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Predgovor 
 
 Tekst sa nazivom ELEKTROSTATIKA je namenjen studentima Fakulteta 
zaštite na radu u Nišu i trebalo bi da posluži kao pomoć pri proučavanju gradiva iz 
oblasti teorije elektrostatičkog polja, i to prema programu predmeta Elektromagnetna 
zračenja koji se u različitom obimu i sa različitim fondom časova izučava na smeru 
Zaštita na radu i smeru Zaštita životne sredine. Dobrim delom tekst može da posluži 
studentima smera Zaštita od požara za oblast koja je za njih od interesa, a to je statički 
elektricitet kao uzrok požara. Studenti drugih fakulteta kao što su elektrotehnički, 
prirodno-matematički ili tehnoški sigurno će u ovom tekstu naći nešto što do sada nisu 
znali. 
 

 Kako se radi o izvodima iz predavanja i vežbi, osnovna ideja je bila da jedna 
lekcija (ne i jedan čas predavanja) bude jedna stranica, a to nije bio lak zadatak. 
Određena skraćenja dokaza, ograničen broj rešenih primera, mali broj zadataka za 
samostalno rešavanje i obim teksta pokazuju da je cilj autora bio da studentima pruži 
neophodnu literaturu prilagođenu savremenim metodama učenja. Istovremeno to znači 
da je ovaj isti tekst dostupan svima koji koriste računarsku mrežu Fakulteta zaštite na 
radu. 
 

U Nišu, početak proleća 2004. godine, 
Autori , 

dejan.petkovic@ znrfak.ni.ac.rs 
dejan.krstic@ znrfak.ni.ac.rs 

 
Predgovor drugom izdanju 

 
 U drugom izdanju su ispravljane uočene greške, ali se ne razlikuje od prvog 
izdanja. Jednostavno knjiga je doštampana jer su svi primerci bili rasprodati. 

 

U Nišu, oktobra 2010. godine, 
Autori 

 
Predgovor trećem izdanju 

 
 Deset godina nakon prvog izdanja pojavljuje se treće izdanje ovog udžbenika. U 
protekloj deceniji na Fakultetu zaštite na radu u Nišu je došlo do značajnih promena u 
nastavnim planovima i programima. Ne želeći da kvarimo prvobitnu koncepciju 
udžbenika sadržaj smo prilagodili tako da prati predavanja kako iz predmeta 
Elektromagnetna zračenja na svim smerovima, tako i iz predmeta Elektrotehnika i 
Zaštita od atmosferskog i statičkog naelektrisanja. Napominjemo da se određene lekcije 
na nižim kursevima ne izučavaju. Ovo izdanje sadrži više rešenih primera nego prethodna 
dva. Takođe, izvođenja su data detaljnije, tj. prilagođena su studentima druge godine 
studija jer se pretpostavlja da još uvek nemaju neophodna znanja iz vektorske algebre i 
matematičke analize. 
 

U Nišu, Božić 2014. godine, 
Autori 
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Uvod - Elektrostatika do Coulomba  
 
U vreme antičke Grčke bile su poznate četiri pojave koje su povezane sa elek-
tricitetom. To su munja, svetlucanje oko šiljatih predmeta, ribe koje proizvode 
neku vrstu električnih udara i privlačenje laganih predmeta (slama) pomoću 
protrljanog komada ćilibara. Ove pojave su bile uočene a sa elektricitetom 
povezane čitavih 2500 godina kasnije. 
 
Vrhovni bog Grka Zéus je upravljao munjom i vetrom 
(davalac kiše). Za svetlucanje katarki na brodovima koji su 
plovili Mediteranom bio je odgovoran lokalni svetac 
Erasmus koji je bio zaštitnik mornara. Aristotel (Aristotle, 
384-322, pre n.e.) je opisao ribu torpiljarku ali nije uočio 
električni organ. Tales iz Mileta (Thalés Miléisos, oko 625-
547. pre n.e.) je znao za privlačnu moć ćilibara koji su 
Sirijci zvali kamen kradljivac a Persijanci kradljivac slame 
(karuba). Grčki naziv elektron ima značenje onaj koji 
privlači. U to vreme pominje se kamen linkurion, koji ima 
još veću moć privlačenja. Verovatno se radi o turmalinu ili 
topazu jer se sa privlačenjem pominje i zagrevanje 
kamena.  
 
U svim dokumentima iz tog perioda koji su sačuvani 
pominje se samo privlačenje. Odbojne sile tada nisu prime-
ćene. Razlog za to je svuda prisutna gravitacija i znatno 
veće interesovanje za magnet koji privlači gvožđe ma kako 
veliko bilo, dok ćilibar privlači različite ali samo veoma 
lagane predmete. Takođe, pojava odbijanja nije mogla da 
se uklopi Aristotleovo učenje i učenje njegovih sledbenika. 
Tek u šestom veku nove ere odbijanje kod magneta 
pominje hrišćanin Jovan Filopon. 
 
Arapi su prihvatili helenistička učenja o magnetizmu i 
elektricitetu, i neizmenjena su ih preneli u hrišćansku 
Evropu. Istina unose i neke zablude. Govorilo se o 
kvalitetu privlačenja.  

 

 
 

Zéus 
 

 
 

Thalés Miléisos 
 

 
 

Aristotle 
 

 
O magnetu nema pouzdanih zapisa, a za ćilibar se kaže da je tu kvalitet 
privlačenja toplota jer protrljani ćilibar zagreva slamu koju privlači. Druga velika 
zabluda koju su uneli odnosi se na magnet koji gubi privlačna svojstva ako se 
protrlja belim lukom. Ovakvo tumačenje se uklapalo u opštu teoriju kvaliteta, jer 
u ovom slučaju dolazi do promene kvaliteta. Takva učenja, preneta su u Evropu 
dvanaestog i trinaestog veka, kada je kompas već uveliko bio u upotrebi, dovela 
su do toga da je navigatorima na brodovima bilo zabranjeno da jedu beli luk. 
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Doba renesanse je izuzetno značajno za magnet (kompas) zbog ogromnog 
interesovanja za daleka putovanja, ali ne i za elektricitet. Treba ipak izdvojiti da 
je Porta (Giovani Battista Porta, 1538-1615) prvi upotrebio gvozdene opiljke da 
bi na listu hartije načinio sliku linija sila, i da je prvi koji tvrdi da beli luk ne utiče 
na magnet. 
 
Za Gilbertovo (William Gilbert, 1540-1603) delo "De 
Magnete" koje je objavljeno 1600. godine se tvrdi da je 
bilo savremenije od mnogih dela koja su kasnije napisana. 
I pored toga što u svojim razmatranjima sledi Arisotelovu 
školu, tvrdeći da se tela ili privlače ili ne, ipak daje puno 
doprinosa. Treba istaći njegovu pretpostavku da je zemlja 
magnet. Njegovo delo podeljeno je u šest knjiga sa 
ukupno 125 poglavlja, i samo jedno poglavlje je 
posvećeno elektricitetu. 

 

 

 
 

 
Međutim, i to malo što je napisao ima izuzetan značaj. Prvo je ogledima utvrdio, 
zatim  i opisao, da mnoge materije kao što su staklo, vosak ili sumpor kada se 
protrljaju mogu da privuku druga laka tela i to, ne samo slamu, već i gvožđe, 
drvo, ulje ili vodu. Po njemu su to električne materije. Drugu grupu neelektričnih 
materija čine metali, drvo ili kamen. Za ispitivanje privlačenja konstruisao je prvi 
elektroskop koji naziva versorijum (Lat.: verso - okretati, obrtati). To je bila 
rotirajuća metalna igla - praktično kopija kompasa. Eksperimenti sa verso-
rijumom su mu omogućili da uoči sličnosti ali i razlike između magnetizma i 
elektriciteta. Zaključio je da se električno privlačenje ostvaruje fluidom koji ima 
materijalnu prirodu, za razliku od onog kod privlačenja magneta koji nije 
materijalan. Time je došao u sukob sa Aristotleovim učenjem. Ovo delo, za-
snovano isključivo na  rezultatima koji su rezultat ogleda, ostalo je važno još dva 
veka. 
 
Cabeo (Nicolo Cabeo, 1585-1650) je 1639. godine objavio delo pod nazivom 
Magnetna filozofija koje je većinom prepričavanje Gilbertovih ogleda. Međutim, 
u delu se nalaze i neki novi podaci. Prvi put se sreće termin linije sile (Lat.: 
lineae virtutis). Takođe, prvi put se pominje da se u svakoj tački u okolini mag-
neta osećaju dve akcije koje potiču od severnog i južnog pola i da se ukupna sila 
dobija slaganjem te dve akcije. Ovakvim, kvalitativno tačnim opisom Cabeo 
praktično uvodi vektore, ali kvantitativno znatno greši. U posmatranoj tački ak-
cije koje potiču od dva pola su jednake i ne zavise od rastojanja, i drugo uvek 
imaju takav smer kao da su oba pola iste prirode. Cabeo je uočio odbijanje kod 
naelektrisanih tela. Međutim, ovom predstavniku jezuitske škole, nasledniku 
Aristotela i Gilberta to nije prihvatljivo i prirodno, jer mnogo različitih materijala 
učestvuje u tome. Tako je zbog dogmi propustio priliku da otkrije nešto sasvim 
novo. 
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Guericke (Otto von Guericke, 1602-1686) je bio 
eksperimentator koji je voleo da javno prikazuje različite 
fizičke fenomene. Između ostalog, napravio je aparat koji je 
preteča elektrostatičke mašine. To je bila rotirajuća lopta od 
sumpora na drvenoj osovini i drvenom postolju. Na površini 
kugle se nagomilavao elektricitet ako se jednom rukom 
rotira drvena osovina a drugom rukom lagano drži sama 
kugla.  
 
Uočio je postojanje odbojnih sila, fosforescenciju, električno pražnjenje i efekat 
oštrih vrhova. Svoja zapažanja je 1672. godine opisao u delu Novi eksperimenti 
ali nije pokušao ni da ih objasni, a još manje da formuliše neko pravilo ili zakon. 
Zbog toga su te iste pojave ponovo bile otkrivene tek posle pedeset godina, a 
ovog eksperimentatora čija su osnovna opredeljenja bile diplomatija i politika 
retko ko pominje. 
 
Boyle (Robert Boyle, 1627-1691) je utvrdio da se električna i magnetna sila ništa 
ne menjaju ako se iz prostora u kome se ogled obavlja izvuče vazduh. To je u oz-
biljnu sumnju dovelo sve modele koji su se oslanjali na Aristotleovo učenje. 
Uočio je da je naelektrisanje veće i trajnije ako je površina koja se trlja glatka, 
čista i topla. Ponavljao je oglede Guerickea, ali ni on nije uočio električnu induk-
ciju, i pored toga što je imao sve potrebne rezultate. 
 
Gray (Stephen Gray, 1666-1736) je otkrio da elektricitet 
može da se prostire sa jednog tela na drugo. U početku je 
došao do sasvim pogrešnog zaključka da se elektricitet može 
prenositi samo vertikalno. Verovatno povučen tim 
zaključkom, i tražeći sve veću visinu, oglede je nastavio sa 
sveštenikom Wheelerom (Granvile Wheeler, 1701 - 1770) u 
zvoniku crkve.  
 
Zahvaljujući upornosti sveštenika, oglede su ponovili u nekoj štali gde su 
horizontalno postavljali dugačke provodnike obešene o plafon svilenim koncima. 
Zaključili su da se električna sposobnost prenosi i horizontalno. Zatim su 
povećavali dužinu provodnika (time i težinu) pa su svileni konac, koji je bio 
preslab, zamenili gvozdenom i mesinganom žicom. Tada nisu dobili očekivane 
rezultate. Međutim, izveli su pravilan zaključak. Oni su zaključili da postoje dve 
grupe materijala. U jedni grupu spadaju oni materijali koji provode elektricitet, 
kao što su metali, a u drugu grupu spadaju oni koji ne provode elekektricitet, kao 
što su svila, konjska dlaka, staklo. Tako, prvi put dobijamo podelu materijala na 
provodnike i izolatore. 
 
Daljim istraživanjima Gray je došao do zaključka da se elektricitet zadržava 
samo na površini tela. Znajući da gravitaciono i magnetno privlačenje zavise od 
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veličine tela i da se toplotni i magnetni fluidi prostiru kroz zapreminu, zapitao se 
kakav uticaj na električno privlačenje ima veličina tela. Uzeo je dve kocke od 
hrastovine jednakih dimenzija stim što je jedna bila šuplja a druga puna. Obe 
kocke kad su bile naelektrisane pokazivale su ista svojstva. Dakle, nelektrisanje 
ne zavisi od zapremine već samo od površine tela. Tako, prvi put dolazimo do 
pojma površinske gustine naelektrisanja. U nastavku svojih istraživanja 
proučavao je tupe i šiljate predmete. Na oble, tupe predmete varnica skače sa 
naelektrisanog tela, a kroz zašiljene predmete se elektricitet prazni nečujno i 
polako. Tako, prvi put dolazimo do pasivnog eliminatora statičkog naelektrisanja. 
 

 

Stephen Gray je izvršio prvo javno naelektrisavanje ljudskog bića. 
 

 
Gray je neko dete obesio o vrpce na-
činjene od konjske dlake, tako da 
visi u horizontalnom položaju. Pro-
trljanim staklom mu je dotakao noge 
i pri tom su laki predmeti bili 
privučeni glavi. Takav ogled 
ponovio je sa dva deteta koja su bila 
na podlozi od smole (izolator prema 
zemlji) i međusobno vezana 
kanapom. Elektricitet se prenosio sa 
jednog deteta na drugo dete. 
  

Dve hiljade godina nauka je znala 
samo za statički elektricitet. Defi-
nišući provodnost, Gray otvara nove 
puteve - puteve električne struje. 
Tako, prvi put dolazimo do pojma o 
električnoj struji. 

  

 

 
Gray je ustanovio da naelektrisani ključ privlači lake predmete bez obzira da li 
jednovremeno na taj ključ deluje neki magnet. Tako, prvi put dolazimo do pojma 
o elektromagnetizmu.  
 

Du Fay (Charles-Francois de Cisterny du Fay, 1698-1739) 
se nadovezuje na oglede svog predhodnika Graya, ali za 
razliku od njega rezultate do kojih je došao, u formi osam 
saopštenja, podnosi Akademiji nauka u Parizu. Prva četiri 
saopštenja je podneo 1733. i 1734. godine. Još dva 
saopštenja podnosi kad je imao 39 godina, samo dve 
godine pred smrt. 
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Prvo saopštenje je pregled saznanja o elektricitetu za period od Gilberta do 
Graya. Drugo saopštenje zasniva se na ogledima koje je izveo. Zaključio je da se 
sva tela mogu naelektrisati. Neka tela, kao što su metali ili tečnosti, nije moguće 
naelektrisati trljanjem, ali se naelektrišu ako im se prinese neko prethodno na-
elektrisano telo. U trećem saopštenju materijale deli na dve grupe (mada je to pre 
njega učinio Gray). Tela koja je teže naelektrisati trljanjem dalje i obimnije 
prenose električnu materiju. Suprotno, tela koja lakše postaju električna manje su 
podobna da prihvate tuđi elektricitet i da ga prenesu na daljinu. Kasnije su ove 
dve grupe materijala dobile nazive provodnici i izolatori. 
 
Četvrto saopštenje, O privlačenju i odbijanju električnih tela, donosi nov kva-
litet. Još je Guericke uočio da naelektrisano pero širi svoje dlačice. Međutim, Du 
Fay ponavlja oglede sa različitim koncima (svila, pamuk, vuna) i donosi opšti 
zaključak.  
 

 

Kad se neko telo naelektriše njegovi delovi se međusobno odbijaju i nastoje da 
se međusobno što je moguće više udalje. 
 

 
Znajući za električno privlačenje, vrši ogled sa zlatnim listićem. Ako se zlatni 
listić naelektriše staklom njega privlače smolaste materije i obrnuto. Kao da po-
stoje dve različite vrste elektriciteta. Sledećim ogledom dokazuje da se obe vrste 
elektriciteta mogu preneti na neelektrično telo. Konačno ubeđen da postoje dve 
vrste elektriciteta daje im različite nazive: staklasti i smolasti elektricitet. Ponovo 
donosi opšti zaključak. 
 

 

Jedni i drugi odbijaju tela koja su primila elektricitet iste prirode kao što je 
njihov, a privlače ona čiji je elektricitet suprotan njihovom. 
 

 
Du Fay je usavršio Gilbertov versorijum. Od dva zlatna listića napravio je prvi 
pravi elektroskop. Proučavao je i provodljivost plamena. Treba napomenuti da u 
prvo vreme hipoteza o dve vrste elektriciteta nije naišla na odobravanje. 
 
Godinu dana pre poslednjeg Du Fayovog saopštenja 
Akademiji nauka, 1737. godine, rodio se Coulomb 
(Charles Augustin de Coulomb, 1736-1806). Zakonom koji 
je formulisao završava se kvantitativna analiza elektro-
statičkog polja. Sve nadalje postaje matematička 
nadgradnja koja elektrostatiku stavlja u opšti teorijski 
koncept elektromagnetnog polja. 

 

 
 

 
U Srbiji je 1877. godine objavljen prevod knjige  A. Gamoa EKSPERIMENTALNA 
FIZIKA. U delu IX pod nazivom STATIČKI ELEKTRICITET, a koji je podeljen na šest 
glava,  jedina formula je upravo Coulombov zakon. 
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1 - Coulombov zakon 
 

2
21

R
qqkF =  

Proučavanje elektrostatike često počinje od Coulombovog
zakona koji je rezultat eksperimentalnih istraživanja iz 1785. 
godine. 

 

Dva naelektrisana tela beskonačno malih dimenzija, u odsustvu drugih 
naelektrisanih tela, deluju jedno na drugo mehaničkom silom, F

r
, čiji je 

intenzitet (jačina), F , srazmeran proizvodu njihovih električnih opterećenja,  i 
, (količina naelektrisanja ili samo naelektrisanja) i obrnuto srazmeran kvadratu 

njihovog međusobnog rastojanja, 

1q

2q
R . 

