Ly - e ay).
2g, 2¢,

ili

(p:l(«/a2 +22 —Jd? +(z+d) +d)
2¢g,

Kako je rastojanje izmedu slojeva d znatno manje od ostalih dimenzija, drugi
sabirak je moguce razviti u 7aylorov red u kolini tacke d =0,

f@ = +Gray =3 L0 g
n=0 n:
fd)y=va’>+z* +

2.2
d az

z
+ +...
2, _23/2
\/az—i-z2 2(a”+z7)

Kad se u proracun uklju¢e samo prva dva ¢lana reda, jer su ostali zanemarljivi,
dobija se (takode videti primer 2 i primer 3)

0= nd - z/a
260 l+(z/a)? )
Sto je ve¢ poznat rezultat.

Zadatak 22.1 - Odrediti potencijal koji stvara dvojni elektri¢ni sloj oblika poluravni.

Zadatak 22.2 - Odrediti potencijal koji stvara dvojni elektri¢ni sloj oblika beskonacne
trake Cija je Sirina 25b .
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23 - Dielektrici

Dielektrici su ¢vrste, tecne 1 gasovite materije koje ne provode elektri¢nu struju.
Dielektrici su izolatori. Taénije, izolatori su lo$i provodnici. Izolatori imaju
sasvim malu provodnost i u neznatnoj meri provode elektricnu struju. Pojam
idealnog izolatora je samo prva aproksimacija stvarnog stanja. Uticaj dielektrika
na privlacenje ili odbijanje naelektrisanih tela primeéen je na samom pocetku
razvoja nauke o elektricitetu. Prvi matematicki nagovestaj vidi se veé iz
Coulombovog zakona - sila zavisi od sredine u kojoj se nalaze naelektrisanja.

Cavendish (Henry Cavendish, 1731-1810), i zatim nezavisno
od njega, i Faraday su utvrdili da se kapacitivnost konden-
zatora menja ako se izmedu elektroda kondenzatora unese
dielektricna materija. Rezultati njihovih eksperimenata su
pokazali da promena kapacitivnosti kondenzatora ne zavisi
ni od oblika ni od veli¢ine elektroda ako se ceo medu-
elektrodni prostor ispuni dielektricnom materijom, veé
zavisi samo od vrste dielektrika.

Za razliku od provodnika, dielektrici ne sadrze slobodne elektrone i sastoje se ili
od elektriéno neutralnih molekula kakve su sve amorfne materije ili od jona koji
se nalaze u ¢vorovima neke kristalne reSetke koja je u celini elektricno neutralna.
U oba slucaja naelektrisanja su vezana elasticnim meduatomskim 1
medumolekularnim silama i pod dejstvom spoljasnjeg elektricnog polja mogu
napustiti svoje ravnotezne polozaje za mikroskopski mala rastojanja, zauzimajuci
tako nove ravnotezne polozaje. Tako dolazi do polarizacije dielektrika koji u
celini viSe nije elektricno neutralan. Vezana naelektrisanja su naelektrisanja
neutralnih molekula i joni kristalne reSetke koji nemogu da napuste materiju i
koja su pod dejstvom stranog elektri¢nog polja zauzela nove ravnotezne polozaje.
Polarizacija dielektrika je proces pomeranja vezanih naelektrisanja pod dejstvom
spoljasnjeg elektri¢nog polja na nove ravnotezne polozaje. Kad jacina spoljasnjeg
elektricnog polja ima kriti¢nu vrednost, tj. takvu vrednost da Coulombova sila
postane veca od medumolekularnih sila, dolazi do cepanja molekula i do
elektricnog proboja u dielektriku. Kritiéna vrednost jacine elektricnog polja ili
elektri¢na ¢vrstina dielektrika je jaCina elekticnog polja pri kojoj dolazi do
elektri¢nog proboja u dielektriku.

Postoje dve klase dielektrika. Prvu klasu ¢ine materije ¢iji su molekuli tako
simetri¢éno nacinjeni od elementarnih nosilaca naelektrisanja da je u odsustvu
spoljasnjeg elektricnog polja elektricni dipolni momenat jednak nuli. To su
dielektrici sa nepolarnim molekulima, na primer CO,,N,,H,. Druga klasa

dieletrika sadrzi materije ¢iji je elektri¢ni dipolni moment postoji ¢ak i kad
spoljasnje elektricno polje ne postoji. To su dielektrici sa polarnim molekulima,
na primer SO, ,H,S, H,0.
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24 - Polarizacija dielektrika

¢ Polarizaciju dielektrika sa nepolarnim molekulima je moguce objasniti na

primeru atoma elementa ¢iji je redni broj u periodi¢nom sistemu elemenata Z .
Naelektrisanja jezgra i elektronskog omotaca su +Ze. U spoljasnjem elektri-

¢nom polju ovaj atom postaje elektricni dipol momenta p = Zed = q(; , Cija osa je
u pravcu polja. Makroskopska veli¢ina koja opisuje polarizovanost materije je
vektor polarizacije tj. zbir svih elektricnih momenata za posmatrani deo zapremi-
ne, tj. element zapremine AV koju zauzima dielektrik je moguée u elektricnom
smislu zameniti dipolnim momentom p .

ﬁz_zp_ qu = Ap=PAV

ocigledno ima prirodu povrSinske gustine naelektrisanja. Posto je [P] =—

Odavde sledi jedinica za jacinu vektora polarizacije, koja C
dipolni momenat srazmeran jecini elektriénog polja bice to i m

vektor polarizacije tj. vektori P i E su kolinearni, i « je P=qaE
koeficijent polarizacije.

¢ Polarizaciju dielektrika sa polarnim molekulima je
moguce objasniti na primeru jednog elektriénog dipola ¢iji
je elektriéni moment p stalan. Na dipol deluje sila F . Kad

je polje homogeno, Ez = El =E,sila je jednaka nuli,

F=qE, - qE,.

Na dipol deluje spreg sila ¢iji moment koji tezi da dipol
okrene tako da se osa dipola i pravac polja podudaraju.

M =q (R xE~7yxE)=q( ~7)xE=qdxE = pxE

Iz izraza za moment sprega sila je jasno da izbor koordinatnog pocetka
ne utie na rezultat.

