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Predgovor 
 

Moja osnovna ideja je da, kroz seriju Sveski iz oblasti elektro-
magnetike, studentima i inženjerima pružim kompletnu literaturu potrebnu 
za temeljno proučavanje problema elektromagnetnih polja. Pred čitaocima 
je treća Sveska. 

 
Elektromagnetizam sam napisao kao knjigu kakvu bih ja želeo da 

koristim, knjigu u kojoj bih u trenutku pronašao baš ono mi je potrebno, 
knjigu u kojoj nema objašnjavanja onoga što je očigledno, knjigu bez 
nejasnoća, knjigu koja je vodič kroz tajenstveni svet elektromagnetnih 
polja, knjigu koja se može čitati preko reda. Trudio sam se da napišem 
knjigu koja se može čitati kao ukrštene reči. Vertikalno, proučavajući 
samo glavne teme, i horizontalno, razrađujući jednu temu. Takođe, trudio 
sam se da knjigu napišem kratko i sažeto jer znam da nemam pravo da 
čitaocima oduzimam vreme. 

 
Elektromagnetizam sam napisao na pragu izumiranja klasične 

elektromagnetike. Danas, većina inženjera, ali i studenata, sve probleme 
elektromagnetike rešava upotrebom gotovih programskih paketa koji su 
zasnovani na metodu konačnih elemenata. Ja nema ništa protiv toga, ali 
smatram da takve alate treba koristiti samo za vizuelizaciju rešenja, a 
nikako kao jedini put za rešavanje problema. To je neosvetljen put na 
kome se fizička stvarnost ne vidi. 

 
Tekst će moći da se nađe i na adresi  www.znrfak.ni.ac.rs, 

sve dok neko drugi ne bude odlučio drugačije.  
 

U Nišu, Uskrs, 2016. godine, 
DMP 
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Uvod u magnetizam 
 
Prema nekim podacima Kinezi su saznali za magnet negde 4000 godina 
pre nove ere, a da komad jedne rude privlači sitnije komade gvožđa bilo je 
poznato još u drevnoj Grčkoj. Ruda je nazvana magnetit ( ), a cela 
pojava magnetizam, prema gradu Magnezija u Maloj Aziji u čijoj blizini 
su bila nalazišta ove rude. Primetili su da gvozdena šipka koja je bila u 
kontaktu sa magnetom dobija privlačna svojstva. O odbojnim pojavama 

43OFe

nigde se ne govori. Odbojne sile nisu mogle da se uklope u Aristotélēsovo 
učenje i učenje njegovih sledbenika. Tek u VI veku nove ere odbijanje kod 
magneta pominje hrišćanin Jovan Filopon, ali  naelektrisana tela i magneti 
nisu ničim povezivani. Arapi su u XII i XIII veku helenistička učenja o 
kvalitetu privlačenja skoro neizmenjena preneli u Evropu. Međutim, 
preneli su i zablude. Mada o magnetu nema mnogo pouzdanih zapisa, 
ostalo je da magnet gubi privlačna svojstva ako se protrlja belim lukom. 
To se uklapalo u opštu teoriju kvaliteta, jer u ovom slučaju dolazi do 
promene kvaliteta. Kako je u to vreme kompas bio u redovnoj upotrebi, 
navigatorima na brodovima je bilo zabranjeno da jedu beli luk. Doba 
renesanse je izuzetno značajno za magnet (kompas) zbog interesovanja za 
daleka putovanja. Treba izdvojiti da je Porta prvi upotrebio gvozdene 
opiljke da bi na listu hartije načinio sliku linija sila i da je prvi koji tvrdi da 
beli luk ne utiče na magnet. 
 
U Gilbertovom učenju pominju se severni N (Eng. 
North-sever) i južni S (Eng. South-jug) magnetni pol i 
ukazuje se na osobinu da se istoimeni polovi odbijaju, 
a raznoimeni privlače. Sličnost mehaničkih pojava 
kod magneta i naelektrisanih tela dovela je do ideje o 
postojanju magnetnih masa koje su raspoređene oko 
polova. 

 

 
Međutim, pozitivna i negativna naelektrisanja je bez teškoća moguće 
razdvojiti, a magnetne mase nikako, na primer lomeći magnetni štap do 
najsitnijih komada. Tako je Gilbert došao do sasvim pogrešnog zaključka 
da su elektricitet i magnetizam slične pojave, ali da nemaju nikakve 
međusobne veze.  
 
Fizičari su uporno ukazivali na razlike između elektriciteta i magnetizma i 
tako je ostalo sve do XVIII veka. Tek tada je počela da se javlja ideja o 
vezi između električnih i magnetnih pojava. Primećeno je da za vreme 
oluje magnetna igla kompasa ili osciluje u svim pravcima ili se ukoči ma u 
kom položaju da se nalazi. Zahvaljujući Franklinu i njegovom eksperi-
mentu sa zmajem od papira koga je puštao u oblake za vreme oluje, 
zagonetka magneta postaće predmet proučavanja mnogih fizičara. 
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Öerstedovi eksperimenti  
 
Problem magneta privukao je pažnju danskog prirodnjaka i lekara 
Öersteda 
 

 
 

 
  

Stalno smo  u  iskušenju  da  upoređujemo
magnetne i električne sile.  Velika sličnost

između električnih  i  magnetnih privlačenja
i odbijanja i sličnost njihovih zakona  nužno
nameće takvo upoređenje

Stalno smo  u  iskušenju  da  upoređujemo
magnetne i električne sile.  Velika sličnost

između električnih  i  magnetnih privlačenja
i odbijanja i sličnost njihovih zakona  nužno
nameće takvo upoređenje

Öersted je do svog otkrića došao sasvim slučajno 
tokom jednog predavanja koje čak nije ni bilo 
posvećeno razmatranju veze elektriciteta i 
magnetizma. Međutim, nipošto se ne radi o 
slučajnosti, jer je on verovao da takva veza 
postoji i očekivao je da je nađe. 

 

 

Öersted je ispod i iznad magnetne igle običnog kompasa postavio bakarnu 
žicu koja stoji u istom pravcu kao i igla kompasa, tj. u pravcu sever-jug. 
Krajevi žice bili su spojeni sa polovima galvanske baterije. Čim je kroz 
žicu počela da teče električna struja, igla je napustila svoj položaj i stala 
pod pravim uglom u odnosu na žicu. Dovoljno je bilo da se prekine veza sa 
baterijom da bi se igla vratila u svoj prvobitni položaj. Öersted je na 
osnovu svojih eksperimenata došao do zaključka da električna struja oko 
provodnika izaziva neku silu koja deluje na magnet.  
 
Öerstedov glavni rad 'Eksperiment o uticaju električne struje na magnetnu 
iglu' je na latinskom jeziku objavljen jula 1820. godine. Već avgusta 
meseca Öersted objavljuje novi rad pod nazivom 'Novi elektromagnetni  
eksperiment', a taj rad sadrži i dva nova rezultata. 
 
Iste godine Davyje upoznao Faradya sa ovim radom, koji će biti od 
presudnog značaja kako za samog Faradaya tako i za ostale naučnike 
kojima je Öerstedov eksperiment poslužio kao postulat za dalja naučna 
otkrića. 
 
Öersted uzima bateriju i strujno kolo zatvara kružnom konturom. Takvo 
strujno kolo se ponaša kao magnet sa severnim i južnim polom. Öersted 
prinosi takvom strujnom kolu drugi magnet zbog čega dolazi do rotacije, 
što je sasvim očekivana interakcija dva magneta. Rad Novi 
elektromagnetni  eksperiment je ostao u senci njegovog glavnog dela, tako 
da se ponašanje strujnog kola kao magneta kasnije susreće tek kod 
Ampèrea. 



Elektromagnetizam                                                                                                               17 

Ampèreovi eksperimenti 
 
Šta je zajedničko između elektriciteta i magneta? - bilo je pitanje koje je 
postalo još veća misterija posle Öerstedovih eksperimenata. Oko rešavanja 
te zagonetke je otpočelo takmičenje naučnika. 
 

Francuska je u to vreme u nauci prednjačila. 
Arago je 1824. godine otkrio da rotirajući 
bakarni disk pomera iglu kompasa koja je iznad 
diska. Nije primetio da postoji i suprotan 
efekat, tj. rotitajući magnet dovodi do rotacije 
bakarnog diska. Bila je to demonstracija 
elektromagnetne indukcije i vrtložnih struja o 
kojima se u to vreme ništa nije znalo. Tek 
1831. godine (lekcije 77 i 106) Faraday je 
objasnio Aragoovu rotaciju. Međutim, u to 
doba naučne vesti su se sporo širile. 

 
 

 

 
 

 
 

Ampère je saznao za Öerstedove eksperimente 
i odmah je počeo da vrši eksperimente sa 
provodnicima. Zaključio je da se dva provod-
nika međusobno privlače ako po njima teku 
električne struje u istom smeru, a da se odbijaju 
ako su struje suprotnih smerova. 
 
Iz ovih pojava Ampère je izveo matematički 
zakon uzajamnog dejstva dveju električnih 
struja (lekcija 31). 
 
Ampère je prihvatio Öerstedovu pretpostavku 
da je skretanje magnetne igle uslovljeno silama 
koja deluju na iglu prostirući se oko provod-
nika po kome teče električna struja.  

 

 

 
 
Zamislio je da oko svakog magneta postoje električne struje koje kao da 
okružuju magnet nevidljivim prstenovima. Od pravca tih struja zavisi 
pravac skretanja magnetne igle u Öerstedovim eksperimentima. Smatrao je 
da se te magnetne struje ni po čemu ne razlikuju od električnih struja i 
rukovodeći se tom idejom napravio je nešto poput električnog kompasa. 
 
Električni kompas se sastojao od slobodno obešenog solenoida (Grk. 
σωλήν - cev, είδος - oblik) kroz koju je propuštana struja, a pri tom se ovaj 
kalem ponašao kao magnet sa severnim i južnim polom. Dva solenoida 
deluju jedan na drugi kao dva stalna magneta jer između polova solenoida 
dolazi do međusobnog privlačenja i odbijanja kao i kod stalnih magneta. 
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Ako električna struja prolazeći oko solenoida po spiralnim prstenovima,
daje solenoidu  magnetna svojstva,  zašto  ne bismo zamislili da  i stalni
magnet dobija  svoja magnetna svojstva  otuda što u njemu teku  kružne
električne struje.

Ako električna struja prolazeći oko solenoida po spiralnim prstenovima,
daje solenoidu  magnetna svojstva,  zašto  ne bismo zamislili da  i stalni
magnet dobija  svoja magnetna svojstva  otuda što u njemu teku  kružne
električne struje.  

 
Ova genijalna pretpostavka pokazala se kao tačna. Te struje su dobile 
naziv Ampèreove struje ili Ampèreove mikrostruje. Međutim, Ampère se 
dalje ne bavi stalnim magnetima već izvodi novi zaključak. 
 