 

Pravac sile spaja tačke u kojima se posmatrana tela nalaze i smer je takav da se 
tela odbijaju ako su električna opterećenja istog znaka ili privlače ako su ta 
opterećenja suprotnog znaka. Ova sila je električnog porekla pa su uobičajeni 
nazivi električna sila, elektrostatička sila, ili Coulombova sila. 
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Konstanta  je permitivnost  ili propustljivost sredine ili dielektrična konstanta. 
Sam naziv dobija smisao pri izučavanju elektrostatičkih polja u materijalnim 
sredinama u kojima dielektrična propustljivost najčešće i nije konstantna. Na 
osnovu merenja brzine svetlosti, koja su obavljena u prošlom veku, dobijena je 
vrednost ove konstante za vakuum (i približno za vazduh). 
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U racionalizovanom načinu pisanja jednačina, koji je 
danas opšte prihvaćen, ova konstanta se piše u obliku 2

2
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Na ovaj način konstanta π4  je eliminisana iz velikog broja jednačina koje se 
koriste u elektrostatici i uopšte u elekromagnetici. 
 

Tačkasta naelektrisanja mogu biti raspoređena po proizvoljnoj niti ili površi, ili 
pak mogu da budu raspoređena u određenom delu zapreminine. Tako se dolazi do 
pojmova  podužna, površinska i zapreminska gustina naelektrisanja: 
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U svim slučajevima Coulombov zakon je moguće primeniti na "beskonačno" 
male delove. To je princip linearne superpozicije. 
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Primer 1.1 - Raspodela naelektrisanja na štapu 
 
Kad se štap dužine  naelektriše nekom 
količinom naelektrisanja , ta naelektrisanja se 
delovanjem međusobnih odbojnih sila rasporede 
duž štapa.  U najvećem broju slučajeva smatramo 
da je raspodela naelektrisanja uniformna i 
govorimo o podužnoj gustini naelektrisanja 

. Kad je dužina štapa znatno veća od 
poprečne dimenzije, ova aproksimacija je vrlo 
tačna za najveći deo sredine štapa. 
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Do realnije raspodele naelektrisanja može da se dođe ako se štap podeli na  
jednakih odsečaka. Rastojanje između centara dva susedna odsečka je 

, mada to za rešavanje problema nije od značaja. Svaki odsečak je 
tačkasto naelektrisanje u njegovom centru. Što je broj podela veći aproksimacija 
je tačnija. Električne sile koje deluju na naelektrisanja na krajnjim odsečcima su 
u ravnoteži sa mehaničkim silama, jer naelektrisanja ne napuštaju štap. Ostala 
naelektrisanja su u ravnoteži isključivo zbog odbojnih sila električnog porekla. 
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Za , a za tačkasta naelek-
trisanja  i  mogu da se 
postave dve jednačine sa tri 
nepoznata tačkasta naelektri-
sanja. Treća jednačina je izraz 
za zbir svih nepoznatih naelek-
trisanja. 
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Sistem jednačina preuređen na 
oblik pogodan za rešavanje 
dovodi do rezultata 
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Iz ovog oblika se lako dolazi 
do izraza za elemente matrice u 
opštem slučaju, 
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Poslednja jednačina je uvek  
jednačina zbira. 
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U uravnotežnom stanju raspodela naelektrisanja nije uniformna i najveća gustina 
je na krajevima. Uopšte, oštre ivice i šiljci sadrže najveće gustine naelektrisanja. 
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Primer 1.2 - Dva tačkasta naelektrisanja i elektroskop 
 
Razvoj teorijske elektrostatike neminovno je pratio i razvoj instrumenata za 
detekciju i merenje statičkog elektriciteta. Prvi metod za merenje bio je zasnovan 
na ravnoteži gravitacione i električne sile.  
 

To je prvi uočio Du Fay (Charles Francoide 
Cisternais du Fay, 1698-1739). 
 

Ako se dva naelektrisana tela koja slobodno 
vise jedno uz drugo, povežu sa naelektrisanim 
telom, ona se odbijaju srazmerno naelek-
trisanju.  
 

Dve kuglice istih težina G , vise na nitima istih 
dužina . Kad se kuglice naelektrišu nekom 
količinom naelektrisanja , niti o koje su 
kuglice obešene grade ugao 
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Električna tj. Coulombova sila  i horizontalna komponenta gravitacione sile 
 su u razvnoteži. 
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gde su 
2

sin2 α
= LR  i mgG = , i gde je m  masa kuglice. 

 

Odavde je moguće odrediti količinu naelektrisanja na osnovu ugla koji grade niti 
o koje su naelektrisane kuglice obešene, 
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2
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Zadatak 1.1 - Tri tačkasta naelektrisanja jednake količine naelektrisanja se nalaze u 
temenima zamišljenog jednakostraničnog trougla čija je stranica . Odrediti sve sile 
međusobnog delovanja. 

a

 
Zadatak 1.2 - Tačkasto naelektrisanje q nalazi se na osi beskonačno tankog kružnog 
obruča poluprečnika  koji je ravnomerno naelektrisan istom količinom naelektrisanja 
suprotnog znaka. Odrediti rastojanje od ravni obruča gde je privlačna sila najveća. 

a

 
Zadatak 1.3 - Beskonačno dug i prav provodnik zanemarljive debljine naelektrisan je 
podužnom količinom naelektrisanja q′ . Na rastojanju r  od ose provodnika nalazi se tač- 
kasto naelektrisanje  i potrebno je odrediti silu između ova dva naelektrisanja. q
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2 - Električno polje 
 
Električno polje je posebno stanje sredine koje se 
manifestuje postojanjem mehaničke sile koja deluje na neku 
količinu naelektrisanja. Pojam fizičkog polja je prvi uveo 
Faraday (Michael Faraday, 1791-1867) ali tek pri 
proučavanju elektromagnetne indukcije kad je već bilo 
naslućeno da su električno i magnetno polje neraskidivo 
vezani fenomeni i predstavljaju jedinstveno elektromagnetno 
polje.  
   

Električno polje je definisano kao količnik mehaničke sile 
F
r

 kojom polje dejstvuje na probno naelektrisanje  i same 
količine naelektrisanja koja stvara polje. 
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Električno polje usamljenog tačkastog naelektrisanja, q , 
određuje se direktno iz Coulombovog zakona.  
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Linija polja je linija čija se tangenta u svakoj tački prostora 
poklapa sa pravcem vektora polja. 
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Električno polje je izvorno polje. Postojanje neke
količine naelektrisanja je uvek uslovljeno
postojanjem iste količine naelektrisanja suprotnog
znaka. Dogovorom je usvojeno da su pozitivna 
naelektrisanja izvori, a negativna naelektrisanja 
ponori električnog polja.  
 
Usamljeno tačkasto naelektrisanje ne postoji tj. 
naelektrisanje suprotnog znaka je veoma daleko 
od prostora koji se razmatra.  
 
Fluks je pojam koji, kao i pojam vektorskog polja, 
potiče iz hidrodinamike i uveden je zbog
proračuna količine tečnosti koja protekne kroz
neki poprečni presek (cevi).  

 
 

Neka se u centru zamišljene sfere poluprečnika r  nalazi tačkasto naelektrisanje 
. U svim tačkama ove sferne površine električno polje ima istu jačinu i 

radijalan pravac, pa je broj linija polja (fluks) koje prolaze kroz površinu cele 
sfere .  
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Primer 2.1 - Ravnomerno naelektrisana kružna ploča 
 
Kružna ploča poluprečnika  naelektrisana je 
površinskom gustinom naelektrisanja 

a
η . Svaka 

elementarna površina θ= dS drrd  je tačkasto 
naelektrisanje koje na simetralnoj osi stvara 
električno polje 
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Zbog osne simetrije sve radijalne komponente 
vektora električnog polja se anuliraju, pa polje ima 
samo aksijalnu komponentu, 
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Kako vektor električnog polja ne zavisi od ugaone koordinate, problem je 
moguće rešiti i posmatranjem niza koaksijalnih kružnih prstenova površine 
 

( ) )dd2()d(d 222 rrrrrrS −π=π−π+= ⇒  rrS d2d π= , 
 

što je ustvari isto kao da je unapred rešen integral po ugaonoj koordinati. 
 

♦ Kad se poluprečnik ploče beskonačno uvećava, ∞→a , 
dobija se izraz za električno polje naelektrisane ravni.  nE ˆ

2 0ε
η

=
r

 
 

Električno polje naelektrisane ravni očigledno ne zavisi od rastojanja. Ostavlja se 
čitaocu da objasni ovaj rezultat.  
 

♦ Sa unapred poznatom greškom ravna površina konačnih dimenzija se može 
tretirati kao beskonačna ravan. Tako ako je rastojanje tačke u kojoj se polje 
određuje deset puta manje od poluprečnika ploče i električno polje je deset 
procenata manje od onog koje bi stvorila beskonačna ravan. 
 
Zadatak 2.1 - U tačkama na osi simetrije odrediti električno polje koje potiče od 
ravnomerno naelektrisane kružne konture. 
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Primer 2.2 - Ravnomerno naelektrisana kvadratna ploča 
 
Kvadratna ploča stranice  naelektrisana je 
površinskom gustinom naelektrisanja 

a
η . Svaka 

elementarna površina yxS dd d=  je tačkasto 
naelektrisanje koje na simetralnoj osi stvara 
električno polje 
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Zbog osne simetrije sve radijalne komponente vektora električnog polja se 
anuliraju, pa polje ima samo aksijalnu komopnentu, 
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Smenom θ= cosrzx , θ= sinrzy , , se dobija  θ= dddd 2 rrzyx
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Dobijeni integral se rešava smenom tzaz sin4sin2 22 +=θ , tako da je konačno 
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Kada  kvadrata ploča postaje neograničena ravan i 
dobija se već poznat rezultat (primer 2.1). 
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. 

Objašnjenje zašto jačina električnog polja ne zavisi 
od rastojanja je zasnovano na razmatranju 
naelektrisanja simetrično lociranih u odnosu na osu u 
čijim tačkama se polje određuje. U tačkama vrlo 
blizu ravni električno polje koje potiče od udaljenih 
naelektrisanja je skoro paralelno ravni i njihovo 
rezultantno polje je jednako nuli ili je vrlo blizu nule. 
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Ostaje uticaj samo jedne tačke, a to je tačka prodora ose kroz ravan. Za tačke 
veoma udaljene od ravni uticaj svih tačaka je skoro isti. U konačnom zbiru 
razultat je uvek isti. Jasno, ovo razmatranje važi samo za neograničenu ravan. Do 
istog rezultata dovodi primena analize koja tek sledi. 
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3 - Prostorni ugao, fluks i divergencija 
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Uvođenje pojma prostornog ugla, koji je u
neposrednoj vezi sa pojmom fluksa, omogućava
razumevanje suštine postojanja fizičkog polja i
olakšava rešavanje složenih problema teorije polja. 
Sve površine  oslonjene na konturu C  se vide pod
istim prostornim uglom. Prostorni ugao je brojno
jednak delu površine sfere koju isecaju zraci iz centra
sfere jediničnog poluprečnika ka konturi objekta. 

S

 
Prostorni ugao je fluks vektorske funkcije rr ˆ2− kroz 
zamišljenu površinu . Jedinica za prostorni ugao je
steradijan sa oznakom strad. Pun prostorni ugao se 
jednostavno dobija ako je zamišljena površina sfera. 

S

 
Usled dejstva odbojnih sila na naelektrisanoj metalnoj 
sferi naelektrisanja se raspoređuju ravnomerno po 
površini. Iz proizvoljne tačke u unutrašnjosti sfere, 
elementarne centralno simetrične površine se vide pod 
istim prostornim uglovima, pa je ekvivalentno 
električno polje koje stvaraju dve takve površine 
jednako nuli. Isto važi i za bilo koji drugi par 
površina.  
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U unutrašnjosti provodnika električno polje je jednako nuli i nije važno da li je 
taj provodnik pun ili šupalj. 
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Pojam divergencije neke vektorske
funkcije lako je uvesti razmatranjem
proticanja nestišljivog fluida. Ono što
važi za vektorsku funkciju )(rv rr  kojom
je opisano brzinsko polje, važi i za
električno polje )(rE rr

. 
Prvo se odredi fluks vektora električnog 
polja za par paralelnih stranica (1 i 2) 
elementarnog paralelepipeda. Zatim se 
postupak ponovi za preostala dva para 
stranica i dobijeni izrazi se saberu da bi 
se odredio fluks za elementarnu 
zapreminu. Dobijeni izraz je divergencija
vektora u pravouglom koordinatnom
sistemu, pa sledi i izraz za  ukupni fluks 
gde nije od značaja sam oblik zapremine.
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Primer 3 - Prostorni ugao pod kojim se vidi kružna ploča 
 
Prostorni ugao pod kojim se kružna ploča 
poluprečnika  vidi iz tačke koja pripada 
vertikalnoj simetrali ploče i nalazi se na visini  
od ploče je , gde je  površina koju iz 
sfere poluprečnika 
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Kako je jednačina gornje polovine sfere 
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to su potrebni parcijalni izvodi 
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Smenama θρ= cosx , θρ= siny  i nakon rešavanja integrala  sledi da je 
 

( ) hrzrrarrrS π=−π=−−π= 2)(22 22 , 
 

gde je  visina kalote. Za prostorni ugao i jačinu električnog polja u tačkama na 
osi ploče (videti primer 2) se dobija 
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Zadatak 3.1 - Odrediti prostorni ugao ugao pod kojim se vidi poluravan 
 

Zadatak 3.2 - Odrediti )(div R
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4 - Teorema Ostrogradskyog 
 
Iz dva poslednja izraza za fluks vektora električnog polja 
sledi teorema divergencije, 
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SE
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d , ∫=Φ
V
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∫∫ =
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VESE ddivd
rrr

 
 

 

ili teorema poznatija kao teorema Ostrogradskyog 
(Mikhail Ostrogradsky, 1801-1862), koja pod određenin 
uslovima važi i za druga vektorska polja.  
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Fluks karakteriše ukupni kapacitet izvora ili 
ponora. Kada je 0>Φ  posmatrana 
zapremina sadrži izvore polja, u slučaju 

0<Φ   zapremina sadrži ponore polja (ili 
negativne izvore), i u slučaju  u 
zapremini nema ni izvora ni ponora ili 
zapremina obuhvata i izvore i ponore iste 
izdašnosti. Ovo je još jedan dokaz da je 
ispravno pozitivna naelektrisanja smatrati 
izvorima, a negativna ponorima polja. 

0=Φ

 

Ukupni fluks kao integralna veličina je isto što i divergencija kao lokalna ili 
diferencijalna veličina. 
 

Električno polje je izvorno polje. Tamo gde nema izvora ili ponora linije polja su 
neprekidne. Jedini izuzetak od ovog pravila su singularne tačke (ili linije) ili 
tačke neodređenosti, tj, tačke u kojima polje isčezava, pa pravac linija polja 
postaje neodređen. Takva je, na primer, tačka na sredini između dva jednaka 
tačkasta naelektrisanja istog znaka. 
 

Međutim, na osnovu ukupnog fluksa ništa se ne može zaključiti o raspodeli 
izvora i ponora u posmatranoj zapremini V . To je moguće pomoću diferenci-
jalnih veličina kao što je divergencija koja daje vezu između samog izvora i polja 
u njegovoj neposrednoj okolini.  
Zbog toga fluks treba razmatrati po jedinici zapremine. Ovaj 
količnik izražava srednju gustinu izvora (ponora). ∫

S

SE
V

rr
d1  

 

Ako se posmatra granična vrednost ovog izraza kad zapremina prelazi u tačku, tj. 
kad  , dobija se izvod fluksa po zapremini što je divergencija vektora ili 
gustina fluksa. Dakle, divergencija vektora je prostorni izvod. 

0→V

 

Iz definicije divergencije je jasno da vrednost ove 
skalarne veličine uopšte ne zavisi od izbora 
koordinatnog sistema.  
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Primer 4 - Jedna primena teoreme Ostrogradskyog 
 
Ako se izraz koji iskazuje teoremu Ostrogradskyog u Descartesovom 
koordinatnom sistemu, 
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diferencira po zapremini V , onda je izvod desne strane jednak podintegralnoj 
funkciji, a izvod leve strane upravo predstavlja definiciju divergencije, pa je i to 
jedan od razloga što se ova podintegralna funkcija često pogrešno smatra 
definicijom divergencije.  
 
Iz definicije divergencije je jasno da vrednost ove skalarne veličine uopšte ne 
zavisi od izbora koordinatnog sistema.  
 
Treba primetiti da ako je  
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sledi korisna formula za izračunavanje zapremine, 
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5 - Gaussov zakon 
 
Neka je  proizvoljna zatvorena površina koja 
obuhvata usamljeno tačkasto naelektrisanje  
(naelektrisanja suprotnog znaka su dovoljno 
daleko da ne utiču na strukturu polja). Fluks 
vektora električnog polja kroz ovu površinu je 
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To što važi za tačkasto naelektrisanje važi i za bilo koju raspodelu naelektrisanja 
koja je zamišljenom (ili stvarnom) površinom obuhvaćena. 
 

∫∫∫∫ ε
=ρ

ε
=η

ε
=′

ε
==Φ

VSLS

qVSlqSE
0000

d1d1d1d
rr

 
 

To je ustvari Gaussov zakon (Carl Friedrich Gauss, 
1777-1855) u integralnom obliku. 

 

0
d

ε
==Φ ∫

qSE
S

rr
 

 

 

Izlazni fluks vektora električnog polja kroz proizvoljnu
zatvorenu površinu jednak je količniku količine na-
elektrisanja koje je tom površinom obuhvaćeno i di-
električne konstante vakuuma.  
 

Ako se na Gaussov zakon primeni teorema divergencije dobija se lokalni ili 
diferencijalni oblik ovog zakona. 
 