Eksperimentalno je dokazano da i kod dielektrika sa polarnim molekulima, mada
ne u svim slucajevima, vektor polarizacije ostaje kolinearan sa vektorom spo-
ljasnjeg elektri¢nog polja ali do odredenih jacina. Nakon S$to jaCina spoljasnjeg
elektricnog polja postane veca od neke vrednost, koja zavisi od vrste dielektrika,
dolazi do efekta zasi¢enja. Takve materije ostaju trajno polarisane i nazvane su
elektreti. Uopste, dielektrici mogu biti linearni (osobine ne zavise od jacine
spoljasnjeg elektri¢nog polja), i nelinearni. Takode, mogu biti homogeni (osobine
se ne menjaju duz pravca polja) i nehomogeni. Dielektrici mogu biti izotropni
(osobine u svim pravcima su iste) i anizotropni.
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25 - Povrsinska gustina vezanih naelektrisanja

Polaze¢i od prethodnih razmatranja moguée je | +n
objasniti makroskopske efekte koje stvara prisustvo

linearne, homogene i izotropne dielektricne materije ~
u spoljasnjem elektricnom polju. U ravnom 4 i
kondenzatoru izmedu cijih elektroda je prazan + il I e

prostor i kod kog su dimenzije elektroda znatno vece ' s
od medusobnog rastojanja uspostavljeno je, vrlo : hl I
priblizno, homogeno elektri¢no polje, -

Jacina elektri¢nog polja je £, =n/¢,, gde je n povrSinska gustina slobodnih na-
elektrisanja. Kondenzator je iskljucen sa izvora napajanja i u meduelektrodni
prostor u celini se unosi dielektri¢na materija. U materiji se stvaraju nizovi
elementarnih elektri¢nih dipola ¢ije su ose priblizno ili sasvim tacno u pravcu
elektri¢nog polja. Naelektrisanja na krajevima dipola se medusobno neutralisu jer
su suprotnog znaka. Ostaju samo naelektrisanja na krajevima spoljasnih dipola.
To su vezana naelektrisanja. Svaki element zapremine dV =dSd/ je elementarni

elektricni dipol ¢iji je moment, dp=PdV =PdSd/. Moment elementarnog
elektricnog dipola je dp =dg, d/, pa iz poslednja dva izraza sledi izraz za jacinu

vektora polarizacije. P = %: n, =aFE Zbog pojave vezanih naelektrisanja uz

ds
elektrode kondenzatora stvara se dodatno elektri¢no polje koje je istog pravca ali

suprotnog smera u odnosu na spoljasnje elektri¢no polje, E, =1, /g,, odnosno
1 1 1
E=E-E=—(M-n)=—0-P)=—M-af) = E=—1_.
€ € € gy +0a

Koeficijent polarizacije o je moguce predstaviti u vidu proizvoda a =gy, gde
je x,. neimenovan broj nazvan elektricna susceptibilnost. Tako se dobija izraz iz
kog je jasno da imenilac mora biti neka nova dielektri¢na konstanta.

P n__.m._nm n
€

= = = =— = e=¢gp,, E=
goto  ggte), E(l+x) &g, &

Sa g, je obelezena relativna dielektricna konstanta, i sa € dielektri¢na konstanta
dielektrika.

E U g 1
Kad se dobijeni rezultat uporedi sa izrazom za jatinu | E, U, ¢ e,
elektricnog polja u kondenzatoru bez dielektrika slede
odnosi koje su zapravo otkrili Cavendish i Faraday. < -t _¢
Co &
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26 - Zapreminska gustina vezanih naelektrisanja

Potencijal dipola koji predstavlja element polari-
zovanog dielektrika (videti: tackasti simetricni dipol)
1 PR . =
o=-—=, (dp=Pdr)
4ne, r

pa je potencijal svih dipola koji zamenjuju dielek-
tricnu materiju

Q= j—dV’

4, 5

Za izracunavanje poslednjeg izraza potrebno je krenuti od identiteta

diV|M'(RJ Pgrad| —+ d1V P—RR+ div|,,

gde se gradijent reciprone vrednosti rastojanja racuna u tacki u kojoj se
potencijal odreduje, a divergencija vektora polarizacije raCuna na mestu izvora.
Tako je

L (PR,
_4RSO£R3 e Id1v| ( JdV—4n8 J' div], PdV",

ili kada se na prvi integral primeni teorema divergencije

0= 1 Iﬁé

= —P
R’ 4ne, iER

4me, »

gde je indeks uz divergenciju sada izostavljen kao suviSan jer izvori vektora
polarizacije su samo u zapremini koja se posmatra. Kad je cela zapremina
ispunjena dielektrikom integrali po povrSinama diskontinuiteta (koje bi trebalo
iskljuciti) ne postoje.

U povrSinskom integralu podintegralna funkcija
brze tezi nuli nego Sto povrSina tezi beskonacnosti,
pa je vrednost ovog integrala jednaka nuli.

Sa druge strane, izraz za odredivanje potencijala koji 0=
stvara bilo koja zapreminska gustina naelektrisanja 4me, 5
je od ranije dobro poznat.

= div PdV’
¢ 4Tt80 ~[

j— av’

Uporedivanjem se dobija izraz za zapreminsku P, =—divP

gustinu vezanih naelektrisanja.
Slobodna 1 vezana naelektrisanja ravnopravno o= I PEPy 4y
stvaraju potencijal i elektri¢no polje. 4mg,

U homogeno polarizovanom dielektriku nema viskova naelektrisanja istog znaka.
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27 - Maxwellov postulat = tre¢a Maxwellova jedna¢ina

Elektricno polje koje stvaraju vezana naelektrisanja
superponira se na elektricno polje koje stvaraju slobodna
naelektrisanja pa u diferencijalni oblik Gaussovog
zakona treba ukljuciti obe zapreminske gustine div (e, E+ 13)=p
naelektrisanja.

divE=—(p+p,)
€

D=¢g,

o
N

Maxwell je definisao vektor D i nazvao ga vektor +

elektri¢ne indukecije ili vektor dielektriénog pomeraja.

Uvodenjem ovog vektora sledi generalizacija Gaussovog Diferencijalni oblik
zakona poznata kao Maxwellov postulat ili treca divD=p
Maxwellova jednacina. Izlazni fluks vektora elektri¢ne

indukcije kroz zatvorenu povrSinu § koja ograniCava Integralni oblik
zapreminu V' jednak ukupnoj koli¢ini slobodnih -
naelektrisanja koja su obuhvaéena tom povr§inom i to ifDdS =IpdV
bez obzira da li je dielektrik homogen ili nije. s v

U vezi sa uvodenjem vektora elektri¢ne indukcije treba dati napomene koje slede.

¢ Izvori i ponori polja vektora elektricne indukcije su isklju¢ivo slobodna na-
elektrisanja, $to znaci da su linije polja neprekinute kroz dielektrik bez obzira na
nehomogenosti. Ova Cinjenica je od velikog znacaja pri odredivanju elektricnog
polja u heterogenim dielektricima.