Öerstedova magnetna igla se okreće popreko prema provodniku po kome 
teče električna struja silom onih istih privlačenja i odbijanja koja se 
pojavljuju između dva provodnika po kojima teče električna struja. 
Osobenosti skretanja Öerstedove igle se objašnjavaju time što 'magnetne 
struje' imaju kružni pravac pa njihovo odbijanje i privlačenje provodniku 
prisiljava iglu na kružno kretanje.  
 
Ampère je ove misli i rezultate svojih 
eksperimenata izrazio kao 'Pravilo plivača'. 
 
Postojanje kružnih sila oko magneta kasnije 
se pokazalo kao nesumljivo, ali se Farady 
nije slagao sa Ampèreovom mišlju da 
magnetizam nije posebna prirodna sila, već 
vrsta elektriciteta.  

 

 
 

 
Danas znamo da je kretanje naelektrisanja u makroskopskom ili 
mikroskopskom smislu jedini uzročnik postojanja magnetnog polja. 
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1. Magnetna sila i magnetno polje 
 
Postojanje elektrostatičkog polja se utvrđuje postojanjem mehaničke 
(Coulombove) sile na probno naelektrisanje koje je uneto u polje. Osnovna 
vidljiva pojava koja ukazuje na postojanje magnetnog polja je mehanička 
sila koja deluje na provodnik kroz koji protiče struja.  
 

Dakle, što je probno naelektrisanje za 
elektrostatičko polje, to je probni strujni 
element za magnetno polje. 

 

lI
FB m

d
d~ DMPDMP

q
FE e

d
d

=  

 

Znači da strujni element treba da bude tako malih dimenzija da kad je unet 
u magnetno polje ne remeti strukturu postojećeg polja i dovoljno osetljiv 
da bi sila bila detektovana. Takav strujni element, bez pratećih provodnika  
koji obezbeđuju tok struje, praktično nije moguće realizovati i zato je 
ispitivanje magnetnog polja veoma složen zadatak. 
 

Dok električno polje ima isti pravc kao i električna 
sila, a smer mu zavisi od znaka naelektrisanja, u 
magnetnom polju pravac i smer sile zavise i od 
smera struje u strujnom elementu ali i od položaja 
provodnika u odnosu na polje. 
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Eksperimentalno je utvrđeno da magnetna sila ima 
najveću vrednost kad je provodnik postavljen 
upravno na pravac polja. 

 
lBIF dd max =  

 

Maxwell je u svom kapitalnom delu Treatise on Electricity and Magnetism 
za vektore koristio redom slova  do A H . Koeficijentu srazmernosti u 
izrazu za magnetnu silu je po redosledu, odmah posle magnetnog vektora 
potencijala , pripalo slovo A B . Neke od oznaka su do danas zadržane. Taj 
koeficijent srazmernosti je magnetno polje (ili magnetna indukcija ili 
gustina magnetnog fluksa, zavisi gde se nalazite i ko vas pita, prilog A). 
 

Pre uvođenja internacionalnog sistema jedinica, jedinica za magnetno polje 
B  je bila gaus sa oznakom .  Gs

 

Odlukom Međunarodne elektrotehničke komisije 
(IEC - International Electrotechnical Commission) 
iz 1956. godine, i odlukom Generalne konfere-
ncije za tegove i mere (CGPM - Conférence 
Générale des Poids et Mesures) iz 1960. godine, 
jedinica je dobila naziv tesla, sa oznakom , u 
čast genijalnog srpskog naučnika Nikole Tesle. 

T

 

[ ]
Am
N
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2. Zakon sile 
 
Najveća vrednost sile koja deluje na provodnik konačne dužine kroz koji 
protiče stalna struja i koji se nalazi u magnetnom polju upotrebljenja je za 
definisanje magnetnog polja. 
 

LIBF =max  
 

BLIF
rrr

×=  
 

Međutim, sila kao vektorska veličina, je pored 
intenziteta određena još pravcem i smerom, a biće 
potpuno određena ako se izraz napiše u obliku 
vektorskog proizvoda. Tako se dobija i izraz koji je 
poznat i kao Laplaceova formula, a izveden je na 
osnovu Ampèreovih eksperimenata (lekcija 43). 

 

BlIF
rrr

×= dd  
 

Pravac i smer sile moguće je odrediti i pomoću 
pravila leve ruke koje je poznato i kao Flemingovo 
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konvencijom usvojenom smeru struje. 
 

Na prav provodnik konačne dužine u homogenom 
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gde vektor dužine ima pravac i smer toka struje. 
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● Magnetna sila na zatvorenu strujnu konturu je 
jednaka nuli. Niz diferencijalnih dužina obrazuje 
zatvoreni poligon i njihov vektorski zbir je nula. 
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Kao što je i očekivano, ukupna sila na strujnu konturu je jednaka nuli. Ako 
kontura nije deformabilna ukupni rad sila polja biće jednak nuli.  
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3. Moment sila na strujnu konturu 
 
Pravougaona strujna kontura kontura se nalazi u homogenom polju u ravni 

 koja je paralelna sa pravcem polja, 0=z yBB ˆ=
r

. Sada na stranice dužine 
 koje su paralelne sa -osom ne deluju magnetne sile jer su strujni 

elementi paralelni i anti-paralelni sa pravcem polja. Na drugi par stranica 
čije su dužine  deluju sile istih pravca i intenziteta ali suprotnih smerova. 
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Kao što je i očekivano, ukupna sila na ovu 
zatvorenu konturu je jednaka nuli. 
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Međutim, i pored toga što ukupna sila na konturu ne postoji, sile koje su 
različite od nule, a to su 2F

r
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r
, proizvode moment koji prouuzrokuje 

obrtanje konture oko x -ose. Ovaj moment, po pravilu desne zavojnice, 
imaće smer suprotan od smera x -ose, što znači da je obrtanje konture u 
smeru kazalji na satu. U odnosu na osu obrtanja moment će biti 
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U opštem slučaju kontura se nalazi pod nekim 
uglom u odnosu na vektor polja. Tada su kraci 
sila koja čine spreg 
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Moment sila koji teži da obrne konturu je sada 
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gde je abS =  površina strujne konture. Međutim, površina je vektor čiji je 
pravac normalan na ravan u kojoj leži kontura i čiji je smer određen 
pravilom desne zavojnice, tj. smerom obilaska po konturi, a to je smer 
struje kroz konturu. Pošto vektori površine i magnetnog polja grade ugao 

, za moment sila konačno može da se napiše θ
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gde je mr  magnetni dipolni moment ili (amperski) magnetni moment. 



22                                                           Dejan M. Petković 
 
4. Magnetni dipol 
 
Kad je kontura postvljena tako da je vektor površine koju kontura gradi 
kolinearan sa vektorom polja, na konturu ne deluje moment sila,  kontura 
se nalazu u položaju stabilne ravnoteže i ima minimalu potencijalnu 
energiju. Kad su ovi vektori suprotnih smerova kontura ima maksimalnu 
potencijalnu energiju i nalazi se položaju labilne ravnoteže. Potencijalna 
energija se pretvara u rad koji se vrši na obrtanju konture od proizvoljnog 
položaja do referentnog položaja. 
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Kao što se uvek čini, za referntni položaj treba 
odabrati položaj u kome je potencijalna energija 
jednaka nuli, tj treba smatrati da nema pethodno 
uloženog rada. 
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U homogenom magnetnom polju ukupna sila na 
zatvorenu strujnu konturu je jednaka nuli. U
nehomogenom polju će se pojaviti sila koja deluje 
na konturu. Neka se kontura nalazi u polju 
stalnog magneta čije polje opada sa rastojanjem, a 
smer struje je takav da je sila privlačna. Sada je 
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Niz analogija sa električnim dipolom koje se uočavaju su razlog što su prvi 
fizičari govorili o pozitivnim i negativnim magnetnim opterećenjima 
(severni i južni pol) i što su razvili celu magnetostatiku kao savršenu 
analogiju sa elektrostatikom. Međutim, to je bio pogrešan model, jer ne 
postoji nešto poput izolovanog magnetnog pola. Magnetizam potiče od 
naelektrisanja u kretanju. Strujna kontura je magnetni dipol. 
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5. Magnetni dipolni moment 
 
Izraz za magnetni dipolni moment strujne konture može da se uopšti 
koriščenjem formule za površinu zatvorene konture. Izraz se izvodi iz 
Stokesove teoreme pogodnim izborom podintegralne funkcije. 
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Odavde se dobija opšta formula za magnetni 
moment strujne konture proizvoljnog oblika.  ∫ ×=
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lIrm
rrr d
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Kad se izraz za jačinu struje zameni gustinom naelektrisanja dobija se 
opšta formula za magnetni moment koncentrisanog naelektrisanja koje 
obilazi po konturi. 
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Izolovani strujni element nije moguće napraviti i elementarna strujna 
kontura je praktično jedini element za proučavanje magnetnog polja.  
 
Ako se u magnetno polje unese probna strujna 
kontura, tj. kontura koja je kruta, ravna, malih 
dimenzija i koja može slobodno da se okreće, 
javlja se moment sila koji konturu dovodi u 
ravnotežni položaj. U ravnotežnom položaju, kad 
je moment sila jednak nuli, normala na površinu 
konture definiše pravac magnetnog polja. 
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To je pravac koji bi zauzela slobodno obešena magnetna igla (igla 
kompasa) uneta u istu tačku polja. 
 
Promena magnetnog momenta strujne konture dovodi do promene 
ukupnog maksimalnog momenta tako da je njihov količnik za neku tačku u 
polju uvek konstantan i isti za sve probne strujne konture. 
 
Odavde ponovo sledi jedinica za magnetno polje. 
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6. Orbitalni magnetni moment elektrona 
 
● Elektron kruži po orbiti poluprečnika r  ugaonom
brzinom  i stvara kovekcionu struju jačine ω I
koja je suprotnog smera od smera kretanja
elektrona. Magnetni dipolni moment elektrona,
nazvan i orbitalni magnetni moment mr , se dobija
iz izraza za dipolni moment čestice.  
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Treba uočiti da su vektori položaja i brzine među-
sobno normalni vektori, pa je Svrvr ˆ−=×

rr . 
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Do istog rezultata se dolazi i iz osnovne definicije. 
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Orbitalni magnetni moment se često izražava preko ugaone brzine. 
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U razmatranje treba uvesti ugaoni moment ili moment impulsa , tako što 
se uključe masa elektrona i njegov moment inercije . Tako se dobij

L
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veza između ova dva momenta. 