∫∫∫∫ ε
ρ

=ρ
ε

=
ε

===Φ
VVVS

VVqVESE dd1ddivd
000

rrr
 

     

    
    

 

0
div

ε
ρ

=E
r

 
 

    
   

     

 
 

 
V
qSE

V V
S

V 000
lim1d1lim
→→ ε

=∫
rr

 

Do istog rezultata se dolazi i ako se integralni oblik Gaussovog zakona podeli 
zapreminom i potraži granična vrednost kad zapremina teži nuli tj. tački. 
Gaussov zakon je još jedan od razloga zbog koga je teorema divergencije ili 
teorema Ostrogradskyog najčešće poznata kao teorema Gauss-Ostrogradskyog. 
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Primer 5.1 - Naelektrisani cilindar i koaksijalni cilindri 
 
♦ Neograničeno duga nit naelektrisana je 
podužnom gustinom naelektrisanja q′ . 
Oko dela ove niti opiše se zamišljena 
cilindrična površ poluprečnika r  i 
konačne dužine . Ova zamišljena 
površina naziva se Gaussova površina. 
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Vektor električnog polja ima samo radijalnu komponentu pa fluks postoji samo 
kroz omotač Gaussove površine. U svakoj tački na omotaču vektor električnog 
polja ima isti pravac, smer i jačinu, a kolinearan je sa vektorom elementa 
površine. Jasno, smer vektora električnog polja zavisi od znaka naelektrisanja. 
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♦ Ako je naelektrisanje rapoređeno na 
cilindru koji nije beskonačno tanak već 
ima kružni poprečni presek poluprečnika 

, naelektrisanja će biti raspoređena po  
površini cilindra stvarajući površinsku 
gustinu naelektrisanja 
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Gaussovom površinom u oba slučaja je obuhvaćena ista količina naelektrisanja. 
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Najveća jačina polja je na površini cilindra, ar = . 
Dobijeni rezultat je granični uslov za normalnu (u ovom 
slučaju i jedinu) komponentu vektora električnog polja. 
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♦ Neka su data dva naelektrisana koaksijalna cilindra. 
Usled dejstva Coulombovih sila naelektrisanja su 
raspoređena po spoljašnjoj površini unutrašnjeg 
cilindra, ar =

br =
 i unutrašnjoj površini spoljašnjeg 

cilindra, .  Kada je ar <  Gaussova površina ne 
obuhvata naelektrisanja, te je u unutrašnjosti 
unutrašnjeg cilindra polje jednako nuli. Kada je  
Gaussova površina obuhvata jednake po količini i 
suprotne po znaku količine naelektrisanja, pa je opet 
polje jednako nuli. Između cilindara električno polje je 
jednako polju koje bi stvarao i usamljeni cilindar. 
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Primer 5.2 - Naelektrisana nit konačne dužine 
 
Nit dužine  naelektrisana je podužnom 
gustinom naelektrisanja 

L
q′ . Elementarni 

odsečak niti dužine  se ponaša kao 
tačkasto naelektrisanje 
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Kad se iskoriste geometrijski odnosi  koji 
su sa slike očigledni, za komponentu 
električnog polja koja je upravna na pravac 
niti se dobija izraz  u kome figuriše 
isključivo ugao θ . 
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♦ Kad je nit neograničeno duga, 01 →θ , π→θ2  za 
električno polje se dobija izraz koji bi se dobio i primenom 
Gaussovog zakona u integralnom obliku. 
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♦ Za tačke koje pripadaju simetralnoj ravni niti je 
 i 2/)(1 β−π=θ 2/)(2 β+π=θ , pa se izraz za 

električno polje može preurediti na oblik 
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♦ Pravilan -tougao je upisan u kružnicu polu-
prečnika  tako da se stranica se vidi po uglom 

. Na osi mnogougla električno polje ima 
samo aksijalnu komponentu koja se dobija 
direktnom primenom poslednje formule. 
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♦ Kad se broj stranica mnogougla neograničeno 
uvećava, ∞→N , dobija se izraz za električno polje 
na osi kružnice. 
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Primer 5.3 - Zapreminsko naelektrisanje između dva cilindra 
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Beskonačno dug cilindar poluprečnika  homo-
geno je naelektrisan zapreminskom gustinom 
naelektrisanja 

a

ρ . Kada se Gaussov zakon u inte-
gralnom obliku, 
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primeni na zamišljenu cilindričnu površinu 
konačne dužine  i poluprečnika L ar ≥  postoji 
samo fluks kroz omotač cilindra, pa sledi 
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Ako je pak ar ≤  sva naelektrisanja nisu obu-
hvaćena zamišljenom površinom, pa je 
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Neka je naelektrisana oblast ograničena sa dve
cilindrične površine poluprečnika  i 
neka je rastojanje između osa cilindara . Kako
će biti pokazano, polje u unutrašnjosti šupljine je
homogeno. Posmatrani elektrostatički sistem je 
potrebno zameniti sa dve zapreminske gustine
naelektrisanja suprotnih znakova i odgovarajućih
poluprečnika cilindara koje ih obuhvataju. 
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U tački M  koja pripada šupljini ukupno polje je zbir polja koja potiču od 
zapreminskih naelektrisanja suprotnih znakova. 
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pa je  ukupno električno polje 
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konstantne jačine i u pravcu koji spaja ose cilindara. 
 

 
Zadatak 5.1 - Odrediti električno polje koje stvara neograničena ravan naelektrisana 
površinskom gustinom naelektrisanja η . Odrediti električno polje između dve ravni, 
između dva koaksijalna cilindra i između dve sfere. 
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6 - Rad sila polja i energija 
 
U fizici mehanički rad za razliku od intelektualnog rada je obavezno povezan sa 
dejstvom neke sile. Sila svojim dejstvom vrši rad samo ako se to telo pomera ili 
deformiše, u suprotnom rad ne postoji iako postoji dejstvo sile. 
 

Elementarni rad je definisan kao skalarni proizvod sile F
r

 i 
vektora pomeraja, l

r
d . Jačina vektora pomeraja je jednaka 

dužini pređenog puta, pravac i smer su isti kao pravac i 
smer pomeranja tela ili deformacije. Jedinica za rad je Džul 
(Joule), sa oznakom J, (James Joule, 1818-1890). 
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Energija je brojno jednaka radu i ima istu jedinicu. Međutim, i pored istog 
mernog broja i iste jedinice između rada i energije postoji kvalitativna razlika. 
Energija određuje sposobnost nekog sistema da izvrši rad. Rad je veličina koja 
određuje promenu energije. Ako na sistem deluju spoljašne sile energija tog 
sistema se povećava. Obrnuto, sistem može da izvrši rad samo smanjivanjem 
(trošenjem) svoje energije. Posmatrano mikroskopski postoje samo dve vrste 
energije i to su potencijalna i kinetička energija ili energije mirovanja i kretanja. 
Sve makroskopske vidove energije (električna, toplotna, ...) moguće je svesti na 
dva mikroskopska, čiji zbir podleže zakonu o održanju energije. 
 

Helmholtz (Hermann von Helmholtz 1821-1894) je zapisao : 
"... Priroda kao celina ima zalihu energije koja se nikako ne 
može ni povećati ni smanjiti, dakle, količina energija u 
neorganskoj prirodi ... je večna i nepromenljiva." 
 

Zakon o održanju energije: Ukupna energija izolovanog 
sistema je nepromenjiva. Ukupnu energiju nije moguće 
uništiti niti je iz bilo čega stvoriti. Moguće je jedino 
pretvaranje jednog vida energije u drugi. 

 

 
   

Rad sila električnog porekla po zatvorenom putu je jednak 
nuli. Cirkulacija vektora električnog polja je jednaka nuli. 
Elektrostatičko polje je konzervativno. 
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To je direktna posledica zakona o održanju energije. Direktne posledice su i da je 
električno polje u unutrašnjosti provodnika jednako nuli i da postoji samo 
normalna komponenta na spoljašnjoj strani provodnika. Naelektrisanja se 
raspoređuju krećući se po najkraćim putanjama koje su određene najvećim 
privlačnim ili odbojnim silama. Tada je utrošeni rad najmanji, pa je 
elektrostatički sistem u ravnoteži ako je potencijana energija polja minimalna. 
Elektrostatičko polje opisuje se energijom mirovanja. 
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Primer 6 - Rad Coulombove sile 
 
Dva nepokretna tačkasta naelektrisanja jednaka po znaku i količini nalaze se na 
međusobnom rastojanju . Na vertikalnoj osi simetrije u tački a2 M  na visini  
nalazi se tačkasto naelektrisanje  isto po količini ali suprotnog znaka. Potrebno je 
izračunati rad koji izvrše sile polja pomerajući ovo naelektrisanje iz tačke gde je 
sila najveća do tačke u kojoj se naelektrisanje nalazi u stanju labilne ravnoteže. 
Privlačna Coulombova sila međusobnog dejstva ima samo komponentu upravnu 
na pravac koji spaja dva nepokretna tačkasta naelektrisanja, 
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Osim u centru simetrije, 0=y , gde se tačkasto naelektrisanje nalazi u stanju la-
bilne ravnoteže, sila na tačkasto naelektrisanje je jednaka nuli i u beskonačnosti. 
Između dve nule neprekidne funkcije mora da postoji ekstremna vrednost 
(Rolleova teorema). Najveća privlačna sila je u tački gde je prvi izvod funkcije 

 jednak nuli. Dakle, u opštem slučaju Coulombova sila nije najveća pri 
najmanjem rastojanju. Kako je 
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Traženi rad je 
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Zadatak 6.1 - Nepokretni kružni obruč poluprečnika  naelektrisan je količinom 
naelektrisanja . Na osi obruča na rastojanju  od centra nalazi se tačkasto 
naelektrisanje isto po količini suprotno po znaku. Izračunati rad koji izvrše sile polja 
pomerajući tačkasto naelektrisanje iz tačke gde je sila najveća do centra obruča. 
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q y

 

Zadatak 6.2 - Jezgro atoma vodonika polazi iz beskonačnosti početnom brzinom  ka 
nepokretnom tačkastom naelektrisanju q . Izjednačavajući kinetičku energiju čestice i rad 
izvršen protiv sila polja odrediti rastojanje na kom će se čestica zaustaviti. 
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Zadatak 6.3 - Dve paralelne ravni na međusobnom rastojanju  naelektrisane su istim 
površinskim gustinama naelektrisanja koje su suprotne po znaku 

d
η± . Sa negativno 

naelektrisane ravni iz stanja mirovanja kreće elektron. Izračunati brzinu elektrona 
neposredno pre udara u pozitivno naelektrisanu ravan. 
 

Zadatak 6.4 -Tačkasto naelektrisanje q  kreće se po liniji polja ravni naelektrisane 
nepoznatom površinskom gustinom naelektrisanja η . Ako je poznata dužina pređenog 
puta s  i ukupan izvršeni rad A , izračunati površinsku gustinu naelektrisanja ravni . η
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7 - O izračunavanju rada i energije 
 
U Descartesovom (Rene Descartes alias Cartesius Renatus, 
1596 -1650) koordinatnom sistemu je 
 

yyxxr ˆˆ +=
r  yFxFrF yx ˆˆ)( +=

rr
 yyxxl ˆdˆdd +=

r
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pa se za rad sila polja imeđu tačaka A  i  dobija 
krivolinijski integral druge vrste, 
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Promena znaka je u potpunoj saglasnosti sa fizičkim tumačenjem - to je rad koji 
može biti i pozitivan i negativan tj. dobijen i uložen. 
 

Kako je lylx dsind,dcosd α=α=  to je 
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što je krivolinijski integral prve vrste. 
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Ako je C  proizvoljna zatvorena kontura koja ograničava površinu , tada se 
elementarnim razmatranjem pokazuje da je 
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što je poznato kao Greenova formula (George Green, 1793-1841). 
 

U elektrostatičkom polju (kao i u gravitacionom) rad sila po 
zatvorenoj konturi je jednak nuli. To znači da rad ne zavisi 
od putanje integracije već samo od koordinata početne i 
krajnje tačke.Na primer, za konturu sa slike će biti 
 
 

02/3coscos2/cos0cos =π+π+π+= FLFLFLFLA .  
 

0dyd =+= ∫ y
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x FxFA yFxF yx ddd +=ϕ  Ako je samo jedan od
uslova ispunjen, tada su
ispunjeni i ostali (ovde
bez dokaza). x
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Iz Greenove formule se pogodnim izborom podintegralne funkcije dobija korisna 
formula za izračunavanje površine: 
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Primer 7 -  Izračunavanje rada u električnom polju 
 
U prostoru između elektroda cilindričnog voda 
poluprečnika elektroda a  i b  respektivno, nalazi se 
tačkasto naelektrisanje . Izračunati rastojanje  za koje 
je rad sila električnog polja od  do  isti kao od  do b . 

q c
ca c

 

Električno polje u koaksijalnom vodu je radijalno i dobija 
se primenom Gaussovog zakona  
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Komponente električnog polja u Descartesovom koordinatnom sistemu su  
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pa sledi da je rad  
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Za rešavanje integrala je potrebno poznavati jednačinu putanje duž koje se 
integrali. Integral se jednostavno rešava smenama θ= cosrx , θ= sinry .  
 

Međutim, kao što je poznato elektrostatičko 
polje je konzervativno i lako se proverava da 
rad ne zavisi od putanje integracije već samo 
od koordinata krajnjih tačaka. 
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Pošto je ispunjen jedan od potrebnih uslova ispunjeni su i svi ostali, pa se rad 
izračunava kao integral totalnog diferencijala potencijala. Za dve proizvoljne 
tačke koje su određene poluprečnicima  rad (napon) će biti BA rr <
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Rad od tačke na spoljašnjoj strani unutrašnje 
elektrode ar =  do tačke u polju cr =  je: ► a

cqqAAC ln
2 0πε

′
=  

Rad od tačke u polju cr =  do tačke na unutrašnjoj 
strani spoljašnje elektrode br =  je: ► c

bqqACB ln
2 0πε

′
=  

Iz jednakosti ova dva izraza sledi: ► bac =  
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8 - Stokesova formula, rotor vektora 
 
Uopštavanje Greenove formule na trodimenzionalni slučaj
dovodi do Stokesove formule  (George Gabriel Stokes,
1819-1903). U elektrostatičkom polju rad po zatvorenoj
putanji je jednak nuli pa slede izrazi analogni onima koji
se dobijaju u dvodimenzionalnom slučaju. 
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Stokesova formula dovodi do ideje da je integral na desnoj moguće interpretirati 
kao fluks nekog novog vektora kroz površinu  koja je ograničena konturom .  S C
 

Taj novi vektor nazvan je rotacija ili vrtložnost 
vektorskog polja ili rotor vektora. U Descartesovom 
koordinatnom sistemu ovaj vektor je moguće zapisati 
u formi simboličke determinante. 
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Stokesova formula (teorema): Cirkulacija vektora F

r

duž zatvorene konture C  je jednaka fluksu vektora
F
r

rot  kroz proizvoljnu površinu  koja se oslanja na
konturu.  

S
 

 

 

Elektrostatičko polje je bezvrtložno jer je rad sila 
polja po zatvorenom putu jednak nuli, 0rot =E

r
 

 

Međutim, u opštem slučaju (na primer, magnetno polje) cirkulacija vektora nije 
jednaka nuli. 
 

Ako se elementarna kontura, CΔ , po kojoj se računa cirkulacija, steže (obim teži 
nuli)  onda i površina, SΔ , koja je ograničena konturom teži nuli i obe strane u 
izrazu za cirkulaciju vektora teže nuli. Međutim, ako se obe strane ove jednakosti 
podele  sa , tada je granična vrednost konačna i definiše projekciju vektora SΔ

F
r

rot  na pravac normale elementarne površine SΔ . Rotor vektora je prostorni 
izvod i ne zavisi od izbora koordinatnog sistema. 
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Primer 8 - Elektrostatičko polje koje ne može da postoji 
 
Neka se elektrostatičko polje menja po zakonu 
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to znači da postojanje ovakvog elektrostatičkog polja nije moguće jer je rezultat 
suprotan činjenici da je elektrostatičko polje konzervativno, tj. da je 0rot =E

v
. 

 
Zadatak 8.1 - Odrediti rotor vektora položaja,  zzyyxxr ˆˆˆ ++=

r
. 

 

Zadatak 8.2 - Odrediti rotor vektora 2
ˆ

r
r

. 
 

Zadatak 8.3 - Izračunati ( )ϕgradrot . 
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9 - Energija, potencijal i napon 
 
U gravitacionom polju potencijalna energija tela se određuje
u odnosu na neki referentni nivo. Za referentni nivo izabran
je nivo mora. Potencijalna energija je zbir energije na 
referentnom nivou i rada koji je uložen na podizanje tela.
Time se ukupna energija sistema povećava, a oblik i dužina
putanje nisu od značaja. 
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Uloženi rad treba uzeti sa negativnim znakom jer se vrši
protiv sila polja. Vrednost integrala je negativna, jer su 
vektori sile i puta antiparalelni, i zbir je pozitivan. 
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rr
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Dakle, potencijalna energija nije jednoznačno određena i zavisi od izbora
referentnog nivoa. Energije računate za različite referentne nivoe se razlikuju za
aditivnu konstantu. 
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Ako se usvoji da je rad koji je prethodno uložen da bi se telo
dovelo do referentnog nivoa jednak nuli, ili ako se smatra da
je površina mora na nultoj visini, tada je prvi sabirak jednak
nuli pa se za potencijalnu energiju dobija poznat izraz. 
 

Potpuno ista razmatranja važe za elektrostatičko polje, samo
što se u elektrostatičkom polju ne pomera masa već probno
naelektrisanje. Referentna tačka je najčešće u beskonačnosti.
 

Potencijal neke tačke u elektrostatičkom polju je brojno
jednak radu koji izvrše sile polja pomerajući pozitivno
jedinično naelektrisanje iz te tačke do referentne tačke.
Elektrostatičko polje je potencijalno polje.  
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Jedinica za potencijal je volt sa oznakom V (Alessandro
Volta, 1745-1827). Odavde sledi i jedinica za električno
polje koja se u praksi najčešće i koristi, 
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Razlika potencijala je srazmerna razlici potencijalnih
energija i to je električni napon, ili samo napon. 
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Tačke na istom potencijalu obrazuju ekvipotencijalne linije i ekvipotencijalne 
površine. Pošto je napon između dve tačke koje pripadaju istoj ekvipotencijalnoj 
površini jednak nuli, na osnovu definicije napona,  sledi da je vektor električnog 
polja uvek normalan na ekvipotencijalnu površinu. U unutrašnjosti provodnika 
električno polje je jednako nuli, što znači da su sve tačke na istom potencijalu 
koji je jednak potenijalu površine.  
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Primer 9 - Održanje količine naelektrisanja 
 
Balon (na primer, od sapunice) poluprečnika  i male debljine zida a aa <<Δ , u 
odnosu na referentnu tačku nalazi se na potencijalu aϕ . Nakon rasprskavanja 
balon se pretvara u kapljicu sfernog oblika poluprečnika  koja će sadržati istu 
količinu naelektrisanja, q , kao i balon ali će biti na nekom drugom potencijalu 
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bϕ

a
q

a
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4 0πε
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ab ϕ=ϕ . 

 

Pošto zapremina koju zauzima materijal balona mora biti ista kao i zapremina 
koju zauzima materijal kapljice to je 
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odakle je moguće izračunati poluprečnik novonastale kapljice, 
 

3/1322 )33( aaaaab Δ+Δ−Δ= . 
 

Kad se zanemare stepeni višeg reda male veličine aΔ  za potencijal kapljice se 
dobija 

3/12 )3( aa
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ab Δ
ϕ=ϕ . 