¢ U opstem slucaju polje vektora elektri¢ne indukcije je vrtlozno jer je
rot D = rot(sOE + f’) =g, rot E+rot P=rotP.
¢ Kod linearnih i izotropnih dielektrika vektori E,P i D sukolinearni, paje
D=g,E+P=g)E+aE =¢,E +yg,E =¢,e,E=¢E.

¢ Kad je dielektrik homogen dielektri¢na konstanta ne zavisi od koordinata i
Maxwellov postulat se moze napisati u obliku koji formalno isti kao i Gaussov
zakon u diferencijalnom obliku, s tim §to umesto g stoji €.

divD=gdivE =p, divE="L
€

¢ Poissonova jednacina ¢e takode imati formalno isti oblik. Kako su osnovne
diferencijalne jednacine polja u dielektriku formalno iste sa onima u slobodnom
prostoru, to moraju biti i sva reSenja elektrostatickih problema koja se iz njih
dobijaju.

div(gradp) = P
€
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28 - Granicni uslovi na razdvojnoj povrsini dva dielektrika

Promenu jacine i pravca vektora elektri¢ne
indukcije na razdvojnoj povrsini dva dielektrika D,
mogucée je odrediti primenom Maxwellovog
postulata u integralnom obliku. Neka zatvorena
cilir}d.ri-éna povrSina ima ognovige koje leze sa o 5 g g
razli¢itih strana ove povrsine, i neka su tako 2n

male da je vektor elektri¢éne indukcije moguce

smatrati konstantnim.

ol

2

DdS=gq= IndSznAS

AS

Y —e—

U opstem slucaju na razdvojnoj povrsini postoji

ovrsinska gustina slobodnih naelektrisanja 7.
p .. g .y Ve v J n D]nAS_DZnAS:nAS
Kad visina cilndricne povrsine tezi nuli fluks

vektora elektri¢ne indukcije postoji samo kroz D,, - D,, =n
osnovice, pa sledi rezultat za razliku normalnih
komponenti ovog vektora. Kad na razdvojnoj D,, =D,,

povrSini ne postoje slobodna naelektrisanja - -
normalne  komponente vektora elektriéne &by, =6k,
indukcije su jednake. Iz grani¢nog uslova za 2 2
oy P _ ?,
normalne komponente vektora elektriénog 818__826_
polja sledi granicni uslov za izvode potencijala n L
u pravcu normale.

§EAl = B, M- E, Al =0
Cirkulacija vektora elektri¢nog polja je jednaka v
nuli. Neka pravougaona kontura ima dve

stranice sa razli¢ith strana povrsine razdvajanja. E, =Ey
Ako visina konture tezi nuli sledi da su tangen-

.. . : D, D,
cijalne komponente vektora elektricnog polja —L =
medusobno jednake. Na samoj razdvojnoj & &
povrsini i potencijali su jednaki. 0o =0,
Iz grani¢nih uslova neposredno sledi odnos ano. &
uglova koje zaklapaju vektori elektrostatickog —1 =1
polja. To je zakon prelamanja linija polja. tana, &

Pri prolasku kroz grani¢nu povrSinu vektori elektricnog polja i elektricne
indukcije se skokovito menjaju,

€ €
E,-E,, = [l_s_leln > D, -D,, = (I_E_ZJDU .
2 1

Ako je g,>>g, tada a, >n/2 i o, >0 Sto je slucaj i kod provodnika.
Analogija je samo formalna jer dielektri¢na konstanta provodnika priblizno ista
kao za vazduh. Medutim, u svim formulama koje vaze za dielektri¢nu sredinu €
moze se staviti € - oo da bi se dobile formule koje vaze za provodnu sredinu.
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Primer 26 - Vezana naelektrisanja oko provodne lopte

Neka se usamljena naelektrisana provodna lopta poluprecnika ¢ nalazi u homo-

genom dielektriku ¢ija je dielektri¢na konstanta € . Vektor polarizacije je
P=D—e,b=(c—en)E=dE"%) T

4ne r

b

gde je g=n4na® ukupno slobodno naelektrisanje na lopti, koje je jasno
rasporedeno po povrsini lopte. Kako je div(#/r*)=div(#/r’)=0 to neposredno
sledi da je zapreminska gustina vezanih naelektrisanja jednaka nuli,
p, =—divP=0. Povriinska gustina vezanih naelektrisanja koja su suprotnog
znaka bice

=-P= ‘?(80_8)L2

L 4dne  a

b

tako da je ukupna koli¢ina naelektrisanja uz povrsinu lopte
€
qtot = q + nv4na2 = q?(] H

odakle sledi da je elektri¢no polje

~

Ev: Gt T _

q 7
4ne, r* Ane r?

B

$to je poznat rezultat.
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Primer 27 - Odredivanje dielektricne konstante dielektrika

Sferni kondenzator je do polovine napunjen tecnim dielektrikom i priklju¢en na
napon U,. Nakon iskljuivanja izvora napajanja teCni dielektrik se ispusti.
Izmereni napon izmedu elektroda sada ima vrednost U, . Potrebno je odrediti
vrednost relativne dielektri¢ne konstante.

Primenom Maxwellovog postulata u integralnom obliku dobija se izraz za
kapacitivnost sfernog kondezatora sa dielektrikom ¢ija je dielektricna
propustljivost €.

C=4rne ba ,
—a

gde su a 1 b polupre¢nici unutrasnje i spoljasnje elektrode.

Kad je kondenzator do polovine ispunjen dielektrikom elektricno polje i dalje
ima radijalni karakter, a integracija se posebno vr$i za svaku od polovina
zamiSljene sfere. Tako se dobija da je kapacitivnost ovakvog kondenzatora
ekvivalentna kapacitivnosti redne veze dva kondenzatora, tj.

1 ba 1 ba 1 1
C,==4 +—4 =—(C+Cy)==(1+¢,)C,.
a75 Tcgb—a > ngob—a 2( 0) 2( g,)C,

Kako je pre ispustanja teCnog dielektrika kondenzator isklju¢en sa izvora
napajanja to znaci da koli¢ine naelektrisanja ostaju nepromenjene,

g4 =CaUz =CoUy =q,

Zamenom izraza za C, iz poslednje jednakosti sledi

Dalije Uy>U, ?