ω= ω
rr

IL ,    vmrL rrr
e×=  L

m
m

rr

e2
e−

=  
 

● U prethodnom razmatranju elektron je moguće zameniti telom čije su 
dimenzije znatno manje od poluprečnika orbite (tačkasto naelektrisanje i 
tačkasta masa). Neka je to telo naelektrisano količinom naelektrisanja q  i 
neka ima masu . Sve izvedene formule ostaju u važnosti. tm
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Veličina  je žiromagnetni odnos i ne zavisi od ugaone brzine ili 
poluprečnika konture. Izgleda čudno što ovaj odnos postoji čak i ako nema 
rotacije. Međutim, u tom slučaju su oba momenta jednaka nuli, pa je ovaj 
količnik zapravo granična vrednost. Dalje, žiromagnetni odnos je moguće 
primeniti na bilo koju kružnu konturu, a to znači i na bilo koje rotirajuće 
telo, kao što su cilindar ili sfera, koje se može predstaviti nizom kružnih 
strujnih kontura. Sva takva tela imaće isti žiromagnetni odnos i to važi sve 
dok se nalazimo u okvirima klasične mehanike i dok su masa i 
naelektrisanje uniformno rapoređeni. Pokušaj da se na ovaj način izračuna 
magnetni moment elektrona usled obrtanja oko sopstvene ose dovešće do 
netačnih rezultata. 

γ
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7. Magnetni moment kružne konture 
 
Kružna kontura, mase  i poluprečnika tm ar = , koja je naelektrisana  
količinom naelektrisanja , rotira oko ose ugaonom brzinom q ω . Naelek-
trisanje i masa su ravnomerno raspoređeni po obimu konture. Izraz za 
magnetni (dipolni) moment može da se izvede dvojako. Pomoću definicije 
magnetnog momenta i pomoću magnetnog momenta naelektrisane čestice, 
pri čemu se kontura deli na niz elementarnih odečaka. 
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Na oba načina se dobija isti rezultat kao i za naelektrisanu česticu. Šta više, 
iz dobro poznatog izraza za moment inercije sledi i da je žiromagnetni 
odnos isti. 
 
8. Magnetni dipolni moment kružne ploče 
 
Neprovodan disk, mase  i poluprečnika 
naelektrisan je stalnom površinskom gustino

tm a
m

naelektrisanja η . Disk rotira oko svoje ose
stalnom ugaonom brzinom ω . 
 

Podelimo disk na koncentrične prstenove. Svaki 
prsten prestavlja elmentarnu strujnu konturu. 
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Svaka od strujnih kontura proizvodi elementarni 
magnetni dipolni moment. 
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Količina naelektrisanja na svakom prstenu je
srazmerna površini tog prstena. 

 rrSq d2dd πη=η=  

Zbir svih elementarnih momenata daje ukupni
moment. U konačnom izrazu površinska gustina 
naelektrisanja zamenjuje se ukupnom količinom
naelektrisanja . Smer obrtanj)/( 2π=η aq a
konture se ne naznačuje posebno, jer su pravac i
smer magnetnog dipolnog momenta isti kao
pravac i smer vektora ugaone brzine. Ako je
masa diska iz poznatog izraza za momentm t
inercije se dobija angularni moment. Žiro-
magnetni odnos je isti kao i ranije. 
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9. Magnetni moment sferne ljuske 
 
Sferna ljuska pluprečnika uniformno je
naelektrisana površinskom gustinom naelek-
trisanja . Ljusku treba podeliti na niz kružnih
prstenova tako da je osa rotacije njihov

a

η
a

zajednička osa. Svaki prsten nosi elementarnu 
struju koja je srazmerna površini prstena i zato 
zavisi od polarnog ugla π≤θ≤0 . 

 

θ yar =

z

x

θsinrη

θd

θ yar =

z

x

θsinrη

θd

θ yar =

z

x

θsinrη

θd

 
 

 θθπη
π
ω

=η
π
ω

=
π
ω

== d)sin2(
2

d
2

d
2

dd rrSq
T
qI  

 

 θθπηω=θθπθπη
π
ω

== dsind)sin()sin2(
2

dd 342 rrrrSIm  
 

 LL
m
qI

m
qam

m
qaqrm

tt
t

t

rrrrrrr
γ==ω=ω=ω=πηω= ω 223

2
233

4 224  

 
10. Magnetni moment masivne sfere 
 

     θφ= sincosrx  
    θφ= sinsinry  
    θ= cosrz  

  

Problem zapreminski raspodeljenog sfernog 
rotirajućeg naelektrisanja (lopta) najlakše je 
rešavati u sfernom koordinatnom sistemu. 
Između Descartesovih i sfernih koordinata 
postoje veze koje su ovde navedene jer u 
literaturi postoje različita označavanja. Za 
usvojeni koordinatni sistem je 

rlr dd = , φθ=φ dsind rl , θ=θ dd rl , 
at ≤≤0 , π≤φ≤ 20 , π≤θ≤0 . 

 

Po ugaonoj koordinati φ može odmah da se 
integrali i zapremina jednog elementarnog 
prstena je 
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Površine poprečnih preseka lopte su 
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Loptu je moguće predstaviti kao niz elementarnih strujnih kontura sa 
zajedničkom osom simetrije. Svaka strujna kontura je zapravo prsten 
poluprečnika θsinr  kojim je ograničena površina  i koji zauzima 
zapreminu V . 

S
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Ako lopta rotira stalnom ugaonom brzinom ω , količina naelektrisanja u 
jednom elementarnom prstenu stvara elementarnu struju i magnetni dipolni 
moment. 
 

 rrV
T
qI ddsin2

2
d

2
dd 2 θθπρ

π
ω

=ρ
π
ω

==  

 

 rrrrrSIm ddsindd)sin(sin2
2

dd 3422 θθωρπ=θπθθπρ
π
ω

==  
 

Itegracijom po zapremini (lopta) koju naelektrisanja zauzimaju, dobija se 
magnetni moment. 
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Kao i do sada, u razmatranje se uvodi masa tela  koja je (kao i 
naelektrisanje) homogeno raspoređena. Iz poznatog izraza za moment 
inercije se ponovo dobija isti izraz za žiromagnetni odnos. 
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Magnetni i ugaoni momenti rotirajućih naelektrisanja, tmq 2/=γ  
Kružni obruč Kružna ploča Šuplja lopta Puna lopta 
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U klasičnoj teoriji elektron se predstavlja loptastim oblikom. Ugaoni 
moment elektrona potiče od dve rotacije. Rotacija elektrona oko jezgra 
stvara orbitalni magnetni moment.  Eksperimentalno je primećeno (Stern–
Gerlachev eksperiment) da svi elektroni u nehomogenom magnetnom 
polju ne skreću podjednako. To je dovelo do zaključka da osim orbitalnog 
magnetnog momenta postoji još neki magmetni moment. Taj magnetni 
moment potiče od obrtanja (Eng. spin - zavrteti) elektrona oko sopstvene 
ose. Oba magnetna momenta bi trebalo da su određena istom formulom jer 
je žiromagnetni odnos isti. U toj formuli bi ugaoni moment bio ugaoni 
moment spina, orbitalni ugaoni moment ili ukupni (vektorski zbir) ugaoni 
moment. Međutim, eksperimenti su pokazali da je magnetni moment spina 
dva puta veći od očekivanog i klasičnu teoriju je bilo potrebno korigovati. 
 

Kao faktor korekcije uveden je g -faktor, koji prema 
vrsti rotacije uzima vrednosti jedan ili dva. 
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Oba ugaona momenta i posledično magnetna dipolna momenta su kvantne 
veličine i dalja razmatranja zalaze u oblast kvantne mehanike. 
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11. Elektromagnetna ili Lorentzova sila 
 
Jačina struje je skalarni proizvod vektora gustine 
struje i površine, a zapremina je skalarni proizvod 
dužine i površine. Tako se dobija magnetna sila 
koja deluje na naelektrisanja u kretanju koja su 
zarobljena u zapremini.  Gustina struje je direktno 
proporcionalna srednjoj brzini kretanja nosilaca 
naelektrisanja. Odatle sledi izraz za magnetnu silu 
koja deluje na zapreminski rapodeljeno naelek-
trisanje u kretanju.  
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Odavde sledi konačni izraz za magnetnu silu koja 
deluje na naelektrisanu česticu u kretanju.  BvqF

rrr
×= dd  

   

U opštem slučaju na naelektrisanje pored magnetne 
sile deluje i sila električnog porekla.  ( )BvEqF

rrrr
×+= dd  

 

Elektromagnetna sila 
BvqEqF
rrrr

×+=  
  eF DMPDMP  DMPDMP     mF
Električna sila Magnetna sila 

Izraz je poznat kao 
Lorentzova sila,  
po nobelovcu 

 Hedrik Lorentzu 
 

   

Međutim, Heaviside je modernu vektorsku notaciju 
i analizu, koju je izumeo, primenio na Maxwellove 
jednačine i više godine pre Lorentza, oko 1887. 
godine, došao do rezultata. Njemu dugujemo i 
veliki broj naziva u elektrotehnici (impedansa, 
permeabilnost, relukranca i drugo).  

   

Prva proučavanja delovanja magnetnog polja na 
naelektrisana tela i čestice je izveo nobelovac J.J. 
Thompson prilikom eksperimentisanja sa katodnim 
zracima. Njegov izraz za silu je bio kvalitativno 
tačan ali je davao dvostruko manju silu. 

 
   

U to vreme za subatomske čestice se nije znalo. 
Dok je eksperimentisao Thomson je 1897. godine 
identifikovao subatomsku česticu koju je Stoney 
predvideo još 1891. godine i koju je nazvao 
elektron. 

 
 

.Magnetne sile ne vrše rad 
 na pomeranju naelektrisanja. 

DMPDMP
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rrrrr
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12. Elektromagnetna sila i Hallov efekat 
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Prvo je primećeno da na provodnik kroz koji 
protiče električna struja i koji se nalazi u okolini 
stalnog magneta deluje sila koja je nazvana 
magnetna sila. To su prvi Ampèreovi eksperimenti. 
Kasnije je istraživanje prošireno na uzajamno 
dejstvo dve električne struje (lekcija 30). 
 

Električna struja je kretanje nosilaca naelektrisanja, 
pa je očigledno da je sila koja deluje na provodnik 
samo integralni zapis sile koja deluje na svako
pojedinačno naelektrisanje. 
 

BvqF
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 BLSJBVJBvVF
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×=×=×ρ=  

 BLIF
rrr

×=
Kad se provodnik kreće u magnetnom polju sa 
njim se kreću i slobodna naelektrisanja i na svako 
od njih deluje magnetna sila. To dovodi do 
nagomilavanja naelektrisanja na krajevima provod-
nika. Ova činjenica je zapravo osnova elektro-
magnetne indukcije (lekcija 77). Ova naelektrisanja 
stvoriće električno polje i električnu silu koja je 
istog pravca ali suprotnog smera od magnetne sile.
Jednog trenutka nastupiće ravnoteža.  
 