 
Zadatak 9.1 - Dve provodne sfere čiji su poluprečnici ba <  povezane su provodnikom 
zanemarljive debljine čija je dužina znatno veća od oba poluprečnika, . Ako je 
ceo sistem naelektrisan količinom naelektrisanja 

baR ,>>

bqq aq +=  odrediti silu istezanja 
provodnika na kome je količina naelektrisanja zanemarljiva 
 

Zadatak 9.2 - Odrediti potencijal koji stvara nit dužine  koja je ravnomerno 
naelektrisana podužnom gustinom naelektrisanja 

L
q′ . Potencijal odrediti u tački u ravni 

simetrije. 
 

Zadatak 9.3 - Podužno naelektrisanje q′  ima oblik polukružnice poluprečnika . 
Odrediti potencijal tačke u centru. 

a

 

Zadatak 9.4 - Kružna ploča poluprečnika  ravnomerno je naelektrisana površinskom 
gustinom naelektrisanja 

a
η . Odrediti potencijal u tačkama koje pripadaju vertikalnoj osi 

ploče. 
 

Zadatak 9.5 -  jednakih po količini tačkastih naelektrisanja pravilno je raspoređeno 
po obimu zamišljene kružnice poluprečnika a . Odrediti potencijal u centru kružnice 

N2

a) ako su naelektrisanja istog znaka, 
b) ako se znak naelektrisanja naizmenično menja. 
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10 - Gradijent potencijala 
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Potencijal je definisan kao krivolinijski integral
vektora električnog polja. Obrnuto, električno
polje je izvod funkcije koja opisuje potencijal. 
Kako je izvod konstante jednak nuli, sledi da
su funkcije  i 1ϕ C+ϕ=ϕ 12  potpuno ravno-
pravne jer jednoznačno opisuju električno
polje. 
 

 

Potencijal tačkastog naelektrisanja u tački M
u odnosu na referentnu tačku P  je 
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Ekvipotencijalne površine su koncentrične
sfere u čijem se zajedničkom centru nalazi
tačkasto naelektrisanje. 
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Za referntnu tačku u beskonačnoti, ∞→Pr , nulta ekvipotencijala je sfera 
beskonačnog poluprečnika. Međutim, pri električnim merenjima najčešće se 
smatra da je površina zemlje na nultom potencijalu. Za tačke M  i  koje su na 
beskonačno malom rastojanju je  
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U Descartesovom koordinatnom sistemu je 
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Kako je  totalni diferencijal skalarne 
funkcije od tri promenljive, sledi: 
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Električno polje je degradijent 
električnog skalar potencijala. 
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Brzina promene skalarne veličine duž pravca zavisi od tog pravca. Najveća brzi-
na promene je u pravcu koji je normalan na ekviskalarnu površinu i jednaka nuli 
kad je taj pravac neka od tangenti na ekviskalarnu površinu. Gradijent skalarne 
funkcije je prostorni izvod. 
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Primer 10 - Određivanje polja iz potencijala 
 

Dva jednaka tačkasta naelektrisanja q+  
nalaze se na međusobnom rastojanju . 
Potrebno je odrediti električno polje u 
tačkama koje pripadaju osi simetrije, .  
Potencijal u bilo kojoj tački  je zbir 
potencijala koje stvara svako od tačkastih 
naelektrisanja, 
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Električno polje je jednako degradijentu potencijala, 
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Pošto je potencijal funkcija koja zavisi samo od jedne koordinate , to sledi y
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Obrnuto, električni skalar potencijal iz električnog polja se dobija kao 
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Zadatak 10.1 Ako je 222 )()()( zzyyxxR ′−+′−+′−=  izračunati    u 
tačkama  i  

Rgrad
),,( zyxM ),,( zyxM ′′′′ . 

 

Zadatak 10.2 Ako je 222 )()()( zzyyxxR ′−+′−+′−=  izračunati  
R
1grad   u 

tačkama  i  ),,( zyxM ),,( zyxM ′′′′ . 
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11 - Helmholtz, Poisson i Laplace 
 
Električni skalar potencijal nije jednoznačno određen jer zavisi od izbora 
referentne tačke. Međutim, električno polje, kao izvod potencijala, i pored toga je 
jednoznačno. 
 

Prema Helmholtzovoj teoremi vektorska 
funkcija je jednoznačno određena ako njena 
vrednost u beskonačnosti teži nuli najmanje 
kao  i ako su u svim tačkama iz oblasti 
definisanosti poznati prostorni izvodi. 
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Elektrostatičko polje je jednoznačno određeno 
jer su ispunjeni svi uslovi teoreme koja je ovde 
prikazana bez dokaza. 
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Diferencijalni oblik Gaussovog zakona i činjenica da je električno polje određeno 
kao degradijent potencijala dovode do parcijalnih diferencijalnih jednačina 
drugog reda koje su poznate kao Poissonova (Denis Poisson, 1781-1847) i 
Laplaceova (Pierre Simon Laplace 1749-1827), za 0≠ρ  i 0=ρ  respektivno.  
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ϕ−= gradE
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Izraz )(graddiv ϕ  je prostorni izvod drugog reda i nazivan je laplasien skalarne 
funkcije . Diferenciranja drugog reda primenjuju se prema tabeli koja sledi. ϕ
 

skalarno polje ϕ  vektorsko polje E
r

 
Operator 
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12 - Greenovi identiteti 
 
Za proizvoljnu vektorsku funkciju E

r
 koja je zajedno sa svojim prvim izvodima 

neprekidna u delu prostora V  koji je ograničen zatvorenom površinom  važi 
teorema divergencije ili teorema Ostrogradskyog. 

S

 
  

∫∫ =
VS

VESE ddivd
rrr

 
 

 

 
Neka su ψ  i ϕ  skalarne funkcije čiji su prvi i drugi izvodi neprekidni u 
posmatranoj oblasti i neka je  
 

ϕψ= gradE
r

, 
 
tada iz teoreme divergencije sledi identitet  
 

∫∫ ϕψ=ϕψ
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VS d)grad(divdgrad
r

. 

Kako je 
)(graddivgradgrad)grad(div ϕψ+ϕψ=ϕψ  

 
sledi prvi Greenov identitet 
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Ako funkcije ψ  i ϕ  zamene mesta dobija se 
 

( )∫∫∫ ψϕ+ϕψ=ψϕ=
∂
ψ∂

ϕ
VSS
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n

d)(graddivgradgraddgradd
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Oduzimanjem poslednja dva identiteta dobija se drugi Greenov identitet, 
poznatiji kao Greenova teorema ili teorema Green-Ostrogradskyog. 
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13 - Rešenje Laplaceove i Poissonove jednačine 
 
Svaka funkcija koja je u datoj oblasti neprekidna i 
koja ima neprekidne izvode prvog i drugog reda i 
koja zadovoljava Laplaceovu jednačinu je 
harmonijska funkcija. Električni skalar potencijal je 
harmonijska funkcija. Ako je rr′  vektor položaja 
tačke izvora i rr  vektor položaja tačke u polju, 

'rrR rrr
−= , tada funkcija R/1=ψ  zadovoljava 

Laplaceovu jednačinu u svim tačkama osim u tački 
izvora, rr rr ′= . Dokaz je jednostavan: 
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Neka je funkcija ϕ  električni skalar potencijal koji zadovoljava Poissonovu 
jednačinu i ψ  funkcija koja zadovoljava Laplaceovu jednačinu i uslove pod koji-
ma su izvedeni Greenovi identiteti, u svim tačkama osim u tački 0=R

S
 koju je 

potrebno isključiti iz dela zapremine, na primer sfernom površinom ′  polupreč-
nika . Opšte rešenje Poissonove jednačine sledi iz Greenove teoreme. a
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Neka se površina  uvećava, na primer 
kao sfera, po zakonu 

S
2R . Podintegralna 

funkcija istovremeno opada bar kao  
tako da integral po ovoj površini iščezava. 
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Na površini sfere S ′  je aR =  i Rn∂∂ = −∂ ∂// , jer je normala na tu površinu 
usmerena ka centru sfere. Ako se za potencijal i izvod potencijala u pravcu 
radijusa usvoje srednje vrednosti, ceo izraz ide ispred znaka integrala, pa sledi 
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Konačno rešenje Poissonove jednačine je na 
osnovu Helhomltzove teoreme jednoznačno. 
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14 - Provodnici 
 
Kad se provodno telo naelektriše, usled dejstva odbojnih elektrostatičkih sila 
dolazi do raspoređivanja naelektrisanja po površini tela. U unutrašnjosti 
provodnika nema slobodnih naelektrisanja i električno polje je jednako nuli. Zato 
je svejedno da li je provodnik masivan ili šupalj. Šuplje provodno telo, za 
unutrašnjost, predstavlja savršenu zaštitu od spoljašnjeg elektrostatičkog polja. 
 
Na površini provodnika tangencijalna komponenta elek-
tričnog polja je jednaka nuli. U suprotnom bi bilo stalnog 
kretanja naelektrisanja i nikada ne bila postignuta 
ravnoteža. Normalna komponenta električnog polja je 
jednaka količniku površinske gustine naelektrisanja i 
dielektrične konstante. Sve tačke na površini provodnika 
su na istom potencijalu. To je ekvipotencijalna površina.  
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Kad se provodnik unese u elektrostatičko polje pod dejstvom polja dolazi do 
kratkotrajnog kretanja elektrona u provodniku koje traje sve do uspostavljanja 
novog ravnotežnog stanja. Naelektrisanja će biti raspoređena tako da uslovi 
elektrostatičke ravnoteže budu obezbeđeni. Nova raspodela naelektrisanja na 
provodniku koji je unet u elektrostatičko polje je nazvana elektrostatička 
indukcija ili influencija. 
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Pre unošenja u polje  Posle unošenja u polje  Detalj površine 
 
Ako se naelektrisano telo unese u unutrašnjost šupljeg provodnog nenaelek-
trisanog tela na unutrašnjoj površini šupljeg tela će se pojaviti naelektrisanja 
suprotnog znaka koja će biti raspoređena tako da budu ispunjeni uslovi 
elektrostatičke ravnoteže. 
 

Pošto je šuplje telo prethodno bilo nenaelektrisano na 
spoljašnoj površini će biti raspoređena naelektrisanja 
jednaka po znaku i količini onom koje je u telo uneto 
i to bez obzira na oblike i međusobni položaj tela. 
Ovakav eksperiment je izveo Faraday pa je pojava 
naelektrisanja na spoljašnjoj površini nenaelek-
trisanog tela koje obuhvata neku količinu naelek-
trisanja poznata kao efekat Faradayevog pehara. 
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Primer 14.1 - Dve paralelne ravni 
 
Dve neograničene ravni na rastojanju  
priključene su na napon U . Raspodela 
potencijala određena je rešenjem Laplaceove 
jednačine koje zadovoljava granične uslove 
na površinama ravni. 

d η+
U=ϕ

xη−

dy =

0=ϕ0=y
E
r

η+
U=ϕ

xη−

dy =

0=ϕ0=y
E
r

 
 
U Descartesovom koordinatnom sistemu potencijal 
zavisi samo od jedne koordinate, na primer , pa 
Laplaceova jednačina ima samo jedan sabirak.  

y ► 0
d
d

2

2

=
ϕ

y
 

 

Rešenje je linearna funkcija od  koordinate. y
 

► ( ) 21 CyCy +=ϕ  
 

Iz graničnog uslova 0)0( ==ϕ y  se dobija 
 

► 02 =C  

Iz graničnog uslova Udy ==ϕ )(  se dobija ► 
d
UC =1  

Konačno rešenje je ► 
d
yU=ϕ  

Električno polje je degradijent potencijala i usmereno 
je od ravni na višem potencijalu ka ravni na nižem 
potencijalu. 

► 
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d
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y
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d
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−=
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d
UE =  

Ako su ravni konačnih dimenzija i imaju površinu  
onda iz Gaussovog zakona sledi izraz za jačinu 
električnog polja. 

S
► S

qE
0ε

=   

Poređenjem poslednja dva izraza se dobija ► S
q

d
U

0ε
=  

Odavde sledi odnos  koji je za dati sistem 
konstantan. Kasnije će biti pokazano da je taj odnos 
kapacitivnost, u ovom slučaju ravnog kondenzatora. 

Uq /
► Const.0 =ε=

d
S

U
q  
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Primer 14.2 - Koaksijalni vod 
 
Dva neograničeno duga koaksijalana cilindra 
poluprečnika  i b  priključena su na napon U . 
Raspodela potencijala određena je rešenjem 
Laplaceove jednačine koje zadovoljava granične 
uslove na elektrodama. 

a

 

0=ϕΔ ,  Ua =ϕ )(   i  0)( =ϕ b . 

 

0=ϕ

U

0=ϕ

U

 
 
U polarno-cilindričnom koordinatnom sistemu (videti 
prilog) potencijal zavisi samo od radijalne koordinate 
r , pa Laplaceova jednačina ima samo jedan sabirak.  
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Izraz u zagradi mora da bude jednak konstanti, pa se 
posle integracije dobija opšte rešenje. 
 

► 21 ln)( CrCr +=ϕ  

Zadovoljavanjem graničnih uslova se dobija sistem 
od dve linearne jednačine iz koji se određuju 
konstante integracije. 

► 21ln CaCU +=  

21ln0 CbC +=  

Zamenom vrednosti za konstante u opšte rešenje 
dobija se izraz za raspodelu potencijala. ► )/ln(

)/ln(
ab
brU−=ϕ  

Električno polje je određeno kao negativan izvod 
potencijala u pravcu normale, ► 

r
r

ab
UE

ˆ
)/ln(

=
r

 

Izraz za električno polje se dobija i direktnom 
primenom Gaussovog zakona u integralnom obliku. ► r

rqE
ˆ

2 0πε
′

=
r

 

Odavde je potencijal određen kao linijski integral 
vektora električnog polja. ► a

rq ln
2 0πε

′
=ϕ  

Napon između elektroda se dobija kada je rastojanje 
jednako poluprečniku spoljašnje elektrode. ► a

bqU ln
2 0πε

′
=  

Odnos  je za dati sistem konstantan. Kasnije će 
biti pokazano da je taj odnos podužna kapacitivnost. 

Uq /′ ► 
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2 0

abU
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′
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Najveća jačina električnog polja je na spoljašnjoj 
strani unutrašnje elektrode. ► 

aab
UE 1

)/ln(max =  

Poluprečnik unutrašnjeg provodnika je moguće 
dimenzionisati tako da ta vrednost bude najmanja. ► 0

d
d max =

a
E  

Iz nule prvog izvoda se dobija uslov za minimum 
maksimuma jačine električnog polja. ► eab =/  

Tako se dobija i najmanja moguća vrednost jačine 
električnog polja u koaksijalnom vodu za zadati 
napon. 

► 
a
U

b
UeE ==

minmax  

 

Za ar <  i  polje je jednako nuli, što se lako vidi iz Gaussovog zakona. br >
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Primer 14.3 - Koncentrične sfere 
 
Dve koncentrične sfere priključene su na napon U . Raspodela potencijala 
određena je rešenjem Laplaceove jednačine koje zadovoljava granične uslove na 
elektrodama, 0=ϕΔ ,  Ua =ϕ )(   i  0)( =ϕ b .  
 
U sfernom koordinatnom sistemu (videti prilog) 
potencijal zavisi samo od radijalne koordinate r , pa 
Laplaceova jednačina ima samo jedan sabirak.  
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Izraz u zagradi mora da bude jednak konstanti, pa 
se posle integracije dobija opšte rešenje. 
 

► 21
1 C
r

C +−=ϕ  

Zadovoljavanjem graničnih uslova se dobija sistem 
od dve linearne jednačine čijim rešenjem su 
određene konstante integracije. 

► 
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Zamenom vrednosti za konstante u opšte rešenje 
dobija se izraz za raspodelu potencijala. ► ⎟
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Električno polje je određeno kao negativan izvod 
potencijala u pravcu normale, ► r

rab
baUE ˆ1
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=

r
 

Izraz za električno polje se dobija i direktnom 
primenom Gaussovog zakona u integralnom 
obliku. 
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Odavde je napon između sfere određen kao linijski 
integral vektora električnog polja. ► ⎟

⎠
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Odnos  je za dati sistem konstantan. Kasnije 
će biti pokazano da je taj odnos kapacitivnost. 

Uq /
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abC
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Najveća jačina električnog polja je na spoljašnjoj 
strani unutrašnje elektrode. ► )(max aba

bUE
−

=  

Najveća jačina električnog polja biće najmanja ako 
spoljašnja elektroda ima dva puta veći poluprečnik 
od unutrašnje (videti prethodni primer). 

► 
a
U

a
UE 42

minmax ==  

 

Za ar <  i  polje je jednako nuli, što se lako vidi iz Gaussovog zakona. br >
 

♦ Kada se poluprečnik spoljašnje elektrode neograničeno uvećava, , 
sistem dve koncentrične sfere degeneriše u jednu usamljenu sferu.  

∞→b

 

Usamljena naelektrisana sfera 
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15 - Električna indukcija 
 
Na osnovu rezultata Faradayevog eksperimenta i ideje 
o električnom polju Maxwell (James Clarck Maxwell, 
1831-1879) je smatrao da je unošenje naelektrisanja u 
neku zapreminu praćeno izlaznim pomeranjem iste 
količine naelektrisanja kroz površinu kojom je ta 
zapremina ograničena. Šta više ta površina može biti 
zamišljena, pa tako i dolazi do uspostavljanja električ-
nog polja u celom prostoru.  

 

 
 

 

ED
rr

0ε=  
  

Razrađujući ovu ideju Maxwell je uveo vektor
električnog pomeraja ili vektor električne indukcije, D

r
. 

Vektor D
r

 ima prirodu površinske gustine naelektrisanja
i intenzitet mu je brojno jednak količini naelektrisanja
koja se pomeri kroz jediničnu površinu koja je
normalna na pravac pomeranja. 

[ ] 22
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m
C

C
N

Nm
C

==D  

 
U vakuumu vektori E

r
 i D

r
 su kolinearni pa uvođenje još jednog vektora na prvi 

pogled izgleda suvišno. Divergencija vektora električne indukcije je 
 

ρ=ε=ε= EED
rrr

div)(divdiv 00 ⇒  ρ=D
r

div  
 

gde je ρ  zapremenska gustina slobodnih naelektrisanja. U materijalnim 
sredinama pojaviće se i vezana naelektrisanja koja su izvor električnog polja ali 
nisu izvor polja električne indukcije, i to je suštinska razlika između ovih 
veličina. Matematičku formulaciju uticaja sredine u kojoj postoji električno polje 
je dao  Maxwell. Zato se vrlo često za teoriju elektromagnetnih polja kaže 
Faraday-Maxwellova teorija.  
 