Zadatak 27.1 - Ravan kondenzator Cije elektrode su na medusobnom rastojanju d
prikljuéen je na izvor napajanja napona U . Kad se u meduelektrodni prostor ubaci
plo¢ica debljine d/2 ¢ija je relativna dielektricna konstanta €,, u preostalom
vazdu$nom delu ja¢ina elektrinog polja povecéa se k& puta u odnosu na prethodnu
vrednost. Odredit vrednost ¢€,..
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Primer 28 - MeSovita veza ravnih kondenzatora ?

Ravan kondenzator sa troslojnim dielektrikom kao na slici nije moguce pred-
staviti kao meSovitu vezu tri kondenzatora. Posto je polje normalno na povrsine
elektroda moze se pretpostaviti da je elektriéno polje homogeno u svakom od
slojeva. Tada bi grani¢ni uslovi na razdvojnim povrSinama slojeva bili:

razdvojna grani¢ni o
povrsina uslov .
1 C,
€ -
hdl E =E, &
&2 € #
g€ -
1 gL =&k, c,
g€ &,F, =¢,E
2| &3 2Ly =830
U U

Iz poslednja dva grani¢na uslova sledi da je ¢E, =¢,E,, §to je protivurecno
prvom grani¢nom uslovu, pa je jasno da polje u ovakvom kondenzatoru nije
homogeno.

Zadatak 28.1 - Pokazati da je ravan kondenzator sa
dvoslojnim dielektrikom moguée prikazati kao rednu,
odnosno paralelnu vezu dva kondenzatora,

_ GG

.= , C,=C+0C,.
C +C,

Zadatak 28.2 - Unutrasnji provodnik sfernog konden-
zatora oslonjen je na konusni oslonac cija je dielektricna

konstanta €, . Ostali deo prostora je ispunjen vazduhom.

Izvodnice oslonca su radijalne i seku se u zajednickom
centru sfernih elektroda. U poprecnom preseku, kome e

pripada zajednicki centar, izvodnice grade ugao o . Iz

¢injenice da je napon izmedu elektroda svuda isti, sledi da A
je elektriéno polje u kondenzatoru radijalno i zavisi samo
od rastojanja.

Grani¢ni uslov za tangencijalne komponente vektora elektriénog polja na razdvojnoj
konusnoj povrsini je zadovoljen. Primenom Maxwellovog postulata na zamisljenu sfernu
povrsinu poluprecnika a <r<b, gde su a i b poluprecnici elektroda odrediti izraze za

elektri¢no polje, napon izmedu elektroda i kapacitivnost.

Zadatak 28.3 - Odrediti elektricno polje, napon i kapacitivnost za slucaj koaksijalnog

voda ¢iji je unutrasnji provodnik oslonjen na klinasti nosa¢. Koristiti sliku iz prethodnog
zadatka za ilustraciju poprecnog preseka koaksijalnog voda.
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29 - Energija elektrostatickog polja - 2

. . . U vakuumu
Izraz za energiju elektrostatickog polja u kome se

nalazi N naelektrisanih tela i1 zapreminska
gustina naelektrisanja, koji je ranije ve¢ izveden

IR 1
w ZEZ‘L‘(P;' +EIP(PdV
u okviru proucavanja elektrostatickog polja u i M

vakuumu, pokazuje da je elektrostaticka energija
funkcija koli¢ine naelektrisanja i potencijala.

1 2
w=—g |E*dV
2 Ol

Takode, pokazano je da je ovaj izraz moguée pomocu Gaussovog zakona
transformisati na oblik u kome se pojavljuje samo ja€ina elektricnog polja. Na
formalno isti nacin je moguce u razmatranje uvesti i vektor elektricne indukcije,
ovog puta koriste¢i Maxwellov postulat.

div(gD) = odiv D+ Dgrad N ipcpdV =!diV(tP15)dV+;[El5dV
Ul U
div (D) = ¢p— DE ip(pde;f(pﬁd§+;[EDdV
%

Svako od tela u sistemu svojom
granicnom povrSinom S;, obuhvata
koli¢inu naelektrisanja ¢, (negativan
znak potie od orijentacije normala).
Sva tela zajedno su obuhvacena ifxpﬁdg =0
povrsinom S, . S,

Integral po povriini S, je jednak nuli. Ova povrsina

se iri do beskonatnosti po zakonu r*, jadina

elektri¢nog polja opada po zakonu r*, pa

podintegralna funkcija tezi nuli kao i potencijal, tj.

kao r'. U tatkama u beskona¢nosti potencijal je

jednak nuli i ceo sistem se iz tih tacaka vidi kao
tackasto naelektrisanje.

. .. U materijalnoj sredini
Konaéno se dobija Jaino)

1 1
Ip(pdV:—i(piqi+J.EDdV’ W:EZqi¢i+EIp@dV
AY4 i=1 1% i=1 \

pa sledi i konaCan izraz za energiju elektro-
statickog polja na osnovu koga je jasno da je WleEDdV
energija lokalizovana u polju i da nosioci energije 2y

nisu naelektrisanja.
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30 - Dielektri¢na sfera u homogenom elektri¢nom polju

Cestica sfernog oblika polupre¢nika a, nadinjena od
dielektrika propustljivosti €, nalazi se u homogenom
elektricnom polju E,=E,? u vakuumu. Sferni
koordinatni sistem (7,0,9) je postavljen sa poCetkom
u centru sfere. Posto je problem rotaciono simetrican,
raspodela potencijala je odredena reSenjem dvo-
dimezionalne Laplaceove jednaCine koja zadovoljava
grani¢ne uslove na povrsini sfere i u beskonacnosti.

Postavka problema

Laplaceova jednacna Grani¢ni uslovi
¢=0(r,0) P, _, =, ..
al" r=a 6r r=a+

9 r2a_(p + .1 K Singa_(p =0 lim ¢(r,0) =—E,z =—E,rcos0
or or ) sin6 00 00 o

UobiCajeni metod za reSavanje ovakvih problema se sastoji u razdvajanju
promenljivih. ReSenje za raspodelu potencijala se pretpostavlja u obliku
proizvoda dve funkcije od po jedne promenljive, @ =R(r)T(0)=RT . Time se
Laplaceova jednacina svodi na jednakost

1 d{ ,dR 1 1 d(. ,dT

—— | —|=—=——=—| sin0—|.

R dr dr T sin6 d6 do
Kako leva strana ove jednaCine zavisi samo od promenljive », a desna strana
samo od promenljive 0, jednakost je moguca samo ako su obe strane jednake

istoj konstanti. Iskustvo je pokazalo da je pogodan izbor za konstantu razdvajanja
n(n+1), aevo i zbog Cega.