Do potpuno iste pojave dolazi i kad kroz 
nepokretan provodnik protiče električna struja. 
Pojava potencijalne razlike između stranica koje 
nisu čeone ni za struju ni za polje, je poznata kao 
Hallov efekat. 
 

U ravnotežnom stanju elektromagnetna sila na 
nosioce naelektrisanja u metalnoj pločici dimenzija 

zyx ××  je jednaka nuli, odakle sledi da je 
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gde je N ′  koncentracija nosilaca naelektrisanja. 

 

I

B
r

V

+ y
z

x

+

I

B
r

V

+ y
z

x

+

 
 
Kad su nosioci naelektrisanja elektroni, njihova brzina je suprotnog smera 
od pretpostavljenog, ali je i naelektrisanje suprotnog znaka pa je efekat 
potpuno isti. Kad elektroni nisu potpuno slobodni, kao kod bivalentnih 
metala, Hallov efekat nije moguće objasniti na ovaj način. 
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13. Nalektrisana čestica u homogenom magnetnom polju 
 
Neka naelektrisana čestica, , u polje uleće brzinom, , pod nekim 
uglom, , u odnosu na pravac vektora magnetnog polja, 

q v
θ B . Brzina ima 

komponentu koja je normalna na pravac polja, θ= sinvvn , i komponentu 
koja je sa pravcem polja paralelna, θ= cosvvp . Lorentzova sila deluje na 
naelektrisanu česticu samo usled postojanja normalne komponente brzine 
povijajući putanju u kružnicu poluprečnika r . Međutim, usled postojanja 
paralelne komponente brzine čestica se uniformno kreće u pravcu te 
komponente. To znači da se čestica kreće po kružnoj spiralnoj putanji. 
 
Lorentzova sila je u ravnoteži sa centrifugalnom 
silom, pa se odatle dobija poluprečnik spirale, 

. Vreme a T  koje je potrebno da čestica obiđe 
pun krug poluprečnika  i da pređe put  u 
pravcu paralelne komponente brzine je isto. 
Tako se dobija korak spirale . 
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Ako naelektrisana čestica u polje uleće paralelno sa pravcem magnetnog 
polja, na nju magnetno polje nema nikakvo dejstvo i čestica nastavlja da se 
istom brzinom kreće pravolinijski. 
 
U specijalnom slučaju, kad čestica uleti u stalno polje po uglom koji je 
normalan na pravac polja, 2/π=θ , kretanje čestice se nastavlja po 
kružnoj putanji čiji poluprečnik zavisi samo od početne brzine. Čestica 
tada postaje zarobljenik magnetnog polja. Vreme obilaska po kružnoj 
putanji ne zavisi od brzine. Na jednom uspostavljenu kružnu putanju 
moguće je uticati samo promenom jačine magnetnog polja. 
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U Zemljinom magnetnom polju u Srbiji je T20μ≈T  i MHz5.0≈f , pa 
bi elektron za jedan sekund obišao više od pola miliona punih krugova. 
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14. Elektron u ukrštenom elektromagnetnom polju
  

Pod uticajem električnog polja sa katode prema
anodi polazi elektron brzinom 
 

zvyvxvv zyx ˆˆˆ ++=
r  

 

koja je u početnom trenutku,  jednaka nuli, tj. 
 

0=== zyx  i 0=== zyx vvv  za 0=t  
  

Između ravnih elektroda postoji homogeno
magnetno polje koje je upravno na pravac
električnog polja, pa na elektron deluje elektro-
magnetna sila odakle se dobija jednačina kretanja.
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Tako se dobijaju dve skalarne 
diferencijalne jednačine, 
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u kojima je upotrebljena oznaka meB /=ω . Ova veličina je dimenziono 
učestanost i naziva se frekvencija ciklotrona. Bez stranog električnog polja 
čestica bi sa tom učestanošću obrtala po krugu (lekcija 13). 
 

Nakon jedne integracije iz prve diferencijalne 
jednačine se dobija brzina čestice u -pravcu. Iz
početnih uslova se dobija i konstanta integracije. 
Kad se dobijeno rešenje uvrsti u drugu diferen-
cijalnu jednačinu sledi jednačina kretanja čestice u
pravcu 

y

z -ose. 
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Dobijena diferencijalna jednačina je drugog reda sa konstantnim koefici-
jentima. Ova diferencijalna jednačina rešava  se Lagrangeeovim metodom 
varijacije konstanti i sastoji se iz opšteg rešenja (rešenje homogene 
diferencijalne jednačine) i partikularnog integrala (koji se dobija 
varijacijom konstanti). Tako se dobija da je 
 

B
EtCtCz
ω

+ω+ω= sincos 21  
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Konstante integracije )/(1 BEC ω−=  i 02 =C

)
 se dobijaju iz početnih 

uslova. Ako se uvede oznaka /(Ea Bω= , konačno  je 
 

  

)cos1( taz ω−=  tavz ωω= sin . 
  
  

)cos1( tazvy ω−ω=ω=  )sin( ttay ω−ω=  
  

 

Jednačine kretanja po  i y z  pravcu su parametarske jednačine cikloide. 
Eliminacijom trigonometrijskih funkcija iz jednačina kretanja se dobija 
jednačina kružnice poluprečnika  čiji centar je u trenutku a t  u tački 

 i kreće se brzinom . ),,0( ataO ω v
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Čestica koja se u svakom trenutku nalazi na kružnici globalno kretanje čini 
po pravcu koji je normalan na pravce oba polja.  
  
Brzina elektrona prema anodi, osim u trenutku 0=t , je jednaka nuli kad je 

. Slično (π=ω 2t π=ωt ) se dobija i najveće udaljenje elektrona od katode. 
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 Ako je rastojanje između elektroda, , veće od 
maksimalnog rastojanja, , koje elektron 
može da dostigne, ni jedan elektron neće dospeti 
do anode i kroz diodni sistem neće proticati 
konvekciona struja.  

d
maxzd >

 

U suprotnom slučaju, maxzd < , svi elektroni 
dospevaju do anode i formiraju konvekcionu 
struju koja u tom slučaju ima i najveću jačinu. 
Dakle, struja ili ne protiče ili protiče kroz diodu. 

 

Iz graničnog (kritičnog) slučaja ( maxzd = , EdUc = ) dobijaju se kritične 
vrednosti za međuelektrodni napon, , i jačinu magnetnog polja, . 
Kontrolom napona i/ili jačine magnetnog polja uspostavlja se prekidački 
režim koji je osnova za mnoge primene u elektronici i elektrotehnici 
uopšte.  

cU cB

 
J.J. Thompson je 1897. godine merio odnos naelektrisanja i mase katodnih 
zraka (ustvari snopa elektrona). Prvo je puštao zrake kroz ukršteno 
električno i magnetno polje i podešavao jačinu električnog polja dok 
skretanje zraka nije bilo jednako nuli. Zatim je isključio električno polje i 
merio poluprečnik skretanja zraka. Tako se rodio elektron. 
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15. Thompsonov eksperiment i maseni spektrometar 
 
Elektroni emitovani sa katode dobijaju ubrzanje prema anodi koja se nalazi 
na potencijalu U . Povećanje kinetičke energije elektrona jednako je 
uloženom (negativnom) radu, pa se odatle određuje brzina elektrona nakon 
prolaza kroz rešetkastu anodu. 
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Elektron će nastaviti da se kreće 
pravolinijski kroz ukršteno elektro-
magnetno polje ako su električna i 
magnetna sila u ravnoteži. 
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Kombinovanjem dva izraza za brzinu dobija se odnos 
naelektrisanja i mase elektrona. Upravo je to bio prvi 
deo Thompsonovog eksperimenta.  
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U drugom delu eksperimenta naelektrisana čestica (pozitivni jon) prvo 
prolazi kroz separator brzina. Drugim rečima, na prvom delu putanje jačine 
električnog i magnetnog polja su tako podešene da čestica ima 
pravolinijsku putanju i brzinu BEv /= . Na drugom delu puta nema elek-
tričnog polja, a magnetno polje  ne menja brzinu čestice (ne vrši rad) 
već samo povija njenu putanju u kružnu liniju poluprećnika . 
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Pošto iz separatora čestica izlazi sa 
poznatom brzinom, sledi da je 
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Merenjem poluprečnika skretanja čestice moguće je odrediti njenu masu i 
to je osnova masene spektrometrije. Međutim, počeci masene spektro-
skopije se vezuju za proučavanje izotopa. Prva otkrića te vrste su izotopi 
neona. Lawrence je 1939. godine primio Nobelovu nagradu za otkriće 
cyclotrona, a već 1942. godine, u okviru projekta Manhattan, je za 
separaciju izotopa uranijuma upotrebljen njegov maseni spektrometar 
Calutron. Direktor podprojekta Trinity (testiranje prve nuklearne 
eksplozije) je bio Kenneth Bainbridge koji je i tvorac spektrometra čiji je 
princip rada ovde prikazan. 
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16. Fluks vektora magnetnog polja 
 
Fluks (Lat. fluxus - teći) je protok fizičke veličine u 
jedinici vremena. Matematički, fluks je površinski 
integral vektorskog polja.  
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Fluks vektora magnetnog polja ili magnetni fluks, kroz površinu  koja se 
oslanja na konturu C , je definisan na isti način, pa je odatle magnetno 
polje (indukcija) isto što i gustina magnetnog fluksa. Tako je inače 
definisan fluks bilo koje druge vektorske veličine, na primer, v

S

r , E
r

, ili D
r

. 
Za razliku od flukseva koje stvaraju druge vektorske veličine, magnetnom 
fluksu je pridružena posebna jedinica. Pre uvođenja internacionalnog 
sistema jedinica, SI, jedinica za magnetni fluks je bila maksvel, za 
oznakom . Mx
 

[ ] s/m3=vS  [ ] mV=ES  [ ] C=DS  [ ] Wb=BS  
 

Jedinica za magnetni fluks je veber, sa oznakom 
, po nemačkom fizičaru i pronalazaču Weberu  Wb
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Pomoću magnetnog fluksa je neke zakone elektromagnetizma moguće 
jednostavno matematički formulisati, ali to je i veličina koju je moguće 
direktno meriti uređajem koji je nazvan fluksmetar (lekcija 82). 
 
17. Zakon o konzervaciji magnetnog fluksa 
 
Fluks vektora magnetnog polja kroz zatvorenu površinu je jednak nuli. 
Fluksevi kroz sve površine koje se oslanjaju na istu konturu su jednaki. 
 

 

Gaussov zakon za magnetno polje je četvrta Maxwellova jednačina   
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Magnetno polje 
 

● polje je bezizvorno  
● linije polja su neprekidne 
● polje je solenoidno 
● magnetni monopoli ne postoje E 0/d ε=∫ qSE
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rr
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Ovaj zakon je izveden na osnovu velikog broja eksperimenata. Ako 
magnetni monopoli ikad budu otkriveni i ovaj zakon će biti promenjen. 
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18. Magnetne sile ne vrše rad? 
 