"Pre nego što sam započeo izučavanje elektriciteta rešio sam da ne čitam mate-
matiku o tome dok ne pročitam Faradayeva Eksperimentalna istraživanja 
elektriciteta. Bio sam svestan da se pretpostavljalo da postoji razlika između 
Faradayevog načina shvatanja pojava i načina matematičara, tako da ni on ni oni 
nisu bili zadovoljni jezikom onog drugog. "Kad sam preveo, ono što sam smatrao 
Faradayevom idejom, u matematičku formu, našao sam da se rezultati dva 
metoda uglavnom podudaraju tako da se iste pojave mogu objasniti i isti zakoni 
delovanja mogu izvesti i jednim i drugim metodom." ... "Faraday je svojim 
misaonim okom video linije sila kako prožimaju ceo prostor tamo gde su 
matematičari videli centre sila koje deluju iz daleka. Faraday je video medijum 
tamo gde oni nisu videli ništa sem odstojanja. Faraday je tražio sedište fenomena 
u realnim delovanjima koja se prostiru kroz medijum, dok su se oni zadovoljili da 
ga nađu u dejstvu na daljinu kojem su podvrgnuti električni fluidi." 
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16 - Kapacitivnost 
 
Električna kapacitivnost ili samo kapacitivnost je sposobnost tela da zadrži 
naelektrisanja. Svako telo koje može da se naelektriše ima svojstvo 
kapacitivnosti. 

 

ϕ
=

qC  
Za usamljeno provodno telo kapacitivnost se često naziva 
sopstvena kapacitivnost i jednaka je količniku količine 
naelektrisanja i potencijala provodnika. 

 

Kapacitivnost je brojno jednaka količini naelektrisanja koje je potrebna da bi 
provodnik sa nultog potencijala bio doveden na jedinični potencijal u odnosu na 
referentne tačke. Kapacitivnost je za dato telo konstantna. 
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U sistemu jedinica SI, jedinica za kapacitivnost je farad i ima
oznaku F po Michaelu Faradayu. 
Iz izraza za kapacitivnost provodne sfere sledi: 
♦ Farad je velika jedinica i tek sfera poluprečika od devet 
miliona kilometara ima kapacitivnost od jednog farada. 
♦ Kapacitivnost dela provodnika je manja od kapacitivnosti 
celog provodnika. 
♦ Kapacitivnost je dimenziono dužina. 
♦ Latinska reč capacitas sa značenjem "prostor u kome ima 
mesta za mnogo stvari" je usvojena za električnu veličinu. 
♦ Jedinica za dielektričnu konstantu koja je u upotrebi je 
farad po metru. m

F][ 0 =ε  
 

Kad provodno telo nije usamljeno potencijali tela zavise od količina 
naelektrisanja na svim telima. Važi i obrnuto, potencijal posmatranog tela zavisi 
od naelektrisanja na tom telu ali i od naelektrisanja na susednim telima. Dakle, 
moguće je napisati dva sistema jednačina. 
 

Nepoznata naelektrisanja Nepoznati potencijali 
2121111 qaqa +=ϕ  

2221212 qaqa +=ϕ  
2121111 ϕ+ϕ= bbq  

2221212 ϕ+ϕ= bbq  

Primer: 
Međusobni 

uticaj 
dva tela 

 

ija - potencijalni koefeicijenti
  

ijb - koeficijenti indukcije 
 

Očigledno koeficijenti  imaju prirodu kapacitivnosti. Da bi se izbegla 
protivurečnost između njihove prirode i negativnog znaka koji se javlja kod 
međusobnih koeficijenata, prethodni sistem jednačina je potrebno napisati u 
obliku koji ima i svoje fizičko značenje. 

ijb

 

Sada su koeficijenti delimične kapacitivnosti. Sa 
jednakim indeksima su sopstvene, a sa različitim 
indeksima su međusobne kapacitivnosti. 

)( 21121111 ϕ−ϕ+ϕ= CCq  

22212212 )( ϕ+ϕ−ϕ= CCq  
 

Ako se jednačine podele dielektričnom konstantom tada one predstavljaju 
raspodelu fluksa u sistemu. 
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Primer 16 - Obrtni elipsoid, sfera, cilindar i disk 
 
Usamljeno linijsko naelektrisanje dužine  je ravnomerno naelektrisano 
podužnom gustinom naelektrisanja 

c2
q′ . U nekoj tački polja potencijal u odnosu 

na tačke u beskonačnosti je  

∫
− +′−

′
πε
′

=ϕ
c

c yxx

xdq
22

0 )(4
     tj.      

22

22

0 )(

)(ln
4 ycxcx

ycxcxq

+−+−

++++
πε
′

=ϕ , 

gde je integral rešen smenom tyxtyxx chd,sh −=′=′− . Ekvipotencijalne 
površine se dobijaju iz uslova const.=ϕ  ili 
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ili prema oznakama sa slike 
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Takođe, sa iste slike je očigledno 
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cxr . Iz prvog i poslednjeg 

odnosa se dobija     )()k(k 21 cxcxrr +−−+= ,     )()k(k 12 cxcxrr −++−= , 

pa je const.
1k
1k221 =

−
+

=+ crr  Ekvipotencijalne površine su rotacioni elipsoidi 

čije su žiže u tačkama na krajevima linijskog naelektrisanja. Prema tome svaki 
rotacioni elipsoid čija se površina poklapa sa nekom od ekvipotencijalnih 
površina i koji je naelektrisan količinom naelektrisanja qcq ′= 2

22 ba −

 je na 
potencijalu koji je jednak potencijalu bilo koje tačke koja pripada toj površini. Na 
primer, za elipsoid čije su poluose  i b , a ekscentricet c , i za tačku 

, iz izraza za potencijal bilo koje tačke u polju sledi 
a 2 =

0, == yax
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Iz izraza za kapacitivnost obrtnog elipsoida sledi izraz za kapacitivnost sfere 
poluprečnika , tj. za  tj.  sledi a 0→c ab → aC 04πε= ; Za 0=a  se dobija 
kapacitivnost diska poluprečnika , tj. Cb b08ε= . Takođe je moguće dobiti 
približne izraze za kapacitivnost veoma izduženog rotacionog elipsoida oblika 
olovke ili kapacitivnost kružnog cilindra oblika olovke. 
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17 - Uopštenje pojma kapacitivnosti - kondenzator 
 

21 ϕ==ϕ U

22C
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11C 22C
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11C 22C

0

U

 

Za sistem od dva naelektrisana tela moguća su
dva slučaja. U nesimetričnom slučaju su poten-
cijali tela jednaki. Rešavanjem poslednjeg sis-
tema jednačina (lekcija 16) sledi da kapacitivnost
između tela ne postoji (u elektrostatičkom smislu
to je samo jedno provodno telo), ali postoji kapa-
citivnost tela prema tačkama na nultom poten-
cijalu. Ekvivalentna kapacitivnost je paralelna
veza delimičnih sopstvenih kapacitivnosti. 
 

UCUCCqqQ =+=+= )( 221121  
 

U simetričnom slučaju je 
 

qqq =−= 21    i   U=ϕ−ϕ 21 . 
 

Ovakav sistem od dva provodna naelektrisana tela
je nazvan kondenzator jer u elektrostatici
naelektrisanja ne napuštaju električno odvojena
naelektrisana tela i na njima se skupljalju (zgu-
šnjavaju) tj. kondenzuju. 
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Ako se jednačine poslednjeg sistema saberu sledi veza iz koje je očigledno da su 
potencijali tela suprotnog znaka. Kad se došlo do saznanja o električnoj struji, 
provodna tela su nazvana elektrodama. Faraday je pri proučavanju elektrolize 
pozitivnu elektrodu nazvao anoda, a negativnu elektrodu katoda. Ako se prva 
jednačina pomnoži sa , a druga sa , pa se zatim od prve jednačine oduzme 
druga, i imajući u vidu da je 

22C 11C
CCC == 2112 , sledi da je 
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Prvi sabirak je kapacitivnost kondenzatora. Drugi sabirak je ukupna kapacitivnost 
oba tela prema tačkama koje su na nultom potencijalu. Sopstvene delimične 
kapacitivnosti su, preko tačke nultog potencijala u serijskoj ili rednoj vezi. U 
elektrotehnici sopstvene delimične kapacitivnosti vrlo često stvaraju neželjena 
dejstva i zato su nazvane parazitne kapacitivnosti. Ako su dimenzije elektroda i 
njihovo međusobno rastojanje znatno manje od rastojanja do tačaka koje su na 
nultom potencijalu tada su parazitne kapacitivnosti zanemarljive u odnosu na 
kapacitivnost kondenzatora. Međutim, moguće je postići potpunu nezavisnost 
elektrodnog sistema od rasporeda ostalih tela. To se postiže stavljanjem 
elektrodnog sistema u metalni oklop. Oklapanje elektrodnog sistema predstavlja 
savršenu elektrostatičku zaštitu. Isti je slučaj i kad jedna elektroda obuhvata 
drugu, na primer sferni kondenzator ili koaksijalni vod. 
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Primer 17 - Kapacitivnost kondenzatora 
 
Za elementarne geometrije elektroda (ravna, cilindrična, sferna) izrazi za jačinu 
električnog polja i raspodelu potencijala su izvedeni u ranijim lekcijama i to 
primenom Gaussovog zakona i rešavanjem Laplaceove jednačine. Iz tih izraza se 
jednostavno dobijaju i izrazi za kapacitivnost odgovarajućih kondenzatora. 
 

Ravan kondenzator Cilindrični kondenzator Sferni kondenzator 
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♦ Iz izraza za kapacitivnost sfernog kondenzatora se dobija i 
kapacitivnost usamljene sfere ako se pusti da ∞→b . 

 aC 04πε=  
 

♦ Iz kapacitivnosti usamljenog elipsoida se dobija isti rezultat, 
ali se dobija i kapacitivnost kružnog diska poluprečnika . a

 aC 08ε=  
 

♦ Neka u kondenzatoru postoji neutralna elektroda tj. 
elektroda koja nije priključena na neki napon a koja kon-
denzator deli na dva dela. Primena Gaussovog zakona 
pokazuje da je u oba dela kondenzatora električno polje 
istog pravca, smera i jačine jer je zamišljenom zatvorenim 
površinom  uvek obuhvaćena ista količina naelektri-
sanja. Međutim, napon u kondenzatoru je podeljen.  
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Dobijena je formula za ekvivalentnu kapacitivnost redne veze dva kondenzatora. 
Neutralna elektroda ne menja kapacitivnost kondenzatora (videti primer 18). 
 
Zadatak 17.1 - Proceniti kapacitivnosti usamljenih elektroda oblika kvadrata i 
oblika kocke kao srednju vrednost upisanih i opisanih krugova, odnosno sfera. 
 

Zadatak 17.2 - Kondenzatorska kaskada se sastoji od 
 jednakih ćelija, kao što je to prikazano na slici. 

Izračunati ekvivalentnu kapacitivnost beskonačne 
kaskade. Pretpostaviti da se ekvivalentna kapacitivnost 
ne menja ako se izostavi jedan kondenzator. 

n
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18 - Energija elektrostatičkog polja - 1 
 
Energija elektrostatičkog sistema je brojno jednaka 
radu koji je uložen za naelektrisavanje tog sistema. 
Neka sistem sadrži samo jedno telo koje se nalazi 
na potencijalu ϕ . Dovođenjem količine naelek-
trisanja  od referentne tačke do tela izvrši se 
elementarni rad i za istu brojnu vrednost se uve-
ćava i energija. Na kraju procesa je 
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U polju koje stvara sistem od  naelektrisanih 
tela između kojih postoji zapreminska gustina 
naelektrisanja izraz za energiju postaje uprošćen. 

N
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ii  

Energiju je moguće izraziti i preko jačine 
električnog polja (detaljno izvođenje izraza je ovde 
izostavljeno, videti 29).  
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Oba izraza za energiju su potpuno ravnopravna u pogledu izračunavanja, ali 
drugi izraz ima fizičko tumačenje. Energija je lokalizovana u polju. Za energiju 
koja je sadržana u polju ravnog kondenzatora na oba načina se dobija isti rezultat, 
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Ako se u elektrostatičko polje unese nenaelektrisano telo ili telo na nultom 
potencijalu tada se energija lokalizovana u polju menja. 
 

♦ Energija se povećava ako potencijali ostaju nepromenjeni (izvor napajanja je 
stalno priključen), 

const.,0)(
2
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12 =>−=−=Δ UCCUWWW  

♦ Energija se smanjuje ako količine naelektrisanja ostaju nepromenjene (izvor 
napajanja je pre unošenja novog tela isključen), 
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Thompsonova teorema (ovde bez dokaza) - Raspodela naelektrisanja na 
provodnim telima je uvek takva da je energija u polju minimalna. 
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Primer 18 - Promena energije u ravnom kondenzatoru 
 
Ravan kondenzator sačinjen od pravougaonih elektroda površina 0  koje se 
nalaze na međusobnom rastojanju 0  i priključen je na izvor napajanja 0U . Kad 
se paralelno sa elektrodama u polje kondenzatora jednim delom unese neutralna 
provodna ravan doći će do promene energije.  

S
d

 

Pre unošenja neutralne elektrode kondenzator je imao kapacitivnost  i energija 
sadržana u polju je bila . 
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Posle unošenja neutralne elektrode ekvivalentan sistem se sastoji od mešovite 
veze tri kondenzatora čije su kapacitvnosti (videti sliku) i ekvivalentna 
kapacitivnost sledeće: 
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Kako je kondenzator stalno priključen na izvor napajanja energija ostaje 
nepromenjena, jer je i ekvivalentna kapacitivnost jednaka početnoj, što je u 
suprotnosti sa poznatim rezultatom da je moralo doći do promene energije. Prvo, 
pri proračunu su zanemareni efekti krajeva a unošenjem nove elektrode ovi efekti 
se povećavaju. Drugo, uneta elektroda zauzima zapreminu u kojoj je prethodno 
postojalo polje, što je takođe zanemareno. Sa elektrodom konačne debljine dobija 
se rezultat koji je u saglasnosti sa poznatim. Neka elektroda koja se unosi u polje 
ima debljinu 1,/0 >= nndd . Sada je: 
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Ako je kondenzator stalno priključen na izvor napajanja, 
napon ostaje isti, ekvivalentna kapacitivnost je veća i 
energija se povećava. 
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Ako je kondenzator isključen sa izvora napajanja, količine 
naelektrisanja ostaju iste, ekvivalentna kapacitivnost je 
veća, a energija se smanjuje. 
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19 - Energija i sila  
 
U nekim slučajevima je moguće odrediti rezultantnu silu i rezultantne momente 
na osnovu poznate ukupne energije elektrostatičkog sistema. Metod je poznat kao 
metod virtuelnih pomeraja i zasnovan je na zakonu o održanju energije. 
 

Pomeraji koji su mogući ali nisu i ostvareni (za-
mišljeni pomeraji) daju mogućnost za određivanje 
rezultantnih sila i momenata. Ako neko telo u 
elektrostatičkom sistemu izvrši virtuelni pomeraj 
energija elektrostatičkog sistema će se promeniti. 
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Ako je pomeraj izveden tako da nije došlo do pretvaranja 
energije u neki drugi makroskopski vid, onda je promena 
energije  jednaka izvršenom radu . Rad je rezultat delo-
vanja neke uopštene ili generalisane sile  duž  neke uopštene 
ili generalisane  koordinate 
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Ako je uopštena koordinata dužina tada je  sila, i ako je uopštena koordinata 
ugao tada je uopštena sila  momenat. 

f
f

 

Pozitivan priraštaj energije može nastati samo na račun uloženog rada koji izvrši 
spoljašnja mehanička sila protiv sila polja (generatori su isključeni, količine 
naelektrisanja ostaju nepromenjene). Smanjenje energije sistema, ili negativani 
priraštaj,  znači rad sila polja (generatori su uključeni, potencijali ostaju nepro-
menjeni i količine naelektrisanja se menjaju na račun energije generatora). 
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Primer 19 - Obrtni kondenzator 
 
Za merenje napona moguće je iskoristiti kondenzator promenljive kapacitivnosti. 
Neka su elektrode kondenzatora oblika kružnog isečka poluprečnika . a
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Kada je jedna od elektroda obrtna a druga nepokretna
kapacitivnost ovog kondenzatora zavisi od površine
preklapanja , odnosno od ugla preklapanja S α  i
međuelektrodnog rastojanja , d
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Kondnzator je priključen na nepoznati napon U . 
Energija sadržana u polju kondenzatora je , W  
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Očigledno, u ovom slučaju je generalisana koordinata
ugao i generalisana sila je moment, tj. 
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U ravnotežnom stanju ovaj moment je uravnotežen mehaničkim putem, obično 
momentom spiralne opruge sa linearnom karakteristikom, α= kM . 
 

Tako se dobija da je skretanje obrtne elektrode srazmerno
kvadratu napona na koji je kondenzator priključen. 0

2
ε
α

=
dk

a
U  

 
Zadatak 19.1 - Odrediti silu između elektroda ravnog kondenzatora pri stalnom 
napajanju. 
 

Zadatak 19.2 - Ravan kondenzator  čije elektrode su pravougaonog oblika dimenzija  i 
 na međusobnom rastojanju , stalno je priključen na izvor napajanja . Odrediti 

silu koja je potrebna da se jedna od elektroda pomeri u pravcu koji je upravan na polje. 
Efekat krajeva zanemariti. 

a
b d U

 

Zadatak 19.3 - Jedna elektroda ravnog kondenzatora je nepokretna dok je druga obešena 
o oprugu. Kada je kondenzator isključen sa izvora napajanja rastojanje između elektroda 
je x . Kada se kondenzator priključi na napon  opruga se istegne za U xΔ . Ako je 
opruga sa linearnom karakteristikom xF α= , odrediti vrednost priključenog napona. 
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20 - Tačkasti simetrični električni dipol 
 
Kad je rastojanje d  između dva tačkasta 
naelektrisanja q−  i q+  znatno manje od 
rastojanja bilo kojeg od njih do tačke u polju 

 tada je  dRR <<21,
 

2
21 rRR ≈   i  θ≈− cos12 dRR . 