Leva strana gornje jednakosti postaje F*R"+2rR —n(n+1)R=0
Eulerova diferencijalna jednacina (Leonhard
Euler 1707-1783). Resenje se trazi u obliku R=r

stepena nezavisno promenljive. To daje K*+k-n(n+1)=0
karakteristicnu jednacinu ¢iji su koreni celi

brojevi. k=n, ky=-(n+l)
Kona¢no resenje je linearna kombinacija dva R=Cr"+Cop
partikularna reSenja. ! 2
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Desna strana postaje Legendreova diferen-
cijalna jednacina (Adrien-Marie Legendre,
1752-1833), cija su reSenja Legendreovi
polinomi prve i druge vrste.

Drugo partikularno reSenje treba iskljuciti,
uzimajuéi da je D, =0, jer za tacke na z-
osi tj. za cosO@==1 polinomi druge vrste
imaju beskonacnu vrednost, a potencijal je
konacna veli¢ina.

Na velikim udaljenostima od sfere » — o,
drugi sabirak tezi nuli, a potencijal mora da
bude jednak potencijalu pobudnog polja,

lim (C,r" +Cyr ! )F; (cos0)=—EyrcosO

rF—o0
odakle sledi da je n=1, jer je B, =cosH.

Dalje treba voditi rac¢una u kom se domenu
odreduje potencijal. Unutrasnjost sfere
obuhvata koordinatni pocetak r=0, pa
treba uzeti C, =0 jer je potencijal konacna
veli¢ina. Okolina sfere obuhvata i tacke u
beskonacnosti pa je C, =—E,.

77
, €0sO _,
T"+——=T"+n(n+1)T =0
sin 6
T =D, P,(cos0)+D,0Q,(cos0)
B =1
B =cos6
P, =l(3cos2 06-1)
2
1, 1-cos6
=—1
] 2n1+cose
cosO ., 1-—cosH
0= 2 1+cosH
3cos?0—1, 1-cos® 3cos0
0, = In -
4 1+cos6 2
0= (Clr” + Czrf”*l)Pn(cos 0)
C, rcos, r<a
(p_
C
(—E0r+—22jcos9, rza
r

Kada se ovako dobijenim reSenjem zadovolje prvi i drugi grani¢ni uslov dobijaju
se dve linearne jednacine sa dve nepoznate konstante integracije. ReSenje ovog
sistema daje vrednosti za konstante integracije

3g, £—¢g,

C=- E,, C =
! e+2¢, 0 ?

i konac¢no resenje za funkciju raspodele potencijala.

3g,

;== E,rcos, r<a
£+2¢,
(P:
aY e-¢
¢, =—E,rcos0+| — O Eyrcos0, r>a
r) e+2¢g

Kako je u sfernom koordinatnom sistemu z =rcos0,
u unutra$njosti sfere potencijal se moze prestaviti i
pomocu z -koordinate.
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Odavde se vidi da je u unutrasnjosti sfere elek-
tricno polje homogeno, usmereno u pravcu
spoljasnjeg polja i nezavisno od veliCine sfere.

Sfera je homogeno polarizovana (lekcija 25),
P=D-g,E =(c—g,)E,

pa se iz izraza za vektor polarizacije odreduje
elektri¢na susceptibilnost dielektrika.

U okolini sfere potencijal je jednak zbiru
potencijala koji stvara primarno polje i
potencijala koji poti¢e od indukovanih naelek-
trisanja. Uticaj indukovanih naelektrisanja se
moze zameniti pomocu elektricnog dipola
ekvivalentnog elektricnog momenta.

Uporedivanjem izraza za potencijal koji stvara
elektricni dipol (lekcija 12) 1 izraza za
perturbovanu komponentu potencijala u okolini
sfere dobija se izraz za ekvivalentni elektri¢ni
moment.

Povrsinska gustina indukovanih naelektrisanja
je jednaka intenzitetu vektora polarizacije.
Odatle se dobija i ukupna koli¢ina indukovanih
naelektrisanja. Ovaj rezultat je od velikog
znacaja za projektovanje elektrostatickih filtera.

U okolini sfere vektor elektricnog polja ima
radijalnu i ugaonu komponentu,

Ei:_ﬁg_ﬂgg

dz e+ 2¢g,

3gy(e—g) E

P:
e+ 2¢, 0

13 = SOXEO

3 3
E, = 1+2(ﬁj °7% g, cos0,  Ega=- 1—(% —%0\E, sin®.
r) e+2g, r) e+2¢g,

¢ Ako se sferna Supljina nalazi u dielektriku, na primer vazdus$ni mehur u
transformatorskom ulju, svi izvedeni izrazi ostaju u vaznosti samo §to veli¢ine &

1 g, treba da medusobno zamene mesta.

Polje u Supljini je veceg intenziteta nego u
okolnoj polarizovanoj materiji jer je € > g, .

¢ Ako je sfera savrSen provodnik svi izrazi
izvedeni za dielektri¢nu sferu ostaju u vaznosti
samo §to treba staviti da € — 0.

E =" _F,
g, +2¢
lim =20

a0 g+ 2g
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Tako se dobijaju rezultati koj bi se inace dobili
reSavanjem Laplaceove jednacine za spoljasni
domen, »>a, ali sa grani¢nim uslovom koji
vazi za savrSeno provodnu sferu,
9., =0.

Izraz za indukovanu koli¢inu naelektrisanja je
poznat kao Pauthenierova jednacina (Marcel
Pauthenier, 1887-1972). Ustvari, sfera je i
dalje elektricno neutralna. Polovina koli¢ine
indukovanih naelektrisanja je pozitivna i nalazi
se na jednoj polovi sfere. Na drugoj polovini
sfere je ista koli¢ina suprotnog znaka.

¢ Efekat polarizacije se u prora¢un ukljucuje
implicitno pomocu veze izmedu osnovnih
veli¢ina elektricnog polja

D=g,E+P,
koja u slucaju linearnih izotropnih dielektrika
degeneriSe u

D=cE.