Pravougaona strujna konrura, mase , opticana 
je stalnom strujom 

tm
I . Kontura slobodno visi tako 

da se samo deo površine nalazi u homogenom 
magnetnom polju B . Magnetne sile koje deluju 
na vertikalne stranice konture se međusobno 
poništavaju. 
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Pri određenoj jačini struje, magnetna sila koja 
deluje na horizontalnu stranicu, dužine L koja se 
nalazi u polju, je u ravnoteži sa gravitacionom 
silom. To znači da kontura lebdi.  

 GFm =  
 

  mgIBL =  
 

)/(BLmgI =  
 

Ako se sada jačina struje poveća, ravnoteža se narušava i kontura počinje 
da se podiže. Znači da se rad vrši. Međutim, znamo da magnetne sile ne 
vrše rad na pomeranju naelektrisanja (lekcija 11). 
 
Kad kontura počne da se podiže, naelektrisanja u 
provodniku se više ne kreću horizontalno, već
njihova brzina dobija vertikalnu komponentu koja 
prati podizanje provodnika. Magnetna sila koja je 
uvek normalna na pravac kretanja naelektrisanja
sada dobija horizontalnu komponentu. I dalje ova 
sila ne vrši rad, a kontura se pomera? 
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Vertikalna komponenta magnetne sile se nije 
promenila jer se nije promenila ni jačina struje u 
stranici na koju sila deluje. Ova sila sada ima i 
horizontalnu komponetu koja je suprotnog smera 
od smera kretanja naelektrisanja, te se protivi 
njihovom kretanju. Znak naelektrisanja je nebitan.

    ILBFn =  
 

   ILqvt =  
 

   BvF tn q=  
 

   BvF nt q=  
 

Kako će biti pokazano u kasnijim izlaganjima magnetno polje se uvek 
protivi promenama. Ipak, tok naelektrisanja ostaje nepromenjen tj. jačina 
struje je stalna. Za savladavanje novonastalog otpora izvor električne struje 
mora da dodatnu energiju pretvori u rad. Naelektrisanja u horizontalnoj 
stranici konture, koja je pod dejstvom vertikalne sile, su izvršila rad 
prešavši put dužine  dok se jednovremeno kontura podigla za neko 
rastojanje . 

L
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hBILtvBqvtvBqvLBqvLFA nttnnt ===== )()()()()(  
 
To je rad za koji bi, bez prethodne analize, bilo optuženo magnetno polje. 
Rad je izvršen i ovde se ne postavlja pitanje da li se pri pomeranju konture 
vrši rad, već ko je davalac energije.  
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Ako magnetno polje ne vrši rad koja je onda svrha postojanja tog polja? U 
razmatranom primeru magnetno polje preusmerava horizontalnu silu, koja 
zapravo potiče od električnog polja, u vertikalno kretanje strujne konture. 
Kad strujna kontura bude cela uvučena u magnetno polje ukupna magnetna 
sila biće jednaka nuli. U magnetnom polju strujne konture se okreću tako 
da propuste najveći fluks kroz svoju površinu i na taj način dolaze u 
položaj u kome je potencijalna energija minimalna. Magnetno polje vodi 
naelektrisane čestice po tačno određenim putanjama ne menjajući im 
brzinu.  
 
Međutim, problem može da se postavi i na sledeći način. Ako magnetno 
polje ne vrši rad, onda nema ni energiju, jer energija je sposobnost sistema 
da vrši rad. I pored toga što ovo razmatranje izgleda savršeno tačno, teško 
je u to verovati. Sa druge strane, postoje primeri (nehomogena polja) u 
kojima nije moguće dokazati da magnetno polje ne vrši rad.  
 
Do istog rezultata za rad, iz razmatranog primera, se dolazi i ako se 
magnetno polje proglasi za vršioca rada. Tako bi moglo da se kaže: Pod 
uticajem elektromagnetne sile strujna kontura se pomeri bez uticaja nekih 
drugih sila. U ovakvo razmatranje (i pored toga što je pogrešno) je mnogo 
lakše poverovati. Pri tom translatornom pomeranju elementa konture  za 
elementarni pomeraj  izvrši se elementarni rad, 
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Pošto je struja kroz konturu konstantna elementarni rad je direktno 
srazmeran priraštaju fluksa. 
 
Za bolje razumevanje ovog problema možda može 
da posluži analogija sa telom na strmoj ravni. Na 
telo deluju samo dve sile. Sila težine G  i sila 
koja je reakcija na normalnu komponentu sile 
težine. Rezultanta sila je tangencijana na ravan tj. 
ima pravac kojim će telo skliznuti niz ravan. 

N

 V
r

aF
r

N
r

G
r

V
r

aF
r

N
r

G
r

V
r

aF
r

N
r

G
r

 
 
Da bi telo bilo u ravnoteži ili da bi se povuklo uz strmu ravan potrebno je 
upotrebiti aktivnu silu  koja može bude i samo horizontalna. Sila  ne 
vrši nikakav rad jer je normalna na pravac putanje. Međutim, ova sila ima 
vertikalnu komponentu V  koja ustvari podiže telo i omogućava 
horizontalnoj aktivnoj sili da telo pomera uz strmu ravan. Horizontalna 
komponenta sile  je usmerena unazad i nju treba savladati gurajući telo 
unapred. Oćigledno, da horziontalna aktivna sila ne podiže telo. U ovom 
slučaju vertikalna komponenta sile reakcije ima pasivnu ali presudnu 
ulogu, kao i magnetno polje u prethodno razmatranom primeru.  
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19. Ampèreov zakon 
 
Ampèreov zakon daje relaciju između magnetnog polja i struja koje to 
polje proizvode, a rezultat je istraživanja iz 1826. godine.  
 

Cirkulacija vektora magnetnog polja B
r

 po 
proizvoljnoj zatvorenoj konturi C  je srazmerna 
algebarskom zbiru jačina struja koje prolaze kroz 
proizviljnu površinu S

r
 koja je ograničena 

konturom . Konstanta proporcionalnosti C 0μ  je 
permeabilnost vakuuma ili magnetna konstanta. 
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Vrednost ove konstante je izračunata, a ne 
ekspirimentalno određena. Od vremena prvih 
Ampèreovih eksperimenata sa dva paralelna pro-
vodnika (lekcija 30) do danas, konstanta je više 
puta menjala vrednost. U dužem periodu, sve do 
1948. godine, konstanta je imala čak tri različite 
vrednosti istovremeno. Vakuum i permeabilnost 
(Nlat: Permeabilitas - propustljivost) su termini 
koji imaju fizička značenja, pa se zbog načina na 
koji je ova konstanta određena radije upotrebljava 
termin magnetna konstanta. Jedinica za konstantu 
sledi iz Ampèreovog zakona, ali se u praksi 
upotrebljava jedinica: henri po metru (lekcija 88). 
 

Primenom Stokesove teoreme se dobija lokalni ili 
diferencijalni oblik Ampèreovog zakona. 
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Lako se provera da je Ampèreov zakon tačan za sve magnetostatičke 
probleme. Međutim, u opštem slučaju postoje dve nesaglašenosti. Prva u 
vezi sa jednačinom kontinuiteta, a druga u vezi sa prostiranjem elektro-
magnetnih promena. 
 
      

Divergencija rotora je nula  Dobija se   Treba da bude 
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Maxwell je 1861. godine, uvodeći struju pomeraja (lekcija 109), zakonu 
dao savršen oblik. U okvirima statičkih polja, kad su izvodi po vremenu 
jednaki nuli, osnovni zapis Ampèreovog zakona je potpuno tačan. Odavde 
potiče i pitanje: Da li magnetno polje konzervativno? 
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20. Polje magnetne sile nije konzervativno? 
 
Sile koje imaju osobinu da je rad na pomeranju mase između dve tačke 
nezavisan od putanje koja te tačke spaja su konzervativne sile. Posledično, 
rad konzervativnih sila po zatvorenoj putanji je jednak nuli. Konzervativna 
sila zavisi samo od položaja objekta u prostoru i tada je svakoj tački u 
prostoru moguće dodeliti potencijal (potencijalna energija).  Gravitaciona i 
elektrostatička sila (Sveska I) su konzervativne sile. Mehanička energija je 
zbir energije položaja (potencijalna) i energije kretanja (kinetička). U 
sistemu u kome deluju samo konzervativne sile, mehanička energija je 
konstantna. To je princip konzervacije (očuvanja) mehaničke energije. U 
elastičnim sudarima mehanička energija je očuvana. U neelastičnim 
sudarima deo mehaničke energije se pretvara u toplotu, ali je ukupna 
energija očuvana. To je princip očuvanja (ukupne) energije. Polje sile je 
vektorsko polje bezkontaktnih sila. Sve četiri poznate sile interakcije 
(gravitaciona, elektromagnetna, jaka nuklearna i slaba nuklearna) su 
bezkontaktne sile. Polje sile F

r
 je kozervativno vektorsko polje ako je 

zadovoljen bar jedan od četiri ekvivalentna uslova (Sveska I). 
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Po definiciji konzervativnosti, rad sila polja 
po zatvorenoj putanji je jednak nuli. Sledi da 
rad ne zavisi od izbora putanje. Iz Stokesove 
teoreme se dobija lokalni oblik ovog uslova. 
Odavde sledi da je konzervativno polje i 
bezvrtložno polje. Rotor gradijenta je uvek 
jednak nuli. Iz teoreme o gradijentu sledi da 
je ovu silu moguće izraziti kao negativan 
gradijent skalarne funkcije. Integral po 
proizvoljnoj putanji je integral totalnog 
diferencijala uvedene skalarne funkcije. 

 

4 )()(d BAlF
AB

ϕ−ϕ=∫
rr

 

 

Mnoge sile ne čine polje sile (kao na primer sila trenja). U tim slučajevima 
gornji uslovi nisu matematički ekvivalentni. 
 

● Magnetna sila koja deluje na naelektrisanu česticu u kretanju zavisi i od 
položaja i od brzine čestice - dakle, nije konzervativna. 
 

● Magnetna sila zadovoljava uslov da je rad sila po zatvorenoj putanji 
jednak nuli (jer je sila uvek normalna na putanju) - dakle, konzervativna je.  
 

● Magnetnu silu nije moguće izraziti kao degradijent neke skalarne 
funkcije, a njen rotor nije definisan - dakle, nije konzervativna. 
 

U literaturi ne postoji jedinstven stav o konzervativnosti magnetne sile. Na 
osnovu svega što je ovde izneto, može se nedvosmisleno zaključiti: 
 

Magnetna sila nije konzervativna. 
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21. Biot-Savartov zakon 
 
Ponavljajući Öerstedove eksperimente, Biot i Savart su još 1820. godine 
otkrili vezu između jačine stacionarne struje i magnetnog polja. 
 