 

Ova dva naelektrisanja čine električni dipol 
čiji je moment 
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Električni potencijal u udaljenim tačkama je 
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Električno polje je degradijent potencijala. U sfernom koordinatnom sistemu je 
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Do istog rezultata dolazi se jednostavnije primenom pravila vektorske analize. 
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gde je iskorišćena činjenica da je pr  konstantan vektor. Zamenom u izraz za 
električno polje  se dobija poznati rezultat. 
 

Tačke u kojima se određuje potencijal nisu obavezno znatno udaljene od dipola.  
 

U opštem slučaju je 
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Osim u beskonačnosti ( ∞→r ) potencijal je jednak nuli i u tačkama koje 
pripadaju simetralnoj ravni, jer je 0=ϕ  za 0=z . 
 

Prethodna razmatranja dovode do zaključaka koji su iskazani kroz tri teoreme 
koje su posledica zakona o održanju energije. 
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Primer 20 – Dipol, sila, moment  
 
Tačkasti simetrični električni dipol rastojanja između naelektrisanja d  nalazi se 
u koordinatnom početku i usmeren je u pravcu -ose. Na rastojanju  od 
koordinatnog početka je tačkasto naelektrisanje . Naći intenzitet vektora 
električnog polja u koordinatnom početku.  
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Ako je  tada je zd <<
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21 - Tri teoreme 
 
♦ Teorema o metalizovanju ekvipotencijalnih površina. Elektrostatičko polje 
ostaje neizmenjeno ako se deo jedne ili više ekvipotencijalnih površina zameni 
beskonačno tankim slojem provodnika jer je i provodnik ekvipotencijalan, a po 
teoremi o jednoznačnosti rešenja Laplaceove ili Poissonove jednačine neće biti 
promena ni u jednoj tački polja.  
Ako se metalizuje neka zatvorena ekvipotencijalna 
površina na njenoj spoljašnjoj strani je naelektrisanje koje 
je jednako po količini i znaku obuhvaćenom naelektrisanju. 
Na unutrašnjoj strani je isto toliko naelektrisanje suprotnog 
znaka. Ako se metalizuje neka od ekvipotencijalnih površi-
na tačkastog naelektrisanja, dolazi se do zaključka da je 
polje naelektrisane sfere isto kao i polje tačkastog naelek-
trisanja koje je obuhvaćeno sferom (videti: Faradayev 
eksperiment sa peharom) 
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♦ Teorema ekvivalencije. Sve raspodele izvora električnog polja, koje u nekom 
prostoru stvaraju isto električno polje su u odnosu na taj prostor ekvivalentne. 
Preciznije, za ekvivalenciju je dovoljno da različite raspodele naelektrisanja 
stvaraju iste tangencijalne komponente vektora električnog polja.  
 
♦ Teorema lika u ravnom provodnom ogledalu. To je specijalan slučaj 
teoreme ekvivalencije ili teoreme o metalizovanju ekvipotencijalnih površina. U 
delu prostora koji je ograničen beskonačnom provodnom ravni na nultom poten-
cijalu postoje izvori električnog polja.  
Uticaj ravni na raspodelu polja je moguće zame-
niti likovima izvora polja u odnosu na ravan, tj. 
naelektrisanjima koja su suprotnog znaka i koja 
su simetrično raspoređena u odnosu na ravan. U 
cilindričnom koordinatnom sistemu čiji koor-
dinatni početak pripada provodnoj ravni funkcija 
koja opisuje raspodelu potencijala kad je uticaj 
ravni zanemaren je ),(1 zrϕ . U delu prostora gde 
polje realno postoji je: 
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Da bi funkcija ),( zrϕ  predstavljala stvarnu raspodelu potencijala u delu prostora 
gde izvori polja postoje, potrebno je da budu zadovoljeni granični uslovi.  Oba 
uslova su očigledno zadovoljena, pa je na osnovu teoreme o jednoznačnosti 
rešenja  Laplaceove jednačine funkcija ),( zrϕ  i jedino moguće rešenje. 
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Primer 21.1 - Sila između površinskog i tačkastog naelektrisanja 
 
Iznad provodne ravni, koja je naelektrisana površinskom gustinom naelek-
trisanaja , na visini  se nalazi tačkasto naelektrisanje q . Sila koja deluje na 
tačkasto naelektrisanje se sastoji od dve komponente. Prva komponenta, ,  
potiče od površinskih naelektrisanja na ravni i može da bude privlačna ili 
odbojna, 
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Druga komponenta, , potiče od naelektrisanja koja su indukovana prisustvom 
tačkastog naelektrisanja, i dobija se primenom lika u ravnom provodnom 
ogledalu,  i uvek je privlačna, 
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Za ukupnu silu se dobija   
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Kad su naelektrisanja suprotnog znaka, 0<ηq , sila je uvek privlačna i orijenti-
sana ka ravni. Kad su naelektrisanja istog znaka, 0>ηq , moguća su tri slučaja. 
 

iη>η  ► Sila je odbojna. 

iη=η  ► Sila je jednaka nuli i tačkasto naelektrisanje se nalazi u stanju 
labilne ravnoteže. 

iη<η  ► Sila je privlačna i pored činjenice da su naelektrisanja istog 
znaka. 

 

Poslednja dva slučaja nisu moguća bez dejstva sila neelektričnog porekla. 
 
Zadatak 21.1 - Podužno naelektrisanje q′  nalazi se na jednakim rastojanjima od dve 
ravni koje se seku po pravim uglom. Primenom teoreme lika u ravnom provodnom 
ogledalu odrediti potencijal i električno polje. 
 

Zadatak 21.2 - Kružni obruč čiji je poluprečnik , načinjen od provodnika čiji je 
poluprečnik , naelektrisan je količinom naelektrisanja  i nalazi se paralelno sa 
savršeno provodnom zemljom na visini . Odrediti raspodelu potencijala i električnog 
polja u tačkama koje pripadaju osi obruča. 
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Primer 21.2 - Gromobransko uže 
 
Iznad provodnika dalekovoda montiran je uzemljeni 
provodnik. Ceo sistem se nalazi u atmosferskom 
homogenom električnom polju, 
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Pod dejstvom stranog polja u provodniku se indukuju 
naelektrisanja gustine q′ . Ta naelektrisanja indukuju 
istu količinu naelektrisanja suprotnog znaka koje je 
rapoređeno po površini zemlje, i čiji uticaj je moguće 
zameniti električnim likom. Potencijal koji u pro-
izvoljnoj tački M  stvara ovaj elektrostatički sistem je
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ahqahE  Na površini uzemljenog provodnika, na primer 
u tački , 0=y ahz −= , potencijal je jednak 
nuli. Ako je h , što je inače slučaj kod 
realnih sistema, iz gornjeg uslova sledi izraz za 
podužnu gustinu indukovanih naelektrisanja. 
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Zamenom u početni izraz dobijaju se 
konačni izrazi za potencijal i električno 
polje. Na osi sistema 0=y  postoji samo 

-komponenta električnog polja. z
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Uzemljeni provodnik 
znatno slabi primarno 
polje. Sa realnim poda-
cima oko 60%. Zato pre 
svega ima zaštitnu 
ulogu tj. služi kao 
gromobran.  
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= Jednostavnije nego da se potraži moduo vektora elek-
tričnog polja do približnog rezultata se dolazi iz izraza 
za električno polje podužnog naelektrisanja.  

 

Na površini zaštitnog provodnika polje ima veoma veliku vrednost pa u njegovoj 
okolini vazduh postaje provodan ( kV/cm30≈pE ) i dolazi do sporog ili brzog 
pražnjenja atmosferskog naelektrisanja u zemlju. 
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22 - Površinski električni dipol - dvojni električni sloj 
 
Sistem od dve površine koje su ravnomerno naelektrisane površinskim gustinama 
naelektrisanja η+  i η− , i čije je međusobno rastojanje  znatno manje od od 
udaljenosti tačaka u kojima je potrebno odrediti električno polje i potencijal, čine 
površinski električni dipol ili dvojni električni sloj.  

d

 

Ovaj zamišljeni elektrostatički sistem pruža mo-
gućnost da se u elektrostatičkim sistemima opišu 
razdvojne površine, i još opštije da se uticaj 
izvora električnog polja na neki deo prostora 
zameni površinskom raspodelom naelektrisanja 
po površini koja razmatrani deo prostora 
ograničava. U suštini dvojni električni sloj je 
poseban slučaj teoreme ekvivalencije. 
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U odnosu na referentnu tačku u beskonačnosti, potencijal koji ovaj elektrostatički 
sistem stvara u nekoj tački polja M  je prema principu linearne superpozicije zbir 
potencijala koji potiču od svakog sloja posebno, 
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Za udaljene tačke ( 21, RRd << ) u polju je: 
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Iz bilo koje tačke vidi se samo jedna strana dvojnog sloja, pa je jasno da prostorni 
ugao  predstavlja ugao pod kojim se vidi kontura na koju se oslanja dvojni 
električni sloj. 
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Na osnovu definicije prostornog ugla se dobija konačan izraz za 
potencijal koji dvojni električni sloj stvara u udaljenim 
tačkama.  
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Proizvod debljine sloja i površinske gustine naelektrisanja je električni moment 
sloja ili površinski električni moment. 

Za napon između slojeva i potencijal se dobija 
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Primer 22 - Dvojni električni sloj oblika kruga 
 
Dve ravne površine oblika kruga poluprečnika  nalaze se na međusobnom 
rastojanju  i naelektrisane su površinskim gustinama naelektrisanja  i . 
U tačkama koje pripadaju osi dvojnog električnog sloja potencijal je 
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prostorni ugao pod kojim se vidi kontura ovog sloja. 
 

Do istog rezultata je moguće doći i na osnovu potencijala koji stvara usamljena 
kružna ploča, 
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Kako je rastojanje između slojeva  znatno manje od ostalih dimenzija, drugi 
sabirak je moguće razviti u Taylorov red u kolini tačke 
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Kad se u proračun uključe samo prva dva člana reda, jer su ostali zanemarljivi, 
dobija se (takođe videti primer 2 i primer 3) 
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što je već poznat rezultat. 
 
Zadatak 22.1 - Odrediti potencijal koji stvara dvojni električni sloj oblika poluravni. 
 

Zadatak 22.2 - Odrediti potencijal koji stvara dvojni električni sloj oblika beskonačne 
trake čija je širina . b2
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23 - Dielektrici 
 
Dielektrici su čvrste, tečne i gasovite materije koje ne provode električnu struju. 
Dielektrici su izolatori. Tačnije, izolatori su loši provodnici. Izolatori imaju 
sasvim malu provodnost i u neznatnoj meri provode električnu struju. Pojam 
idealnog izolatora je samo prva aproksimacija stvarnog stanja. Uticaj dielektrika 
na privlačenje ili odbijanje naelektrisanih tela primećen je na samom početku 
razvoja nauke o elektricitetu. Prvi matematički nagoveštaj vidi se već iz 
Coulombovog zakona - sila zavisi od sredine u kojoj se nalaze naelektrisanja. 
 

Cavendish (Henry Cavendish, 1731-1810), i zatim nezavisno 
od njega, i Faraday su utvrdili da se kapacitivnost konden-
zatora menja ako se između elektroda kondenzatora unese 
dielektrična materija. Rezultati njihovih eksperimenata su 
pokazali da promena kapacitivnosti kondenzatora ne zavisi 
ni od oblika ni od veličine elektroda ako se ceo među-
elektrodni prostor ispuni dielektričnom materijom, već 
zavisi samo od vrste dielektrika.  
 
Za razliku od provodnika, dielektrici ne sadrže slobodne elektrone i sastoje se ili 
od električno neutralnih molekula kakve su sve amorfne materije ili od jona koji 
se nalaze u čvorovima neke kristalne rešetke koja je u celini električno neutralna. 
U oba slučaja naelektrisanja su vezana elastičnim međuatomskim i 
međumolekularnim silama i pod dejstvom spoljašnjeg električnog polja mogu 
napustiti svoje ravnotežne položaje za mikroskopski mala rastojanja, zauzimajući 
tako nove ravnotežne položaje. Tako dolazi do polarizacije dielektrika koji u 
celini više nije električno neutralan. Vezana naelektrisanja su naelektrisanja 
neutralnih molekula i joni kristalne rešetke koji nemogu da napuste materiju i 
koja su pod dejstvom stranog električnog polja zauzela nove ravnotežne položaje. 
Polarizacija dielektrika je proces pomeranja vezanih naelektrisanja pod dejstvom 
spoljašnjeg električnog polja na nove ravnotežne položaje. Kad jačina spoljašnjeg 
električnog polja ima kritičnu vrednost, tj. takvu vrednost da Coulombova sila 
postane veća od međumolekularnih sila, dolazi do cepanja molekula i do 
električnog proboja u dielektriku. Kritična vrednost jačine električnog polja ili 
električna čvrstina dielektrika je jačina elektičnog polja pri kojoj dolazi do 
električnog proboja u dielektriku.  
 
Postoje dve klase dielektrika. Prvu klasu čine materije čiji su molekuli tako 
simetrično načinjeni od elementarnih nosilaca naelektrisanja da je u odsustvu 
spoljašnjeg električnog polja električni dipolni momenat jednak nuli. To su 
dielektrici sa nepolarnim molekulima, na primer . Druga klasa 
dieletrika sadrži materije čiji je električni dipolni moment postoji čak i kad 
spoljašnje električno polje ne postoji. To su dielektrici sa polarnim molekulima, 
na primer . 

222 H ,N,CO

OH S,H,SO 222
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24 - Polarizacija dielektrika 
 
♦ Polarizaciju dielektrika sa nepolarnim molekulima je moguće objasniti na 
primeru atoma elementa čiji je redni broj u periodičnom sistemu elemenata . 
Naelektrisanja jezgra i elektronskog omotača su 

Z
Ze± . U spoljašnjem elektri-

čnom polju ovaj atom postaje električni dipol momenta dqdZp
rrr

== e , čija osa je 
u pravcu polja. Makroskopska veličina koja opisuje polarizovanost materije je 
vektor polarizacije tj. zbir svih električnih momenata za posmatrani deo zapremi-
ne, tj. element zapremine VΔ  koju zauzima dielektrik je moguće u električnom 
smislu zameniti dipolnim momentom p

r .  
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Odavde sledi jedinica za jačinu vektora polarizacije, koja 
očigledno ima prirodu površinske gustine naelektrisanja. Pošto je 
dipolni momenat srazmeran ječini električnog polja biće to i 
vektor polarizacije tj. vektori P

r
 i E

r
 su kolinearni, i α  je 

koeficijent polarizacije. 
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♦ Polarizaciju dielektrika sa polarnim molekulima je 
moguće objasniti na primeru jednog električnog dipola čiji 
je električni moment pr  stalan. Na dipol deluje sila F

r
. Kad 

je polje homogeno, EEE
rrr

=1=2 , sila je jednaka nuli, 
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Na dipol deluje spreg sila čiji moment koji teži da dipol 
okrene tako da se osa dipola i pravac polja podudaraju. 
 

EpEdqErrqErErqM
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Iz izraza za moment sprega sila je jasno da izbor koordinatnog početka 
ne utiče na rezultat. 
 
Eksperimentalno je dokazano da i kod dielektrika sa polarnim molekulima, mada 
ne u svim slučajevima, vektor polarizacije ostaje kolinearan sa vektorom spo-
ljašnjeg električnog polja ali do određenih jačina. Nakon što jačina spoljašnjeg 
električnog polja postane veća od neke vrednost, koja zavisi od vrste dielektrika, 
dolazi do efekta zasićenja. Takve materije ostaju trajno polarisane i nazvane su 
elektreti. Uopšte, dielektrici mogu biti linearni (osobine ne zavise od jačine 
spoljašnjeg električnog polja), i nelinearni. Takođe, mogu biti homogeni (osobine 
se ne menjaju duž pravca polja) i nehomogeni. Dielektrici mogu biti izotropni 
(osobine u svim pravcima su iste) i anizotropni. 
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25 - Površinska gustina vezanih naelektrisanja 
 
Polazeći od prethodnih razmatranja moguće je 
objasniti makroskopske efekte koje stvara prisustvo 
linearne, homogene i izotropne dielektrične materije 
u spoljašnjem električnom polju. U ravnom 
kondenzatoru između čijih elektroda je prazan 
prostor i kod kog su dimenzije elektroda znatno veće 
od međusobnog rastojanja uspostavljeno je, vrlo 
približno, homogeno električno polje,  
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Jačina električnog polja je 00 / εη=E , gde je η  površinska gustina slobodnih na-
elektrisanja. Kondenzator je isključen sa izvora napajanja i u međuelektrodni 
prostor u celini se unosi dielektrična materija. U materiji se stvaraju nizovi 
elementarnih električnih dipola čije su ose približno ili sasvim tačno u pravcu 
električnog polja. Naelektrisanja na krajevima dipola se međusobno neutrališu jer 
su suprotnog znaka. Ostaju samo naelektrisanja na krajevima spoljašnih dipola. 
To su vezana naelektrisanja. Svaki element zapremine lSV ddd =  je elementarni 
električni dipol čiji je moment, lSPP dddVpd == . Moment elementarnog 
električnog dipola je lqv ddpd = , pa iz poslednja dva izraza sledi izraz za jačinu 

vektora polarizacije. E
S
q

v
v α=η=

d
dP =  Zbog pojave vezanih naelektrisanja uz 

elektrode kondenzatora stvara se dodatno električno polje koje je istog pravca ali 
suprotnog smera u odnosu na spoljašnje električno polje, 0/ εη= vvE , odnosno  

)(1)(1)(1

000
0 EPEEE vv α−η

ε
=−η

ε
=η−η

ε
=−=    ⇒   

α+ε
η

=
0

E . 
 

Koeficijent polarizacije α  je moguće predstaviti u vidu proizvoda eχε=α 0 , gde 
je  neimenovan broj nazvan električna susceptibilnost. Tako se dobija izraz iz 
kog je jasno da imenilac mora biti neka nova dielektrična konstanta. 
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Sa  je obeležena relativna dielektrična konstanta, i sa rε ε  dielektrična konstanta 
dielektrika.  
 