¢ Elektrostaticki filteri su veoma efikasni za prikupljanje Cestica vrlo malih
dimenzija - nano Cestica. Efikasnost prikupljanja zavisi od koli¢ine naelektrisanja
na samoj Cestici. Na primer, neka se radi o lete¢cem pepelu iz fosilnih goriva.
Tada je srednja veli¢ina Cestica sfernog oblika a=0.5um, a dielektri¢na
konstanta €=1.713¢,. U elektricnom polju jatine E,=50kV/m Ccestica ¢e se
naelektrisati koli¢inom naelektrisanja od pet elektrona, ¢ =5e. Metalna Cestica

pri istim uslovima naelektrisala bi se deset puta ve¢om koli¢inom naelektrisanja.
Elektrostaticka sila koja deluje na tako naelektrisanu Cesticu uvek je znatno veca

od gravitacione ili centrifugalne sile.

zar=a

E, =3E,cos0, zar=a

q=12ne,a’E,

Dielektrik

|

Polarizacija
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31 - Kretanje elektrona i elektronska struja

Dinamika Rad
Kinematika Energija

Kada se slobodna naelektrisana cestica

nade u stranom elektri¢nom polju na nju | £ =ma W=qU=qEd
deluje mehanicka sila koja prouzrokuje F=qE
kretanje. Naelektrisana Cestica koja se s 1,
nalazi u homogenom elektri¢nom polju, na | V" =Vo +2ad |W = P Wy
primer izmedu elektroda ravnog kon-

denzatora, iz stanja mirovanja pocinje da se Vo =0 W =0
kre¢e konstantnim ubrzanjem ka elektrodi Y Y
sa naelektrisanjem suprotnog znaka.
o supronog R
m m

Pri jedinicnom naponu elektron stize na

~0.59-10°U ™
drugu elektrodu brzinom od oko 590 km/s. v=0.59-10°VU S

Kretanje elektrona formira elektri¢nu struju. Dalje izlaganje predstavlja uvod u
sledecu oblast koja se bavi upravo proucavanjem stalnih elektri¢nih struja.

Elektroni privuceni privlacnom silom atomskog jezgra katodu ne napustaju
spontano. Katodu treba pobuditi da bi emitovala elektrone. To se postize na
nekoliko nacina. Jaka elektricna polja u okolini katode mogu da iSCupaju
elektrone sa povrSine - emisija polja. Neki metali emituju elektrone kada su
osvetljeni odredenim talasnim duzinama - fotoelektri¢ni efekat. Snop ubrzanih
elektrona u sudaru sa metalnom povrSinom iz nje izbacuje nove elektrone -
sekundarna emisija. Povecavanje temperature katode ubrzava termicko kretanje i
elektroni napustaju povrSinu - termojonska emisija. Najjednostavniji primer je
uspostavljanje elektronske struje izmedu zagrejane katode i anode u vakuumu.
Uredaj je nazvan termojonska vakuumska dioda.

¢ Kada se katoda zagreje dolazi do formiranja +
elektronskog oblaka koji sprec¢ava dalju emisiju

< ) J ; — Anoda
elektrona. Manji broj elektrona ipak ima * | Vakuum
dovoljno energije da napusti oblak i stigne do I E §.°§.2*’* Elektroni
suprotne elektrode ¢ak i ako je ona na nultom ?xn\%f”* Katoda

ili negativnom potencijalu. To je oblast
uspostavljanja anodne struje.

¢ Sa porastom pozitivnog potencijala na anodi sve vec¢i broj elektrona napusta
katodu 1 gustina elektronskog snopa izmedu elektroda je sve veéa. Formirana je
konvekciona struja. To je oblast prostornog naelektrisanja.

¢ Sa jo$ ve¢im anodnim potencijalima dolazi do zasi¢enja i gustina struje zavisi
samo od temperature katode i veoma malo od ¢upanja elektrona usled jakog elek-
tricnog polja. To je oblast zasic¢enja.
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32 - Elektronska struja u vakuumskoj diodi

Katoda i anoda nalaze se na medusobnom rastojanju d . d’o p
U meduprostoru postoji stalna zapreminska gustina dy*
elektrona p<0. Raspodela potencijala je odredena

reSenjem Poissonove jednacine, u ovom slucaju samo
po jednoj koordinati, koje zadovoljava grani¢ne uslove
na povrSinama elektroda. Desna strana jednacine je do _
pozitivna. dy

Zapreminska gustina naelektrisanja moze se izraziti preko gustine struje J i
brzine elektrona v. Sa druge strane brzina elektrona odredena je (prethodna
lekcija) priraStajem kineticke energije koji je jednak ulozenom radu sila
elektri¢nog polja.

2
o= @Z_fzg,
v p J |m 1 de p 4
= — = [— —= _22_
o E\/_ g £ Ze\/E dy® g B_i n
m ¢ g V2e

Za reSavanje dobijene diferencijalne jednacine u literaturi su prikazani veoma
slozeni postupci. Medutim, ova jednacina moze veoma elegantno da se resi ako
se reSenje pretpostavi u obliku stepena nezavisno promenljive, ¢ime je treci
grani¢ni uslov automatski zadovoljen.

2

_cy 35 L moncy
o=Cy", \/6:C2y2, dyz—nn Y.

3 n

Kada se pretpostavljeno reSenje zameni u diferencijalnu 3 o8,
n(n—-1)C? y? =B

jednacinu dobija se karakteristi¢na jednacina.

Da bi i leva strana jednacine bila jednaka konstanti neophodno je da eksponent
bude jednak nuli. Odatle se dobijaju nepoznati eksponenti i konstanta u
pretpostavljenom reSenju, a i konacno resenje.

4y

4
n 4 3 3 2
Stn=2=0, n==, Cz(%\/ET, (P=G\/§j3y3+D.

Konstantanta integracije D je na osnovu prvog grani¢nog uslova jednaka nuli.

Iz drugog grani¢nog uslova moguce je

i 4 z
dobiti izraz za konstantu B. Tako se U :(g\/f )3 J: = B :iU“
konac¢no dobija i izraz za potencijal. 2 3d
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Konstanta B je uvedena na pocetku razmatranja da bi se
pojednostavio zapis diferencijalne jednacine. Ova konstanta (p:U[lj
je srazmerna gustini elektronske struje. d

4
3

Tako za ovu konstantu postoje dva izraza,

3
p=L m o =2 U2,
g \ 2e 94?

¢ijim izjednacavanjem se dobija veza izmedu gustine struje i anodnog napona.

Kada je poznata povrSina elektroda S umesto gustine 5
struje moze da se upotrebi jacina struje, ali zakonitost J= 4g, |2e U2
ostaje ista. Zakon proticanja struje kroz diodu poznat je 9d* \' m
kao zakon stepena tri polovine. Do ovog zakona 3
nezavisno su dosla dva nauénika, pa je poznat i kao [=kU?
zakon Child-Langmuira.
Zakon stepena tri polovine ili staticka I [mA] 1 /’/
karakteristika diode pokazuje uticaj pro- S/d* =1 roa
stornog naelektrisanja na tok struje 8 //
elektrona u diodi. Da nema prostornog /
naelektrisanja (videti primer 11.1) raspo- 4 /
dela potencijala bi bila linearna, |

S

e e=U~- 50 150 U [V]

1z linearne rasposdele potencijala sledi i linearna veza izmedu struje i napona, tj.
Ohmov zakon. U uslovima stimulisane emisije elektrona tj. postojanja
zapreminske gustine naelektrisanja u prostoru predstavlja nelinearnu otpornost.