Jačina magnetnog polja je 
proporcionalna jačini struje u 

pravom provodniku i obrnuto je 
proporcionalna rastojanju od ose. 
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Međutim, istorijski izvori su prilično neodređeni u pogledu otkrića ovog 
zakona i najčešće se nalazi da je zakon formulisan na osnovu izraza za 
električno polje koje stvara tačkasto naelektrisanje. 
 

Električno polje Analogija Magnetno polje 
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Ono što je tačkasto naelektrisanje u 
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U elektrostatici i magnetizmu 
konstante sredine su uvek na 
različitim stranama razlomka. 
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Strujni element ima pravac i smer. 
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Eksperimentalno su utvrđeni i pravac i smer polja, i 
kad se to uzme u obzir sledi izraz za koji se tvrdi da 
je Biot-Savartov zakon.  

2
0 ˆd

4
d

r
rlIB ×

π
μ

=
r

r
 

 
Matematički zapis zakona (lekcija 43) nastao je nakon završenih 
istraživanja. Dva naučnika su proučavala pomeranje magnetne igle 
kompasa u blizini veoma dugog pravolinijskog provodnika. 
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Linije polja vektora magnetnog polja su koncentrični krugovi čiji centri 
pripadaju osi provodnika. Vektor magnetnog polja je u svakoj tački  
tangenta na liniju polja. Pravac magnetnog polja je normalan na ravan 
kojoj pripadaju osa provodnika i tačka u kojoj se polje određuje, a smer se 
određuje po pravilu desne zavojnice ili pravila desne ruke. 
 
Kroz prav i beskonačno dug provodnik 
protiče stalna struja jačine I . Provodnik 
je orijentisan u smeru z -ose, zIlI rr

dd = .
Iz geometrijskog odnosa sledi da je 
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Primena iskazanog zakona na ovaj slučaj daje  
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Kad se integral reši smenom trz tan= dobija se 
formula po kojoj je Biot-Savartov zakon poznat. 
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Do istog rezultata, i to znatno jednostavnije, se dolazi i
primenom integralnog oblika Ampèreovog zakona.  дмпдмп
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Oba zakona dovode do istog rezultata. Tačnije, radi se o jednom istom 
zakonu. Kad se krene obrnutim redosledom tj. kad se potraži cirkulacija 
vektora magnetnog polja i zameni izraz koji je dobijen primenom Biot-
Savartov zakona, dobija se Ampèreov zakon. 
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● Tačkasto naelektrisanje koje se kreće, stvara i 
električno i magnetno polje. Jačine tih polja su 
najveće kad je vektor koji spaja naelektrisanje i 
položaj tačke u kojoj se polja računaju normalan na 
pravac kretanja. Pravci električnog i magnetnog polja 
su međusobno normalni, a odnos najvećih jačina je 
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gde je c  brzina svetlosti u vakuumu (lekcija 108 i Sveska V). 
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● Jačine polja je zbog različitih jedinica teško 
porediti. Neka se u tački gde su polja računata nalazi 
još jedno naelektrusanje istog znaka. Neka se, zbog 
jednostavnosti u razmatranju, to naelektrisanje kreće 
paralelno prvom naelektrisanju i to istom brzinom. 
Na naelektrisanja deluju sile električnog i magnetnog 
porekla, a njihova razlika je 
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Magnetno privlačenje biće jednako elektrostatičkom odbijanju jedino ako 
se čestice kreću brzinom svetlosti.  
 
● Ako se oko naelektrisane čestice u kretanju ili oko strujnog elementa 
opiše zamišljena površina  oblika valjka tada je fluks vektora magnetnog 
polja kroz tu površinu jednak nuli jer su u svakoj tački vekori površine i 
polja međusobno normalni. 
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Ovo je samo dokaz zakona o konzervaciji magnetnog fluksa u ovom 
specijalnom slučaju. 
 

 

Poreklo [ ]TB  

Ljudski mozak 1210−
 

Zemljino magnetno polje 510−  

Krajevi stalnog magneta 110−  

Unutrašnjosti stalnog magneta 010  

Akceleratori za ubrzanje čestica 110  

● Iz Biot-Savart zakona sledi da 
magnetno polje jačine T1=B
na rastojanju od m1=r

MA5

od ose 
provodnika proizvodi stalna 
struja jačine =I . Tesla, 
kao i farad, je prevelika 
jedinica. U elektrotehnici se 
koriste veličine manjeg reda. 

 

Neutronske zvezde 610  

 
● Slično Gaussovom zakonu (u elektrostatici) 
Ampèreov zakon je potpuno tačan (za stalne struje) 
ali nije uvek od velike koristi. Samo u slučajevima 
kad geometrija problema dozvoljava da se magnetno 
polje izvuče ispred znaka integrala, Ampèreov zakon 
je najelegantniji metod za rešavanje problema. Kad 
to nije moguće, treba se vratiti uvek upotrebljivom 
Biot-Savartovom zakonu. 
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- strujne niti 
- strujni plaštovi 
- solenoidi 
- torusi 
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22. Ampère i Biot-Savart 
 
Neka sredina kroz koju protiču nosioci naelektrisanja ima istu magnetnu 
permeabilnost kao i okolna sredina. Ova pretpostavka je sasvim opravdana. 
Taj uslov ispunjava snop elektrona u vakuumu i većina materijala koji su 
provodnici električne struje.  
 

Eksperimentom izveden Biot-Savartov 
zakon ničim ne dopušta da bude 
primenjen za izračunavanje magnetnog 
polja u unutrašnjosti provodnika, ar < . 
Međutim, takvu mogućnost pruža 
Ampèreov zakon. 
 

Kroz provodnik kružnog poprečnog 
preseka poluprečnika protiče struja 
gustine 
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Kad se Ampèreov zakon primeni na 
kružnu konturu čiji je poluprečnik veći od 
poluprečnika provodnika, ar ≥ dobija se 
izraz za Biot-Savartov zakon. 

, 

 

Međutim, kružnom konturom čiji je polu-
prečnik manji od poluprečnika provod-
nika ar ≤  nije obuhvaćena ukupna jačina 
struje. 
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Treba primetiti da jačinu magnetnog polja 
u unutrašnjosti provodnika nije moguće 
eksperimentalno potvrditi. Na površini 
diskontinuiteta ar = magnetno polje je 
neprekidna funkcija. 
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Magnetno polje ima samo ugaonu komponentu )(rBB θ= , pa je  
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23. Magnetno polje koaksijalnog voda 
 
Koaksijalni vod kružnog poprečnog preseka se 
sastoji od unutrašnjeg provodnika poluprečnika 

 i spoljašnjeg provodnika oblika cevi čiji su 
unutrašnji i spoljašnji poluprečnici su  i , 
respektivno. Kroz provodnike protiču u 
suprotnim smerovima uniformno raspodeljenje 
jednosmerne struje čije su gustine  i . 
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Zbog cilindrične simetrije problema magnetno 
polje ima samo ugaonu komponentu )(rBB θ=  
koja ne zavisi od θ  i  koordinata. z

π= 2
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U svim tačkama prostora magnetno polje je određeno Ampèreovim 
zakonom u diferencijalnom obliku, JB
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0rot μ= , i graničnim uslovima. 
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Problem se svodi na rešavanje četiri linearne diferencijalne jednačine 
prvog reda od kojih svaka odgovara po jednom domenu prostora. Sve 
diferencijalne jednačine i njihova rešenja su formalno istog oblika, 
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gde su  konstante integracije koje treba odrediti iz uslova da je magnetno 
polje neprekidna i ograničena funkcija. 
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● Do istog rezultata se, znatno jednostavnije, dolazi i primenom 
Ampèreovog zakona u integralnom obliku. 
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Za primenu Ampèreovog zakona u integralnom 
obliku potrebno je zamisliti četiri konture za četiri 
domena u kojima je potrebno odrediti magnetno 
polje. U svim slučajevima cirkulacija vektora 
magnetnog polja je ista (leva strana izraza) dok se 
algebarski zbir, tom konturom obuhvaćenih, struja 
menja (desna strana izraza). 
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Tako se dobija rezultat koji je identičan onom koji se dobija primenom 
ovog zakona u diferencijalnom obliku. 
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24. Magnetno polje solenoida i torusa 
 
Ampèreova kontura oblika pravougaonika ima par 
stranica dužine  koje su paralelne sa vektorom 
magnetnog polja. Ako se kontura postavi tako da 
obuhvata više celih navojaka, algebarski zbir jačina 
struja biće jednak nuli. Kad jedna od stranica 
prolazi kroz solenoid ukupna obuhvaćena jačina 
struje je proizvod jačine struje kroz solenoid i broja 
zavojaka. 
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Solenoid može da bude povijen, najčešće po krugu, 
i tada se dobija torusni namotaj (lekcija 73). 
Zamišljena strujna kontura sada može da bude 
oblika kružnog sektora. Dobija se isti retultat, samo 
što je dužina linije sada dužina luka, θ= rL . 
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25. Magnetno polje u ekscentričnoj šupljini 
 
U metalnom cilindru poluprečnika  
nalazi se cilindrična šupljina polu-
prečnika . Rastojanje osa cilindara 
je  Po principu linearne super-
pozicije, magnetno polje u šupljini je 
jednako vektorskom zbiru polja koje 
bi nezavisno poticale od struja 
suprotnih smerova u oba cilindra kad 
bi ovi bili poptpuno puni. 
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U tački koja pripada šupljini magnetna polja su 
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Rezultantno magnetno polje u šupljini je homogeno i ima samo 
komponentu normalnu na rastojanje između osa. 
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26. Magnetno polje strujnog plašta 
 
Struja konstantne gustine  teče po ravni čineći 
strujni plašt. Primenom Ampèreovog zakona na 
pravougaonu konturu zanemarljive širine i dužine 

 se dobija izraz koji je savršena analogija sa 
električnim poljem naelektrisane ravni. 
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Magnetostatičko polje  B Elektrostatičko polje  E 
jedan plašt dva plašta jedna ravan dve ravni 
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27. Magnetno polje prave strujne niti - 1 
 
Provodnik kroz koji protiče struja jačine I , a čija je dužina znatno veča od 
dimenzija poprečnog preseka je strujna nit. 
 