Kad se dobijeni rezultat uporedi sa izrazom za jačinu 
električnog polja u kondenzatoru bez dielektrika slede 
odnosi koje su zapravo otkrili Cavendish i Faraday. 
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26 - Zapreminska gustina vezanih naelektrisanja 
 
Potencijal dipola koji predstavlja element polari-
zovanog dielektrika (videti: tačkasti simetrični dipol)
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pa je potencijal svih dipola koji zamenjuju dielek-
tričnu materiju  
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Za izračunavanje poslednjeg izraza potrebno je krenuti od identiteta 
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gde se gradijent recipročne vrednosti rastojanja računa u tački u kojoj se 
potencijal određuje, a divergencija vektora polarizacije računa na mestu izvora. 
Tako je 
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ili kada se na prvi integral primeni teorema divergencije 
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gde je indeks uz divergenciju sada izostavljen kao suvišan jer izvori vektora 
polarizacije su samo u zapremini koja se posmatra. Kad je cela zapremina 
ispunjena dielektrikom integrali po površinama diskontinuiteta (koje bi trebalo 
isključiti) ne postoje. 
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U površinskom integralu podintegralna funkcija 
brže teži nuli nego što površina teži beskonačnosti, 
pa je vrednost ovog integrala jednaka nuli. 
Sa druge strane, izraz za određivanje potencijala koji 
stvara bilo koja zapreminska gustina naelektrisanja 
je od ranije dobro poznat. 
Upoređivanjem se dobija izraz za zapreminsku 
gustinu vezanih naelektrisanja. 
Slobodna i vezana naelektrisanja ravnopravno 
stvaraju potencijal i električno polje. ∫

′

′ρ+ρ
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U homogeno polarizovanom dielektriku nema viškova naelektrisanja istog znaka. 
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27 - Maxwellov postulat = treća Maxwellova jednačina 
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Diferencijalni oblik 
 

ρ=D
r

div  
  

Električno polje koje stvaraju vezana naelektrisanja
superponira se na električno polje koje stvaraju slobodna
naelektrisanja pa u diferencijalni oblik Gaussovog
zakona treba uključiti obe zapreminske gustine
naelektrisanja. 
 

Maxwell je definisao vektor D
r

 i nazvao ga vektor
električne indukcije ili vektor dielektričnog pomeraja.  
 

Uvođenjem ovog vektora sledi generalizacija Gaussovog
zakona poznata kao Maxwellov postulat ili treća
Maxwellova jednačina. Izlazni fluks vektora električne
indukcije kroz zatvorenu površinu S  koja ograničava
zapreminu  jednak ukupnoj količini slobodnih
naelektrisanja koja su obuhvaćena tom površinom i to
bez obzira da li je dielektrik homogen ili nije. 

V

 

Integralni oblik 
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U vezi sa uvođenjem vektora električne indukcije treba dati napomene koje slede. 
 
♦ Izvori i ponori polja vektora električne indukcije su isključivo slobodna na-
elektrisanja, što znači da su linije polja neprekinute kroz dielektrik bez obzira na 
nehomogenosti. Ova činjenica je od velikog značaja pri određivanju električnog 
polja u heterogenim dielektricima. 
 

♦ U opštem slučaju polje vektora električne indukcije je vrtložno jer je 
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♦ Kod linearnih i izotropnih dielektrika vektori PE
rr

,  i D
r

 su kolinearni, pa je 
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♦ Kad je dielektrik homogen dielektrična konstanta ne zavisi od koordinata i 
Maxwellov postulat se može napisati u obliku koji formalno isti kao i Gaussov 
zakon u diferencijalnom obliku, s tim što umesto 0ε  stoji ε .  
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♦ Poissonova jednačina će takođe imati formalno isti oblik. Kako su osnovne 
diferencijalne jednačine polja u dielektriku formalno iste sa onima u slobodnom 
prostoru, to moraju biti i sva rešenja elektrostatičkih problema koja se iz njih 
dobijaju. 

ε
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28 - Granični uslovi na razdvojnoj površini dva dielektrika 
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Promenu jačine i pravca vektora električne
indukcije na razdvojnoj površini dva dielektrika 
moguće je odrediti primenom Maxwellovog
postulata u integralnom obliku. Neka zatvorena
cilindrična površina ima osnovice koje leže sa
različitih strana ove površine, i neka su tako
male da je vektor električne indukcije moguće
smatrati konstantnim. 
 

U opštem slučaju na razdvojnoj površini postoji
površinska gustina slobodnih naelektrisanja η .
Kad visina cilndrične površine teži nuli fluks
vektora električne indukcije postoji samo kroz 
osnovice, pa sledi rezultat za razliku normalnih
komponenti ovog vektora. Kad na razdvojnoj
površini ne postoje slobodna naelektrisanja
normalne komponente vektora električne 
indukcije su jednake. Iz graničnog uslova za
normalne komponente vektora električnog
polja sledi granični uslov za izvode potencijala
u pravcu normale. 
 

Cirkulacija vektora električnog polja je jednaka
nuli. Neka pravougaona kontura ima dve 
stranice sa različith strana površine razdvajanja. 
Ako visina konture teži nuli sledi da su tangen-
cijalne komponente vektora električnog polja
međusobno jednake. Na samoj razdvojnoj
površini i potencijali su jednaki. 
 

Iz graničnih uslova neposredno sledi odnos
uglova koje zaklapaju vektori  elektrostatičkog 
polja. To je zakon prelamanja linija polja. 

  
 

Pri prolasku kroz graničnu površinu vektori električnog polja i električne 
indukcije se skokovito menjaju, 
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Ako je 12 ε>>ε  tada 2/2 π→α  i 01 →α  što je slučaj i kod provodnika. 
Analogija je samo formalna jer dielektrična konstanta provodnika približno ista 
kao za vazduh. Međutim, u svim formulama koje važe za dielektričnu sredinu  
može se staviti 

ε
∞→ε  da bi se dobile formule koje važe za provodnu sredinu. 
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Primer 26 - Vezana naelektrisanja oko provodne lopte 
 
Neka se usamljena naelektrisana provodna lopta poluprečnika  nalazi u homo-
genom dielektriku čija je dielektrična konstanta 

a
ε . Vektor polarizacije je 
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gde je  ukupno slobodno naelektrisanje na lopti, koje je jasno 
raspoređeno po površini lopte. Kako je 
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sledi da je zapreminska gustina vezanih naelektrisanja jednaka nuli, 

. Površinska gustina vezanih naelektrisanja koja su suprotnog 
znaka biće 
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tako da je ukupna količina naelektrisanja uz površinu lopte 
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odakle sledi da je električno polje 
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što je poznat rezultat. 
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Primer 27 - Određivanje dielektrične konstante dielektrika 
 
Sferni kondenzator je do polovine napunjen tečnim dielektrikom i priključen na 
napon . Nakon isključivanja izvora napajanja tečni dielektrik se ispusti. 
Izmereni napon između elektroda sada ima vrednost . Potrebno je odrediti 
vrednost relativne dielektrične konstante.  
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Primenom Maxwellovog postulata u integralnom obliku dobija se izraz za 
kapacitivnost sfernog kondezatora sa dielektrikom čija je dielektrična 
propustljivost . ε

ab
baC
−

πε= 4 , 
 

gde su  i b  poluprečnici unutrašnje i spoljašnje elektrode. a
 
Kad je kondenzator do polovine ispunjen dielektrikom električno polje i dalje 
ima radijalni karakter, a integracija se posebno vrši za svaku od polovina 
zamišljene sfere. Tako se dobija da je kapacitivnost ovakvog kondenzatora 
ekvivalentna kapacitivnosti redne veze dva kondenzatora, tj. 
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Kako je pre ispuštanja tečnog dielektrika kondenzator isključen sa izvora 
napajanja to znači da količine naelektrisanja ostaju nepromenjene, 
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Zadatak 27.1 - Ravan kondenzator čije elektrode su na međusobnom rastojanju  
priključen je na izvor napajanja napona . Kad se u međuelektrodni prostor ubaci 
pločica debljine  čija je relativna dielektrična konstanta 

d
U

2/d rε , u preostalom 
vazdušnom delu jačina električnog polja poveća se  puta u odnosu na prethodnu 
vrednost. Odredit vrednost  

k
rε . 
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Primer 28 - Mešovita veza ravnih kondenzatora ? 
 
Ravan kondenzator sa troslojnim dielektrikom kao na slici nije moguće pred-
staviti kao mešovitu vezu tri kondenzatora. Pošto je polje normalno na površine 
elektroda može se pretpostaviti da je električno polje homogeno u svakom od 
slojeva. Tada bi granični uslovi na razdvojnim površinama slojeva bili: 
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Iz poslednja dva granična uslova sledi da je  2211 EE ε=ε , što je protivurečno 
prvom graničnom uslovu, pa je jasno da polje u ovakvom kondenzatoru nije 
homogeno. 
 
Zadatak 28.1 - Pokazati da je ravan kondenzator sa 
dvoslojnim dielektrikom moguće prikazati kao rednu, 
odnosno paralelnu vezu dva kondenzatora, 
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Zadatak 28.2 - Unutrašnji provodnik sfernog konden-
zatora oslonjen je na konusni oslonac čija je dielektrična 
konstanta . Ostali deo prostora je ispunjen vazduhom. 
Izvodnice oslonca su radijalne i seku se u zajedničkom 
centru sfernih elektroda. U poprečnom preseku, kome 
pripada zajednički centar, izvodnice grade ugao 

1ε

α . Iz 
činjenice da je napon između elektroda svuda isti, sledi da 
je električno polje u kondenzatoru radijalno i zavisi samo 
od rastojanja. 
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Granični uslov za tangencijalne komponente vektora električnog polja na razdvojnoj 
konusnoj površini je zadovoljen. Primenom Maxwellovog postulata na zamišljenu sfernu 
površinu poluprečnika bra ≤≤ , gde su   poluprečnici elektroda odrediti izraze za 
električno polje, napon između elektroda i kapacitivnost. 

ba i

 
Zadatak 28.3 - Odrediti električno polje, napon i kapacitivnost za slučaj koaksijalnog 
voda čiji je unutrašnji provodnik oslonjen na klinasti nosač. Koristiti sliku iz prethodnog 
zadatka za ilustraciju poprečnog preseka koaksijalnog voda. 
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29 - Energija elektrostatičkog polja - 2 
 

U vakuumu 
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Izraz za energiju elektrostatičkog polja u kome se
nalazi  naelektrisanih tela i zapreminska
gustina naelektrisanja, koji je ranije već izveden
u okviru proučavanja elektrostatičkog polja u
vakuumu, pokazuje da je elektrostatička energija
funkcija količine naelektrisanja i potencijala. 

N

VEW
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d
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0 ∫ε=  

Takođe, pokazano je da je ovaj izraz moguće pomoću Gaussovog zakona 
transformisati na oblik u kome se pojavljuje samo jačina električnog polja. Na 
formalno isti način je moguće u razmatranje uvesti i vektor električne indukcije, 
ovog puta koristeći Maxwellov postulat. 
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Svako od tela u sistemu svojom 
graničnom površinom , obuhvata 
količinu naelektrisanja (negativan 
znak potiče od orijentacije normala). 
Sva tela zajedno su obuhvaćena 
površinom .  
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U materijalnoj sredini 

∫∑ ρϕ+ϕ=
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Integral po površini  je jednak nuli. Ova površina
se širi do beskonačnosti po zakonu 

0S
2r , jačina

električnog polja opada po zakonu 2−r , pa
podintegralna funkcija teži nuli kao i potencijal, tj. 
kao 1−r . U tačkama u beskonačnosti potencijal je
jednak nuli i ceo sistem se iz tih tačaka vidi kao
tačkasto naelektrisanje. 
 

Konačno se dobija 
 

VDEqV
V

i

N

i
i dd

1V
∫∑∫ +ϕ−=ρϕ

=

rr
, 

 

pa sledi i konačan izraz za energiju elektro-
statičkog polja na osnovu koga je jasno da je 
energija lokalizovana u polju i da nosioci energije 
nisu naelektrisanja. 
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30 - Dielektrična sfera u homogenom električnom polju 
 
Čestica sfernog oblika poluprečnika , načinjena od 
dielektrika propustljivosti 

a
ε , nalazi se u homogenom 

električnom polju zE ˆ0 = E0

r
 u vakuumu. Sferni 

koordinatni sistem ),,( φθr  je postavljen sa početkom 
u centru sfere. Pošto je problem rotaciono simetričan, 
raspodela potencijala je određena rešenjem dvo-
dimezionalne Laplaceove jednačine koja zadovoljava 
granične uslove na površini sfere i u beskonačnosti. 
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Postavka problema 
 

Laplaceova jednačna 
 

Granični uslovi 
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Uobičajeni metod za rešavanje ovakvih problema se sastoji u razdvajanju 
promenljivih. Rešenje za raspodelu potencijala se pretpostavlja u obliku 
proizvoda dve funkcije od po jedne promenljive, TRTrR =θ=ϕ )()( . Time se 
Laplaceova jednačina svodi na jednakost 
. 
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Kako leva strana ove jednačine zavisi samo od promenljive r , a desna strana 
samo od promenljive θ , jednakost je moguća samo ako su obe strane jednake 
istoj konstanti. Iskustvo je pokazalo da je pogodan izbor za konstantu razdvajanja 

, a evo i zbog čega. )1( +nn
 

Leva strana gornje jednakosti postaje 
Eulerova diferencijalna jednačina (Leonhard 
Euler 1707-1783). Rešenje se traži u obliku 
stepena nezavisno promenljive. To daje 
karakterističnu jednačinu čiji su koreni celi 
brojevi. 
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Konačno rešenje je linearna kombinacija dva 
partikularna rešenja. 

1
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. 



Elektrostatika 77 
 

Desna strana postaje Legendreova diferen-
cijalna jednačina (Adrien-Marie Legendre, 
1752-1833), čija su rešenja Legendreovi 
polinomi prve i druge vrste. 
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Drugo partikularno rešenje treba isključiti, 
uzimajući da je 02 =D

1
, jer za tačke na -

osi tj. za cos
z

±=θ  polinomi druge vrste 
imaju beskonačnu vrednost, a potencijal je 
konačna veličina. 
 

Na velikim udaljenostima od sfere ∞→r , 
drugi sabirak teži nuli, a potencijal mora da 
bude jednak potencijalu pobudnog polja,  
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odakle sledi da je 1=n , jer je θ= cos1P . 
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Dalje treba voditi računa u kom se domenu 
određuje potencijal. Unutrašnjost sfere 
obuhvata koordinatni početak 0=r , pa 
treba uzeti 02 =C  jer je potencijal konačna 
veličina. Okolina sfere obuhvata i tačke u 
beskonačnosti pa je 01 EC −= . 
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Kada se ovako dobijenim rešenjem zadovolje prvi i drugi granični uslov dobijaju 
se dve linearne jednačine sa dve nepoznate konstante integracije. Rešenje ovog 
sistema daje vrednosti za konstante integracije 
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i konačno rešenje za funkciju raspodele potencijala. 
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Kako je u sfernom koordinatnom sistemu θ= cosrz , 
u unutrašnjosti sfere potencijal se može prestaviti i 
pomoću -koordinate.                                                  z
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0

0

2
3

ε+ε
ε

−=ϕ  

.                                                                                                                                                                                                                                                           



78 Petković, D.M. i Krstić, D.D. - Izvodi sa predavanja i vežbi 
 

Odavde se vidi da je u unutrašnjosti sfere elek-
trično polje homogeno, usmereno u pravcu 
spoljašnjeg polja i nezavisno od veličine sfere. 
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Sfera je homogeno polarizovana (lekcija 25), 
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pa se iz izraza za vektor polarizacije određuje 
električna susceptibilnost dielektrika. 
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U okolini sfere potencijal je jednak zbiru 
potencijala koji stvara primarno polje i 
potencijala koji potiče od indukovanih naelek-
trisanja. Uticaj indukovanih naelektrisanja se 
može zameniti pomoću električnog dipola 
ekvivalentnog električnog momenta. 
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Upoređivanjem izraza za potencijal koji stvara 
električni dipol (lekcija 12) i izraza za 
perturbovanu komponentu potencijala u okolini 
sfere dobija se izraz za ekvivalentni električni 
moment. 
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Površinska gustina indukovanih naelektrisanja 
je jednaka intenzitetu vektora polarizacije. 
Odatle se dobija i ukupna količina indukovanih 
naelektrisanja. Ovaj rezultat je od velikog 
značaja za projektovanje elektrostatičkih filtera.
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U okolini sfere vektor električnog polja ima 
radijalnu i ugaonu komponentu, r
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♦ Ako se sferna šupljina nalazi u dielektriku, na primer vazdušni mehur u 
transformatorskom ulju, svi izvedeni izrazi ostaju u važnosti  samo što veličine  
i  treba da međusobno zamene mesta. 
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Polje u šupljini je većeg intenziteta nego u 
okolnoj polarizovanoj materiji jer je 0ε>ε . 0
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♦ Ako je sfera savršen provodnik svi izrazi 
izvedeni za dielektričnu sferu ostaju u važnosti 
samo što treba staviti da ∞→ε . 
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Tako se dobijaju rezultati koj bi se inače dobili 
rešavanjem Laplaceove jednačine za spoljašni 
domen, ar ≥ , ali sa graničnim uslovom koji 
važi za savršeno provodnu sferu, 
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  0=θeE ,                za ar =  
 

  θ= cos3 0EEer ,  za ar =  
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Izraz za indukovanu količinu naelektrisanja je 
poznat kao Pauthenierova jednačina (Marcel 
Pauthenier, 1887-1972). Ustvari, sfera je i 
dalje električno neutralna. Polovina količine 
indukovanih naelektrisanja je pozitivna i nalazi 
se na jednoj polovi sfere. Na drugoj polovini 
sfere je ista količina suprotnog znaka. 
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♦ Efekat polarizacije se u proračun uključuje 
implicitno pomoću veze između osnovnih 
veličina električnog polja 
 

PED
rrr

+ε= 0 , 
 

koja u slučaju linearnih izotropnih dielektrika 
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♦ Elektrostatički filteri su veoma efikasni za prikupljanje čestica vrlo malih 
dimenzija - nano čestica. Efikasnost prikupljanja zavisi od količine naelektrisanja 
na samoj čestici. Na primer, neka se radi o letećem pepelu iz fosilnih goriva. 
Tada je srednja veličina čestica sfernog oblika μm5.0=a , a dielektrična 
konstanta 0713.1 ε=ε . U električnom polju jačine kV/500 m=E

e5
 čestica će se 

naelektrisati količinom naelektrisanja od pet elektrona, =q . Metalna čestica 
pri istim uslovima naelektrisala bi se deset puta većom količinom naelektrisanja. 
Elektrostatička sila koja deluje na tako naelektrisanu česticu uvek je znatno veća 
od gravitacione ili centrifugalne sile. 
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31 - Kretanje elektrona i elektronska struja 
 

Dinamika 
Kinematika 

Rad 
Energija 
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Kada se slobodna naelektrisana čestica 
nađe u stranom električnom polju na nju 
deluje mehanička sila koja prouzrokuje 
kretanje. Naelektrisana čestica koja se 
nalazi u homogenom električnom polju, na
primer između elektroda ravnog kon-
denzatora, iz stanja mirovanja počinje da se 
kreće konstantnim ubrzanjem ka elektrodi 
sa naelektrisanjem suprotnog znaka.  
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Pri jediničnom naponu elektron stiže na 
drugu elektrodu brzinom od oko .km/s590  

s
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Kretanje elektrona formira električnu struju. Dalje izlaganje predstavlja uvod u 
sledeću oblast koja se bavi upravo proučavanjem stalnih električnih struja. 
 