Izvedeni zakon ne pokriva oblast uspostavljanja struje i oblast zasi¢enja (videti
prethodnu lekciju) ali ove oblasti nisu od interesa za prakti¢nu primenu. U praksi
vakuumska dioda je prekidacki element.

Pri negativnim anodnim naponima struja ne proti¢e. Ako '

se na anodu dovede naizmeni¢ni napon, struja ¢e proticati /\ /\ N /\ /\
samo za vreme pozitivnih poluperioda. Prema tome dioda | 7

sluzi za ispravljanje napona.

I pored toga Sto je zakon izveden za ravne elektrode moze
se pokazati da vazi i za koaksijalne cilindri¢ne elektrode.
Vakumske cevi su se tako uglavnom i proizvodile, sve
dok ih nisu potisnuli poluprovodnicki elementi.

Ovde se zavrSava proucavanje elektrostatiCnog polja i pocine proucavanje
stacionarnog elektri¢nog polja i pojava koje ga prate.
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O internacionalnom sistemu jedinica = SI

Gauss, Carl Friedrich (1777-1855)

Nemacki astronom, fiziar 1 matematicar. Prou-
¢avao je teoriju greSaka, optiku i elektromagne-
tizam. Postavio je osnove diferencijalne geometrije
1 moguénost neeuklidovske geometrije. Tvorac je
apsolutnog sistema jedinica u kome svaka fizicka
veli¢ina moze da se opiSe pomoc¢u mase, duzine i
vremena.

Jedinica za magnetnu indukciju koja je uvodenjem
SI zamenjena jedinicom tesla (T),

1T=10*Gs.

Newton, Isaac (1642-1727)

Engleski fizicar, matematiCar i astronom. Osnivac
klasi¢ne mehanike i viSe matematike. Postavio je
zakon opste gravitacije i tri zakona kretanja, i mate-
maticki izveo Keplerove zakone. Matematicki
principi filozofije prirode smatra se jednim od naj-
znacajnijih dela koja su ikada napisana.

U Sl izvedena jedinica za silu,

_kgm
$2

Njutn (N)

Joule, James (1818-1890)

Engleski fizicar koji je proucavao oslobadanje
toplote u provodnicima kroz koje protice elektri¢na
struja. Proucavanja su uobli¢ena kroz poznati
Jouleov zakon ili efekat. Zagrevanje provodnika
usled proticanja elektricne struje su poznati
Jouleovi gubici.

U SI izvedena jedinica za rad, energiju ili koli¢inu
toplote,
kg m*

2
N

J=Nm

Dzul (J)
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Watt, James (1736-1819)

Skotski matematiGar i inZenjer. Poznat po parnoj
masini. 1782. godine osnovao je prvu fabriku par-
nih masina. Njegovim pronalaskom pocela je indu-
strijska revolucija i jedna nova epoha.
U Sl izvedena jedinica za snagu,

J

W==.
S

Danas je uobicajeno da se rad elektri¢ne struje izra-
Zava kao vat-Cas. Vat (W)

Andre - Mari¢ Ampére (1775 - 1836)

Francuski fizi€ar i matematiCar, otac elektrodi-
namike. Na osnovu Oerstedovih eksperimenata
prouCio uzajamno dejstvo elektricnih struja
(Ampérov  zakon). Nazvan je  Newfonom
elektriciteta.

U SI osnovna jedinica za jacinu elektrine struje.

Elektri¢na struja jacine 1A koja protiCe u dva
paralelna neograni¢ena provodnika zanemarljivog
poprecnog preseka koji su na rastojanju od jednog

metra u vakuumu prouzrokuje silu od 2107 N/m.

Volta, Alessandro (1745-1827)

Italijanski fiziCar na ¢iji je naucni rad uticao
pronalazak Luigija Galvanija koji je ustanovio da se
zablji kraci pri dodiru sa metalnim predmetom grce.
Volta je protumacio da do te pojave dolazi usled
naelektrisanja dva metala kada je izmedu njih elek-
trolit. Konstruisao je prvu elektrostaticku masinu,
galvanski element, bateriju galvanskih elemenata
(Voltain stub) i drugo.

U SI izvedena jedinica za elektromotornu silu,
elektri¢ni potencijal i elektri¢ni napon.

2
_J _kgm Volt (V)
sA $*A
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Ohm, Georg Simon (1787-1854)

Nemacki fizi¢ar poznat po otkricu odnosa jaCine
elektricne struje i elektromotorne sile. Rezultati
njegovih proucavanja, a pre svega odredivanje
otpornosti u elektricnom kolu su doveli do poznatog
Ohmovog zakona.

U Sl izvedena jedinica za elektri¢nu otpornost.

2
o YV e’
A s A

Coulomb, Charles de (1738-1806)

Francuski oficir inzenjerije ¢ija su otkrica osnova za
proucavanje elektrostatike. U svoj 56. godini otiSao
je u penziju, a ve¢ deset godina je bio clan
Akademije nauka i ve¢ je zavrSio svoje delo o
elektromagnetizmu. Otkrio je zakone interakcije
naelektrisanih tela i magnetnih masa (analogno
Newtnovom zakonu gravitacije) koji su kasnije
nazvani po njemu.

U Sl izvedena jedinica za koli¢inu naelektrisanja.
C=As

Faraday, Michael (1791-1867)

Engleski samouki fizicar koji je radeci kao laborant
kod poznatog naucnika Davya otkrio jedan od
fundamentalnih ~ zakona  elektromagnetike -
elektromagnetnu indukciju. Mnogim pojavama i
pojmovima dao je nazive, kao $to su : elektroliza,
samoindukcija, anoda, katoda i jo§ mnogo toga.

U Sl izvedena jedinica za elektri¢nu kapacitivnost .

Farad (F)
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Maxwell, James Clarck (1831-1879)

Skotski fizi¢ar koga smatraju osnivaéem kineti¢ke
teorije gasova. Formulisao je zakon o raspodeli
brzina molekula gasa. Na osnovu Faradayevih
eksperimenata formirao je Cetiri jednacine na
kojima bazira savremena teorija elektromagnetnih
polja. Dokazao je da je svetlost elektromagnetna
pojava.