Magnetno polje na rastojanju r  od prave 
strujne niti (konačne dužine) može da se 
dobije iz Biot-Savartovog zakona pomoću 
elementarnih geometrijskih odnosa. 
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● Alternativni izraz se dobija ako se
koriste uglovi iz kojih se nit vidi. 
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● Kad je tačka M  u kojoj se određuje polje na osi 
strujne niti, 21 θ=θ , magnetno polje je jednako nuli. 
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● Za neograničenu strujnu nit granice integracije
postaju  i 01 =θ π=θ2 , pa se tako dobija poznati
izraz za Biot-Savartov zakon. 
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● Kad se polje računa u tačkama na simetrali 
strujne niti uglovi integracije postaju 
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gde je β  ugao pod kojim se strujna nit vidi. 
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Ako je b  dužina jednog od potega koji spaja krajnje tačke strujne niti sa 
tačkom M  tada iz geometrijskih odnosa sledi da je 
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28. Magnetno polje prave strujne niti - 2 
 
Neka je strujna nit dužine . Na 
rastojanju  od početka duži  je tačka 

L
a O

M  u kojoj je potrebno odrediti jačinu 
magnetnog polja. Poteg OM  i duž grade 
ugao α . Na osnovu oznaka sa slike  je 
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Na osnovu prethodno izvedenog izraza neposredno se dobija 
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● Za 2/π=α  poteg OM je normala na
strujnu duž. Tada je i ra = .   
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● Za  tačka 0=α M  je na osi duži. DMPDMP
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● Kad je  ili  aL >> ∞→L duž prerasta 
u polupravu. 
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Dve poluprave sa zajedničkim početkom
u tački  grade ugao O α2 . Tačke i 

 se nalaze na simetrali ugla, centralno
simetrično u odnosu na tačku , i na 
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Jačina magnetnog polja u datim tačkma je jednaka zbiru jačina polja koje 
potiču od dve poluprave od kojih svaka stvara polje iste jačine, pravca i 
smera. 
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● Kad je 2/π=α  dve poluprave 
daju jednu pravu, pa se dobija dobro 
poznat izraz za Biot-Savartov zakon.  
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29. Magnetna sila između dva strujna elementa 
 
Kroz dva međusobno normalna strujna 
elementa protiču struje koje stvaraju 
magnetno polje tako da provodnici deluju 
jedan na drugi odgovarajućim magnetnim 
silama. Magnetno polje jednog elementa 
računa se na mestu drugog. 
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Odavde sledi da osnovni zakoni 
magnetizma nisu u skladu sa sa 
trećim Newtonovim zakonom akcije 
i reakcije, što je matematički tačno. 
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Ova protivrečnost ne postoji kad su 
strujni elementi paralelni. 
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Sile međusobnog dejstva su po intenzitetu jednake i imaju odbojni karakter 
ako su struje suprotnih smerova (kao na slici) i imaće privlačni karakter  
ako su struje istih smerova, 
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Međutim, fizički smisao treba tražiti samo 
kod fizički realnih problema. Izolavani strujni 
element ne može da postoji samostalno i uvek 
je deo neke zatvorene strujne konture.  
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Razultantne magnetne sile se povinuju svim poznatim fizičkim zakonima. 
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30. Magnetno polje i sile dve paralelne strujne niti  
 
Opštu formulu za magnetnu silu između dva strujna elementa, koja je spoj 
Biot-Savartovog zakona i Lorentzove sile u jednu formulu, izveo je 
Maxwell sledeći Ampèreove originalne zapise.   
 

Za ukupnu silu između strujnih niti izraz 
treba integraliti po obe dužine. Tada se 
sila računa po jedinici dužine niti. 
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Dve strujne niti koje su geometrijski paralelne, u elektrimagnetnom smislu 
su paralelene ako kroz njih protiču struje jednakih jačina i isih smerova. 
Ako su struje suprotnih smerova strujne niti su antiparalelne. Drugi slučaj 
predstavlja klasičan dvožični vod za snabdevanje potrošača električnom 
energijom. Neka su strujne niti jednakih konačnih dužina . L
 
● Koordinatni početak Descartesovog koordinatnog sistema je na sredini 
rastojanja dve niti, ad 2= , koje koincidira sa -osom. Struje teku u 
pravcu 
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x -ose. Kod antiparalelnih strujnih niti magnetno polje u ravni 

simetrije 0=y  ima samo -komponentu.  z
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Iz izraza za magnetno polje koju jedan 
provodnik stvara na mestu  položaja 
drugog, daR == 2  sledi izraz za silu, koja 
je u ovom slučaju odbojna. 
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● Kod paralelnih strujnih niti magnetno polje u ravni simetrije  ima 
samo -komponentu. Magnetno polje je jednako nuli za 

0=y
y 0=z . Kroz ovu 

pravu prolazi singularna površ polja. Polje je jednako nuli i u besko-
načnosti. Između dve nule neprekine i diferencijabilne funkcije (Rolleova 
teorema) mora da postoji ekstremna vrednost. 



50                                                           Dejan M. Petković 
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.Položaj najveće jačine polja se dobija kad 
se prvoi izvod izjednači sa nulom. 
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Kod paralelnih strujnih niti sila interakcije 
je je ista po jačini i pracu kao i kod 
antiparalelnih samo što sada ima privlačni
karakter. 

  
 
 

 

+ +
2B
r

1I

1B
r

12F
r

21F
r

2I
+ +

2B
r

1I

1B
r

12F
r

21F
r

2I

 
 

 
31. Jedinica za jačinu struje - amper 
 
Izraz za silu po jedinici dužine između dve paralelne 
strujne niti u najjednostavnijem obliku je poznat kao 
Ampèreov zakon sile i potiče iz 1825. godine. 
 
Konstanta  je nazvana konstanta magnetne sile i 
od njene vrednosti zavisi koliko će biti velika 
jedinica za jačinu struje (lekcija 19). Vrednost 
konstante sile je definisana u SI pomoću magnetne 
konstante kojoj je takođe dodeljena vrednost. 
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U SI jedinica za jačinu struje je amper. To je četvrta osnovna jedinica 
(kilogram, metar, sekund i amper) i pored toga što je definisana na osnovu 
izvedene jedinice njutn.  
 

Amper je ona jačina stacionarne električne struje, koja održavana u dva 
paralelna provodnika beskonačnih dužina i zanemarljivo malih površina 
poprečnih preseka, koji se nalaze na rastojanju od    u vakuumu, čini 

da ovi provodnici dejstvuju jedan na drugog silom od    njutna po 
jednom metru dužine provodnika. 

m1

2 710−⋅
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32. Pravougaona strujna kontura 
 
Na osnovu izvedenih izraza za magnetno polje koje potiče od prave strujne 
niti lako se dolazi do izraza za magnetno polje koje potiče od pravougaone 
strujne konture. Neka je zbog jednostavnosti, a bez gubljenja na opštosti, 
tačka u kojoj se određuje jačina magnetnog polja u preseku dijagonala 
pravougaonika čije su stranice  i .  a b
 

Iz osnovnog izraza za magnetno polje 
u tačkama na simetrali prave strujne 
niti konačne dužine, 
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slede izrazi za jačine magnetnih polja koja potiču od provodnika koji 
koincidiraju sa stranicama pravougaonika  i , respektivno, a b
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Jačina magnetnog polja zavisi od odnosa stranica pravougaonika. Neka je 
zbog jednostavnosti . Ako se odnos stranica pravougaonika označi 
kao , ukupna jačina magnetnog polja u preseku dijagonala 
pravougaone strujne konture može da se izrazi kao 
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● Kad je 1=n , ba = , pravougaonik postaje kvadrat. 
Jačina magnetnog polja u centru kvadrata je četiri 
puta veća od one koju bi stvarala samo jedna stranica.
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● Kad ∞→n , tj. kad je , pravougaonik 
degeneriše u dve antiparalelne prave. Magnetno polje 
je dva puta veće od onog koje bi stvarala samo jedna 
prava. 
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● Dve antiparalelne polu-
prave, na istim rastojanjima 
od tačke, proizvode u toj 
tački istu jačinu magnetnog 
polja kao i jedna prava. 
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Radi poređenja sa ranije izvedenim izrazima potrebno je izvršiti smenu 
, jer su poslednji izrazi izvedni za rastojanje koje je polovina kraće 

stranice pravougaonika. 
rb 2=
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33. Mnogougaona i kružna strujna kontura 
 
Neka je žičana kontura oblika pravilnog mnogougla, 
upisana u kružnicu poluprečnika . Magnetno polje u 
centru kružnice (mnogougla) je jednako proizvodu broja 
stranica i magnetnog polja koja potiče od jedne stranice, 
tako da je 
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gde je  centralni ugao, i  broj stranica mnogougla. Kad se 
broj stranica neograničeno uvećava, mnogougao teži kružnici, pa sledi da 
je izraz za magnetno polje strujne kružnice u njenom centru, 
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Do izraza za magnetno polje u tačkama na 
osi kružne strujne konture poluprečnika  
se dolazi i direktnom primenom Biot-
Savartovog zakona. Tada je 
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Na osi konture radijalne komponente vektora magnetnog polja koje potiču 
od centralno simetričnih strujnih elemenata se anuliraju i ostaje samo 
aksijalna komponenta. Magnetno polje u centru kružnice se dobija kad se u 
formulu zameni 0=z .  
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34. Magnetno polje kružnog luka i poluprave 
 
Strujna kontura sastoji se od kružnog luka cenralnog ugla  i 
poluprečnika , i dve poluprave koje luk tangiraju u tačkama spajanja. 
Opšti izrazi za jačine magnetnih polja delova ove strujne konture su ranije 
izvedeni (lekcije 27 i 33). 
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35. Magnetno polje na osi mnogougaone konture 
 
U opštem slučaju, tačka u kojoj se 
izračunava magnetno polje nije u centru 
mnogougaone strujne konture. Iz formule 
koja je ranije izvedena (lekcija 27), 
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jednostavnim transformacijama se dobija 
formula za polje u tačkama na osi, 
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u kojoj su potrebne veličine izražene pomoću centralnog ugla pravilnog 
mnogougla N/2π=α  i poluprečnika opisane kružnice , i gde je  
broj stranica mnogougla. 

a 3≥N

 

U specijalnom slučaju, kad ∞→N  dobija 
se formula za magnetno polje na osi 
kružne strujne konture (lekcija 33). 
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Odnos jačina magnetnih polja koje u istoj tački svoje ose stvaraju kružna 
kontura i mnogougao koji je u nju upisan dovode do ideje o približnom 
izračunavanju (proceni) magnetnog polja. 
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36. Mogućnost procene jačine magnetnog polja 
 
Ako kružnica opisana oko mnogougla ima poluprečnik , tada kružnica 
upisana u mnogougao ima poluprečnik 

a
( )2/cos α= ab . Jačina magnetnog 

polja koja potiče od strujne konture oblika pravilnog mnogougla se može 
proceniti kao srednja vrednost jačina magnetnih polja koja potiču od 
upisane i opisane kružne strujne konture. Uticaj geometrije konture na 
vrednost magnetnog polja je največi u centru konture. 
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Mnogougao 3=N  4=N  6=N  12=N  ∞→N  

sN BB /  1.102 1.054 1.023 1.005 1.000 
 

Koristeći prethodno izvedene formule, na isti način je moguće proceniti 
magnetno polje u bilo kojoj tački na osi konture. Za potrebe takve procene 
korisno je proučiti odnos jačina magnetnih polja koje u istoj tački stvaraju 
mnogougaona i kružna strujna kontura. 
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Na malim rastojanjima od centra 
konture, , mnogouglovi sa 
manjim brojem stranica stvaraju veće 
polje od onih sa većim brojem stranica 
ili od kruga. 
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Razlog za to je činjenica da su stranice takvih mnogouglova bliže svom 
centru. Na velikim rastojanjima efekat blizine je zanemarljiv i jačina polja 
je srazmerna magnetnom momentu, tj. površini konture. 
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37. Helmholtzovi i gradijentni kalemovi 
 