Elektroni privučeni privlačnom silom atomskog jezgra katodu ne napuštaju 
spontano. Katodu treba pobuditi da bi emitovala elektrone. To se postiže na 
nekoliko načina. Jaka električna polja u okolini katode mogu da iščupaju 
elektrone sa površine - emisija polja. Neki metali emituju elektrone kada su 
osvetljeni određenim talasnim dužinama - fotoelektrični efekat. Snop ubrzanih 
elektrona u sudaru sa metalnom površinom iz nje izbacuje nove elektrone - 
sekundarna emisija. Povećavanje temperature katode ubrzava termičko kretanje i 
elektroni napuštaju površinu - termojonska emisija. Najjednostavniji primer je 
uspostavljanje elektronske struje između zagrejane katode i anode u vakuumu. 
Uređaj je nazvan termojonska vakuumska dioda.  
 

♦ Kada se katoda zagreje dolazi do formiranja 
elektronskog oblaka koji sprečava dalju emisiju 
elektrona. Manji broj elektrona ipak ima 
dovoljno energije da napusti oblak i stigne do 
suprotne elektrode čak i ako je ona na nultom 
ili negativnom potencijalu. To je oblast 
uspostavljanja anodne struje. 
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♦ Sa porastom pozitivnog potencijala na anodi sve veći broj elektrona napušta 
katodu i gustina elektronskog snopa između elektroda je sve veća. Formirana je 
konvekciona struja. To je oblast prostornog naelektrisanja. 
 

♦ Sa još većim anodnim potencijalima dolazi do zasićenja i gustina struje zavisi 
samo od temperature katode i veoma malo od čupanja elektrona usled jakog elek-
tričnog polja. To je oblast zasićenja. 
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32 - Elektronska struja u vakuumskoj diodi 
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Katoda i anoda nalaze se na međusobnom rastojanju . 
U međuprostoru postoji stalna zapreminska gustina 
elektrona . Raspodela potencijala je određena
rešenjem Poissonove jednačine, u ovom slučaju samo 
po jednoj koordinati, koje zadovoljava granične uslove 
na površinama elektroda. Desna strana jednačine je 
pozitivna. 
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Zapreminska gustina naelektrisanja može se izraziti preko gustine struje  i 
brzine elektrona . Sa druge strane brzina elektrona određena je (prethodna 
lekcija) priraštajem kinetičke energije koji je jednak uloženom radu sila 
električnog polja. 
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Za rešavanje dobijene diferencijalne jednačine u literaturi su prikazani veoma 
složeni postupci. Međutim, ova jednačina može veoma elegantno da se reši ako 
se rešenje pretpostavi u obliku stepena nezavisno promenljive, čime je treći 
granični uslov automatski zadovoljen. 
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Kada se pretpostavljeno rešenje zameni u diferencijalnu 
jednačinu dobija se karakteristična jednačina. ByCnn
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Da bi i leva strana jednačine bila jednaka konstanti neophodno je da eksponent 
bude jednak nuli. Odatle se dobijaju nepoznati eksponenti i konstanta u 
pretpostavljenom rešenju, a i konačno rešenje. 
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Konstantanta integracije D  je na osnovu prvog graničnog uslova jednaka nuli.  
 

Iz drugog graničnog uslova moguće je 
dobiti izraz za konstantu B . Tako se 
konačno dobija i izraz za potencijal. 
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Konstanta B  je uvedena na početku razmatranja da bi se 
pojednostavio zapis diferencijalne jednačine. Ova konstanta 
je srazmerna gustini elektronske struje.   
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Tako za ovu konstantu postoje dva izraza, 
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čijim izjednačavanjem se dobija veza između gustine struje i anodnog napona. 
 

Kada je poznata površina elektroda  umesto gustine 
struje može da se upotrebi jačina struje, ali zakonitost 
ostaje ista. Zakon proticanja struje kroz diodu poznat je 
kao zakon stepena tri polovine. Do ovog zakona 
nezavisno su došla dva naučnika, pa je poznat i kao 
zakon Child-Langmuira. 
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Zakon stepena tri polovine ili statička 
karakteristika diode pokazuje uticaj pro-
stornog naelektrisanja na tok struje 
elektrona u diodi. Da nema prostornog 
naelektrisanja (videti primer 11.1) raspo-
dela potencijala bi bila linearna,  
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Iz linearne rasposdele potencijala sledi i linearna veza između struje i napona, tj. 
Ohmov zakon. U uslovima stimulisane emisije elektrona tj. postojanja 
zapreminske gustine naelektrisanja u prostoru predstavlja nelinearnu otpornost. 
 

Izvedeni zakon ne pokriva oblast uspostavljanja struje i oblast zasićenja (videti 
prethodnu lekciju) ali ove oblasti nisu od interesa za praktičnu primenu. U praksi 
vakuumska dioda je prekidački element. 
 

Pri negativnim anodnim naponima struja ne protiče. Ako 
se na anodu dovede naizmenični napon, struja će proticati 
samo za vreme pozitivnih poluperioda. Prema tome dioda 
služi za ispravljanje napona.  
   

I pored toga što je zakon izveden za ravne elektrode može 
se pokazati da važi i za koaksijalne cilindrične elektrode. 
Vakumske cevi su se tako uglavnom i proizvodile, sve 
dok ih nisu potisnuli poluprovodnički elementi. 

 

 
 

 

Ovde se završava proučavanje elektrostatičnog polja i počine proučavanje 
stacionarnog električnog polja i pojava koje ga prate. 
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Gs

O internacionalnom sistemu jedinica = SI 
 
Gauss, Carl Friedrich (1777-1855) 
 
Nemački astronom, fizičar i matematičar. Prou-
čavao je teoriju grešaka, optiku i elektromagne-
tizam. Postavio je osnove diferencijalne geometrije 
i mogućnost neeuklidovske geometrije. Tvorac je 
apsolutnog sistema jedinica u kome svaka fizička 
veličina može da se opiše pomoću mase, dužine i 
vremena. 
 
Jedinica za magnetnu indukciju koja je uvođenjem 
SI zamenjena jedinicom tesla (T),  
 

1 . 10T 4=

 
 
 

Gauss (Gs) 

Newton, Isaac (1642-1727) 
 
Engleski fizičar, matematičar i astronom. Osnivač 
klasične mehanike i više matematike. Postavio je 
zakon opšte gravitacije i tri zakona kretanja, i mate-
matički izveo Keplerove zakone. Matematički 
principi filozofije prirode smatra se jednim od naj-
značajnijih dela koja su ikada napisana.  
 
U SI izvedena jedinica za silu,  

2s
mkgN =  

 
 
 

Njutn (N) 

Joule, James (1818-1890) 
Engleski fizičar koji je proučavao oslobađanje 
toplote u provodnicima kroz koje protiče električna 
struja. Proučavanja su uobličena kroz poznati 
Jouleov zakon ili efekat. Zagrevanje provodnika 
usled proticanja električne struje su poznati 
Jouleovi gubici. 

U SI izvedena jedinica za rad, energiju ili količinu 
toplote, 

2

2mkgmNJ
s

==  
 

 

Džul (J) 
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Watt, James (1736-1819) 
Škotski matematičar i inženjer. Poznat po parnoj 
mašini. 1782. godine osnovao je prvu fabriku par-
nih mašina. Njegovim pronalaskom počela je indu-
strijska revolucija i jedna nova epoha. 

U SI izvedena jedinica za snagu, 

s
JW = . 

Danas je uobičajeno da se rad električne struje izra-
žava kao vat-čas. 

 
Vat (W) 

Andre - Marié Ampére (1775 - 1836)  
Francuski fizičar i matematičar, otac elektrodi-
namike. Na osnovu Öerstedovih eksperimenata 
proučio uzajamno dejstvo električnih struja 
(Ampérov zakon). Nazvan je Newtonom 
elektriciteta. 

U SI osnovna jedinica za jačinu električne struje.  
Električna struja jačine 1A koja protiče u dva 
paralelna neograničena provodnika zanemarljivog 
poprečnog preseka koji su na rastojanju od jednog 
metra u vakuumu prouzrokuje silu od . /mN102 7−⋅

 

Amper (A) 

Volta, Alessandro (1745-1827) 
 
Italijanski fizičar na čiji je naučni rad uticao 
pronalazak Luigija Galvanija koji je ustanovio da se 
žablji kraci pri dodiru sa metalnim predmetom grče. 
Volta je protumačio da do te pojave dolazi usled 
naelektrisanja dva metala kada je između njih elek-
trolit. Konstruisao je prvu elektrostatičku mašinu, 
galvanski element, bateriju galvanskih elemenata 
(Voltain stub) i drugo.  
 

U SI izvedena jedinica za elektromotornu silu, 
električni potencijal i električni napon.  

As
mkg

As
JV 3

2

==  

 
 
 

Volt (V) 
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Ohm, Georg Simon (1787-1854) 
 
Nemački fizičar poznat po otkriću odnosa jačine 
električne struje i elektromotorne sile. Rezultati 
njegovih proučavanja, a pre svega određivanje 
otpornosti u električnom kolu su doveli do poznatog  
Ohmovog zakona. 
 
U SI izvedena jedinica za električnu otpornost. 

 

23

2

As
mkg

A
V
==Ω  

 
 

Om (Ω) 

Coulomb, Charles de (1738-1806) 
 
Francuski oficir inženjerije čija su otkrića osnova za 
proučavanje elektrostatike. U svoj 56. godini otišao 
je u penziju, a već deset godina  je bio član 
Akademije nauka i već je završio svoje delo o 
elektromagnetizmu. Otkrio je zakone interakcije 
naelektrisanih tela i magnetnih masa (analogno 
Newtnovom zakonu gravitacije) koji su kasnije 
nazvani po njemu. 
 
U SI izvedena jedinica za količinu naelektrisanja. 

sAC =  
 

 
 

Kulon (C) 

Faraday, Michael (1791-1867) 
 
Engleski samouki fizičar koji je radeći kao laborant 
kod poznatog naučnika Davya otkrio jedan od 
fundamentalnih zakona elektromagnetike - 
elektromagnetnu indukciju. Mnogim pojavama i 
pojmovima dao je nazive, kao što su : elektroliza, 
samoindukcija, anoda, katoda i još mnogo toga.  
 
U SI izvedena jedinica za električnu kapacitivnost . 
  

  
 

Farad (F) 
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Maxwell, James Clarck (1831-1879) 
 
Škotski fizičar koga smatraju osnivačem kinetičke 
teorije gasova. Formulisao je zakon o raspodeli 
brzina molekula gasa. Na osnovu Faradayevih 
eksperimenata formirao je četiri jednačine na 
kojima bazira savremena teorija elektromagnetnih 
polja. Dokazao je da je svetlost elektromagnetna 
pojava. 

 

Jedinica za magnetni fluks 

2cm
GsM = , 

je uvođenjem SI  ukinuta i zamenjena jedinicom 
veber (Wb) 

 

 
 

Maksvel (M) 

 

Öersted, Christian (1777-1851) 
 
Poznati danski prirodnjak i lekar. Otkrio je po-
stojanje magnetnog polja u okolini provodnika kroz 
koji protiče električna struja. Sa eksperimentom iz 
1920. godine odmah je bio upoznat Faraday i to je 
imalo presudan uticaj na eksperimente Ampéra i 
razvoj Maxwell-Faradayeve elektromagnetne 
teorije. 

 
Jedinica za merenje jačine magnetnog polja koja je 
uvođenjem SI ukinuta. 

 
 

Ersted (est) 

Tesla, Nikola (1856-1943) 
 
Srpski naučnik koji je dao takve doprinose na polju 
elektromagnetike bez koje bi danas cela tehnologija 
bila nezamisliva. Naizmenične struje, polifazne 
struje, obrtno magnetno polje, visoke frekvencije, 
bezžični prenos podataka, su samo kap vode u 
okeanu Teslinih pronalazaka. Za otkriće bezžičnog 
prenosa Nobelova nagrada nepravedno je dodeljenja 
biznismenu i fizičaru Markoniju. 

 
U SI izvedena jedinica za magnetnu indukciju. 

2sA
kg

Am
NT ==  

 
 

Tesla (T) 
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Weber, Vilhelm Eduard (1804-1891) 
 
Nemački fizičar pronalazač elektromagnetnog 
telegrafa. Postavio prvi apsolutni sistem fizičkih 
jedinica. 
 
U SI izvedena jedinica za magnetni fluks,   

2

2
2

sA
mkgmTWb == . 

M10Wb 8= , 
 

gde je M (Maksvel) takođe jedinica za magnetnu 
indukciju koja je ukinuta uvođenjem SI sistema. 

 

 
 

Veber (Wb) 

 
Henry, Josef (1797-1878) 
 
Američki fizičar koji je postavio temelje za primenu 
elektromagnetne indukcije u industriji i tehnici. 
Otkrio je pojavu samoindukcije.  
 
U SI izvedena jedinica za induktivnost (koeficijent 
indukcije)  
 

22

2

sA
mkg

A
WbH ==  

 

 
 

Henri (H) 
Hertz, Heinrich Rudolf  (1857-1894) 
 
Nemački fizičar koji je eksperimentalno dokazao 
Maxwellovu teoriju elektromagnetnog polja, pre 
svega postojanje elektromagnetnih talasa i elektro-
magnetnu prirodu svetlosti. Za potrebe svojih 
eksperimenata konstruisao je oscilator koji i danas 
služi kao osnova pri proučavanju elektromagnetnih 
zračenja.  

 
U SI izvedena jedinica za frekvenciju oscilacija. 

s
1Hz =  

 
 

Herc (Hz) 
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 Neke fizičke i matematičke konstante 
 
Fizička konstanta Oznaka Vrednost i jedinica 

Elementarno naelektrisanje e  C10)00007.060219.1( 19−±  

Masa elektrona u mirovanju em  kg10)00005.010956.9( 31−±  

Poluprečnik elektrona er  m10)00001.081793.2 15−±  

Masa protona u mirovanju pm  kg10)00001.067261.1( 27−±  

Masa neutrona u mirovanju nm  kg10)00001.067492.1( 27−±  

Permitivnost vakuuma 0ε  F/m10)00002.085419.8( 12−±  

Permeabilnost vakuuma 0μ  H/m101.256637 6−⋅  

Brzina EM talasa u vakuumu c  m/s10)000003.0997925.2( 8±  

Standardna gravitacija g  2m/s80665.9  

Gravitaciona konstanta γ  2211 /kgNm10)0031.06732.6( −±  
 

m
F10

36
1 9

0
−

π
=ε  

m
H104 7

0
−π=μ  

s
m1

00με
=c  

 
141593.3=π  
718282.2=e  

414213.12 =  
732051.13 =  
236068.25 =  

30103.02log =  
47712.03log =  
43429.0log =e  

693147.02ln =  
098612.13ln =  

609438.15ln =  
302585.210ln =  

869604.92 =π  
31831.0/1 =π  

71239.42/3 =π  
18879.43/4 =π  

772454.1=π  
14473.1ln =π  

14069.23=πe  
043214.0=π−e  

 
Materija rε  ]kV/cm[krE  
Vazduh 1.0006 25 - 30 
Staklo 2.0 - 16 100 - 400 
Trafo ulje 2.2 - 2.4 145 - 155 
Papir 2.5 - 3.5 190 - 210 

Kritično električno polje je ono pri 
kome dolazi do proboja u dielektriku 
pri čemu dielektrik u trenutku proboja 
postaje provodan. 

 

Guma 2.0 - 2.5 200 - 400 
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Pravougli krivolinijski koordinatni sistemi 
 
Generalisane koordinate 
 

),,( wvuxx = , ),,( wvuyy = , ),,( wvuzz =  
 
Element dužine, površine i zapremine 

wwhvvhuuhl wvu ˆdˆdˆdd ++=
r
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r

 
 

uwvhhhV wvu dddd =  
 
Prostorni izvodi 
 

w
wh

v
vh

u
uh wvu

ˆ1ˆ1ˆ1grad
∂
ϕ∂

+
∂
ϕ∂

+
∂
ϕ∂

=ϕ  
 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

= )()()(1div wvuvwuuwv
wvu

Ehh
w

Ehh
v

Ehh
uhhh

E
r

 
 

wwvvuu

wvu

EhEhEh
wvu

whvhuh

E
∂
∂

∂
∂

∂
∂

=

ˆˆˆ

rot
r

 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ϕ∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ϕ∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ϕ∂

∂
∂

=ϕ
wh

hh
wvh

hh
vuh

hh
uhhh w

vu

v

wu

u

wv

wvu

1)(graddiv  

 
Polarni cilindrični koordinatni sistem Sferni koordinatni sistem 

 

θ= cosrx  
θ= sinry  

zz =  
1,,1 === θ zr hrhh  

 

φθ= cossinrx  
φθ= sinsinry  

θ= cosrz  
.sin,,1 θ=== φθ rhrhhr  
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Nabla operator 
 
Hamiltonov ili nabla operator 
 

z
z

y
y

x
x

ˆˆˆ
∂
∂

+
∂
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+
∂
∂

=∇  

 
Generalisani nabla operator 
 

∫→
=∇

S
V

S
V

r
d1lim

0
 

 

Prostorni izvodi 
 

ϕ∇=ϕgrad  
 

EE
rr

∇=div  
 

EE
rr

×∇=rot  
 

( ) ϕΔ=ϕ∇=ϕ∇∇ 2  

( ) 0=ϕ∇×∇  
 

( ) 0=×∇∇ E
r 

 

( ) ( )EEE
rrr 

×∇×∇−∇∇=Δ  
 
Integralne relacije 
 

∫∫ ϕ=ϕ∇ dd SV
SV

 

Gauss-Ostrogradsky 

∫∫ =∇
S

dd SEVE
V

rrr
 

∫∫ ϕ∇×=ϕ
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Sl
rr

dd  ESVE
V

rrr
×=×∇ ∫∫

S
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Green-1

( )∫∫ ϕΔψ+ϕ∇ψ∇=
∂
ϕ∂

ψ
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Stokes 

∫∫ =×∇
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Green-2
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