Jedinica za magnetni fluks

M= G82 j Maksvel (M)
cm
je uvodenjem SI ukinuta i zamenjena jedinicom

veber (Wb)

Oersted, Christian (1777-1851)

Poznati danski prirodnjak i lekar. Otkrio je po-
stojanje magnetnog polja u okolini provodnika kroz
koji proti¢e elektri¢na struja. Sa eksperimentom iz
1920. godine odmah je bio upoznat Faraday i to je
imalo presudan uticaj na eksperimente Ampéra i
razvoj  Maxwell-Faradayeve  elektromagnetne
teorije.

Jedinica za merenje jacine magnetnog polja koja je Ersted (est)
uvodenjem SI ukinuta.

Tesla, Nikola (1856-1943)

Srpski naucnik koji je dao takve doprinose na polju
elektromagnetike bez koje bi danas cela tehnologija
bila nezamisliva. Naizmeni¢ne struje, polifazne
struje, obrtno magnetno polje, visoke frekvencije,
bezzi¢ni prenos podataka, su samo kap vode u
okeanu Teslinih pronalazaka. Za otkrice bezzi¢nog
prenosa Nobelova nagrada nepravedno je dodeljenja
biznismenu i fizi¢aru Markoniju.

U Sl izvedena jedinica za magnetnu indukciju.
N kg Tesla (T)
T Am  As2
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Weber, Vilhelm Eduard (1804-1891)

Nemacki fizicar pronalaza¢ elektromagnetnog
telegrafa. Postavio prvi apsolutni sistem fizickih
jedinica.

U Sl izvedena jedinica za magnetni fluks,

Wb =Tm? =

Wb=10*M,

gde je M (Maksvel) takode jedinica za magnetnu
indukciju koja je ukinuta uvodenjem SI sistema.

Henry, Josef (1797-1878)

Americki fizicar koji je postavio temelje za primenu
elektromagnetne indukcije u industriji i tehnici.
Otkrio je pojavu samoindukcije.

U SI izvedena jedinica za induktivnost (koeficijent
indukcije)

2
Hzlb:kngz
A A“s

Hertz, Heinrich Rudolf (1857-1894)

Nemacki fizi¢ar koji je eksperimentalno dokazao
Maxwellovu teoriju elektromagnetnog polja, pre
svega postojanje elektromagnetnih talasa i elektro-
magnetnu prirodu svetlosti. Za potrebe svojih
eksperimenata konstruisao je oscilator koji i danas
sluzi kao osnova pri proucavanju elektromagnetnih
zracenja.

U Sl izvedena jedinica za frekvenciju oscilacija.

HZ=l
s

Herc (Hz)




90 Petkovi¢, D.M. i Krstié, D.D. - Izvodi sa predavanja i vezbi

Neke fizicke i matemati¢ke konstante

Fizicka konstanta Oznaka | Vrednost i jedinica
Elementarno naelektrisanje e (1.60219 £ 0.00007)1 0 ¢
Masa elektrona u mirovanju m, (9.10956 +0.00005)10 ! kg
Polupreénik elektrona A 2.81793+0.00001)10 "> m
Masa protona u mirovanju m, (1.67261+ 0.00001)10_27 kg
Masa neutrona u mirovanju m, (1.67492 £ 0.00001) 1077 kg
Permitivnost vakuuma €0 (8.85419+0.00002)10™ 2 F/m
Permeabilnost vakuuma o 1.256637-10°° H/m
Brzina EM talasa u vakuumu c (2.997925+0.000003)10% m/s
Standardna gravitacija g 9.80665 m/s*
Gravitaciona konstanta (6.6732+0.0031)10 " Nm?/kg?
eg =107~ y =4n107 2 S
36m m m VElo 8
7 =3.141593 In5=1.609438
e=2.718282 In10 =2.302585
3 =1.732051 1/m=0.31831
V5 =2.236068 3n/2=4.71239
log2 = 0.30103 41/3=4.18879
log3=0.47712 Jr =1.772454
loge = 0.43429 Inm =1.14473
In2=0.693147 e =23.14069
In3=1.098612 e ™ =0.043214
Kritiéno elektricno polje je ono pri Materija €, E, [kV/em]
kome dolazi do proboja u dielektriku Vazduh 1.0006 25 -30
pri ¢emu dielektrik u trenutku proboja Staklo 20-16 100 - 400
postaje provodan. Trafo ulje 22-24 145 - 155
Papir 2.5-35 190 - 210
Guma 2.0-2.5 200 - 400
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Pravougli krivolinijski koordinatni sistemi

Generalisane koordinate

x=x(u,v,w), y=yu,v,w), z=z(u,v,w)
Element duzine, povrSine i zapremine

dl =h, du i +h,dv v+ h, dw W

dS == h h, dvdwii + b b, dudw+ h h, dudviv
dV =h,hh, dvdwdu

Prostorni izvodi

1 o¢ . 16(pA+L8_(pA

do=——u+
S "k, v hwaww

.= 1 0
divE=——— hoh +—(h h +—(h h E
IV h h h [ ( VoW lt) ( u w ) aw( u-y W)J

u-’vew

I'OtEZ -— - -—

hu EM hVEV hWEW

div(gradg) = — | 2 [ Mhu 00 ) O hhy D0, 0O [hh 0o
h,hh,\ Ou\ h, Ou ov hv ov ow hw ow

Polarni cilindri¢ni koordinatni sistem Sferni koordinatni sistem
x=rcosH x=rsinOcos¢

y=rsind y=rsin0Osin¢

z=z z=rcos0

h.=1, hy=r, h =1 h.=1, hy=r, hy=rsin@.
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Nabla operator

Hamiltonov ili nabla operator

0. 0. 0.
V=—Xx+—y+—2
ox Oy oz

Generalisani nabla operator

V=lim L§ds
V0 V

Prostorni izvodi
gradp=Vo

divE =VE
rotE=VxE
V(Vo)=Vip=Ag
Vx(Vo)=0
v(VxE)=0

AE =V(VE)-vx(VxE)

Integralne relacije

Gauss-Ostrogradsky

jwpdV =§(pds jvEdV =§Ed§
v S v S
§<pdz”:jd§xv<p ijEdV:§d§xE
c s v S

Green-1 Stokes
f\vg—fdhl(vwvcpwmp))d‘/ !VXE‘@ :ﬂéﬁdﬂ

Green-2
)f (wg—(’z—wg—‘;’jds =£(wA(p—(pA\|1)dV foEdE =0
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