Neka su date dve koaksijalne kružne strujne 
konture istih poluprečnika, , koje su opticane 
stalnim strujama iste jačine i smera, 

a
I . Dalje, 

neka su centri kontura na međusobnom 
rastojanju , i neka je koordinatni početak 
polarno-cilindričnog koordinatnog sistema u 
centru jedne od kontura. Magnetno polje u 
tačkama na osi ima samo aksijalnu komponentu,
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Kad je rastojanje između strujnih kontura zanemarljivo, , tada izraz 
za magnetno polje pokazuje da se dve bliske kružne konture ponašajaju 
kao jedna kroz koju protiče struja dva puta veće jačine. U opštem slučaju, 
tanak kalem od  zavojaka može se zameniti konturom kroz koji protiče 

 puta veće struja. 
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Na polovini rastojanja kontura, u okolini tačke 2/dz = , izraz za 
magnetno polje je moguće izraziti u formi Taylorovog reda 
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gde je )()()( 21 zfzfzf += . U okolini ove tačke polje biti utoliko homo-
genije ukoliko je veči broj članova Taylorovog reda moguće zanemariti. 
Prvi izvod i svi ostali izvodi neparnog reda su (zbog simetrije) u datoj tački 
jednaki nuli. Dakle, najhomogenije moguće polje će se dobiti izjednača-
anjem drugog izvoda sa nulom. 
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Dve kružne konture na među-
sobnom rastojanju koje je 
jednako poluprečniku kontura 
čini Helmholtzov par koji ima 
veoma široku primenu. Homo-
geno polje se primenjuje u 
velikom broju uređaja u koje 
spada i eliminacija uticaja 
Zemljinog magnetnog polja.  
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.Jedinica za ljudsku pokvarenost je jasmin, u čast Jasmine Radosavljević  
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Izračunavanje magnetnog polja u 
tačkama koje ne pripadaju osi obruča je 
znatno složenije (lekcija 44). Radi 
vizuelizacije homogenosti ostvarenog 
polja prikazan je odnos magnetnih polja 
 

)2/,0(/),( dBzrBB =δ  
 

koji podrazumeva takva izračuvavanja. 
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Magnetno polje u tačkama na osi dva kružna obruča jednakih poluprečnika 
kroz koje protiču struje istog intenziteta ali suprotnih smerova izračunava 
se na isti način kao u prethodnom slučaju, samo što sada drugi sabirak u 
osnovnom izrazu ima negativan znak. 
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Ovo je antisimetrični slučaj kad su vrednosti funkcije i svih izvoda parnog 
reda jednaki nuli u središtu između prstenova. Tako u Taylorovom razvoju 
ostaje  
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Ako je i treći izvod funkcije 
jednak nuli, tada će u okolini 
središnje tačke promena mag-
netnog polja biti linearna. Iz 
tog uslova se sledi  
 

3ad = . 
 

Dva jednaka kalema na ovom 
rastojanju čine gradijentni par.
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U literaturi se sreće i naziv Maxwellovi 
kalemovi, što nije tačno. Maxwell je dao 
poboljšanje homogenosti polja dodajući 
još jedan kalem u Helmholtzov par. 
Time se može postići da izvod četvrtog 
reda bude jednak nuli, što znači još 
homogenije polje.  
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Linearna magnetna polja imaju veliku primenu uključujući dijagnostiku 
magnetnom rezonansom. Zbog toga se istraživanja sprovode na kalemove 
kvadratnog oblika ili oblika sedla (patent iz 1957. godine, M. J. Golay). 
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38. Magnetno polje na osi solenoida 
 
Neka solenoid ima poluprečnik  i konačnu dužinu , koja je srazmerna 
broju namotaja, debljini provodnika i koraku namotavanja. Tako postoje 
gusto i retko motani slolenoidi. Međutim, solenoid može da bude načinjen 
iz više slojeva namotaja. U svakom slučaju solenoid je konačan broj 
elementarnih koaksijalnih strujnih kontura. Ako je broj namotaja po 
jedinici dužine solenoida , tada je prema formuli za magnetno polje 
na osi kružne strujne konture (lekcija 33) 
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Ovde je sa obeležena ona vrednosaB t 
magnetnog polja koja se donija prime-
nom Ampèreovog  zakona (lekcija 24). 
Teorijski ovaj zakon daje tačan rezultat
samo za beskonačno dug solenoid jer je
tada 

aaL
BzfB =

∞→
)(lim . 

 

Praktično, kod solenoida čija je dužina
desetak puta veća od poluprečnika, polje
je u najvećem delu dužine homogeno. 
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● Jačina magnetnog polja u
sredini solenoida. 0=z  DMPDMP
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● Jačina magnetnog polja
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● Jačinu magnetnog polja nije moguće povećati povećevanjem broja 
namotaja u jednom sloju, jer veći broj namotaja znači srazmerno veću 
dužinu, tj. odnos  je stalan. LN /
 
● Kod vitkih solenoida (dužina je znatno veća 
od poluprečnika poprečnog preseka). Za jačinu 
magnetnog polja u sredini solenoida se dobija 
izraz koji bi se dobio i primenom Ampèreovog  
zakona. Na krajevima solenoida magnetno polje 
je dvostruko slabije nego u sredini. 
 

● Kod veoma kratkih solenoida, koji se sastoje 
od par namotaja, dužina je zanemarljivo mala, 
pa je i znatno manja od poluprečnika namotaja. 
Magnetno polje na krajevima je isto kao u 
sredini i isto sa kao polje kružne konture. 
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● Ako se u proračun uključe veličine koje se lako mere, a to su jačina polja 
na kraju solenoida i rastojanje tačke na osi od kraja solenoida, onda se iz 
opšte formule dobija formula koja se najčešće primenjuje u praksi, i koja 
važi za bilo koje rastojanje. 
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● Kad je rastojanje tačke u polju znatno veće od dužine dipola, uglovi pod 
kojima se vide krajevi solenoida se vrlo malo razlikuju i opšta formula 
može da se preuredi na sledeći način.   
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Potpuno istu formu ima izraz za električno polje na osi električnog dipola, 
koji je izveden na osnonu postojanja tačkastih naelektrisanja na krajevima.  
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39. Magnetni vektor potencijal 
 

 

 konzervaciji 
tnog fluksa 
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Jedinica za magnetni vektor potencijal je tesla puta 
metar, što će to biti pokazano u kasnijem izlaganju.  
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Prva jednačina će biti automatski zadovoljena, jer je za
funkciju divergencija rotora jednaka nuli, Arot(div
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najmanje kao  je jednoznačno definisano ako su poznati rotor i r/1
divergencija . Divergencija vektorske funkcije A

r
 nije ni  jednim čkim 

uslovom određena i može se odabrati proizvoljno. Uopšte, potencijali nisu 
jednoznačno određene funkcije (Sveska I). Ako se izabere da je 0div =A

 fizi

r
, 

tada se prethodna jednačina svodi na oblik koji je savršena analogija sa 
Poissonovom jednačinom za električni skalar potencijal u elektrostatici. 
Rešenja obe jednačine su takođe analogna. 
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Primenom Stokesove teoreme između fluksa magnetnog polja i magnetnog 
vektor potencijala je moguće uspostaviti vrlo jednostavnu i korisnu 

  relaciju.
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40. Magnetni vektor potencijal pravog provodnika
 

čni 
kcija 

1). Za određivanje magnetnog polja u unutrašnjosti provodnika (i u 

 uniformna po poprečnom preseku, 

 

Magnetno polje koje u svojoj okolini stvara neograničeno dug cilindri
provodnik lako se određuje primenom Biot-Savartovog zakona (le
2
okolini) treba primenti Ampèreov zakon u integralnom obliku (lekcija 19). 
Kako će biti pokazano (lekcija 43), radi se o jednom istom zakonu u dva 
različita oblika koji se dobijaju jedan iz drugog. U integralnom obliku ovaj 
zakon je delotvoran samo kod geometrija sa viokim stepenom simetrije 
gde se dobijeni integrali mogu relativno lako rešiti. Matematičke teškoće 
se pojavljuju već kod određivanja magnetnog polja u tačkama van ose 
kružne strujne konture (lekcija 44). Zato se ponekad Ampèreov zakon 
primenjuje u diferencijalnom obliku (lekcija 19). Često se do rešenja 
elektromagnetih problema lakše dolazi pomoću funkcija potencijala. Ovde 
će to biti ilustrovano na, već više puta rešenom, trivijalnom primeru 
pravog neograničeno dugog provodnika. 
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Očigledno da je rešenje homogenog dela prve jednačine po formi isto kao 
opšte rešenje druge jednačine. U obe integracije homogena diferencijalna 

dnačina razdvaja promenljive. Partikularni inregral se dobija metodom 

 

je
varijacije konstanti. Bez ulaženja u postupak rešavanja (jer je elementaran) 
prikazano je konačno rešenje. 
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Konstante inetgracije treba odrediti iz fizičkih uslova. Prvo, na osi
provodnika 
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već 01 =C , to sledi 
 

+=−

=
r

z

a

z

r
AA

d
dd

        
= arrd {

)(

1

)(

0 1
=

2
+=−= θθ

μ
− DaJ

        20
1 aJD μ

−=  

arBarB

a43421 2

 

Tako se dobija konač za 
magnetno polje koji je i ranije 

đutim, time  problem 

ni izraz 
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Sa ovako određenim konstantama m gnetni vektor potencijal ne bi bio 
na razdvojnoj povtšini 

a
ar =neprekidna funkcija . I pored toga što ove 

ču na izraze za magnetno polje, jer se u postupku 

la) m

konstante ne uti
diferenciranja gube, rešenje treba prezicno dovesti do kraja, jer magnetni 
vektor potencijal (kao i sve funkcije potencija ora da bude neprekidna 
i diferencijabilna funkcija. Da bi obezbedila neprekidnost treba da bude 
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Poslednja jednakost može da bude zadovoljena ako su obe strane jednake 
nekoj konstanti, a najjednostavnije je da budu jednake nuli. Tako se dobija 
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Lako se proverava da je 0div
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=A  i JA
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0rot μ= , što znači da je rešenje 
tačno ali ne i jedinstveno (što je uopšte slučaj kod potencijala). 
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41. Magnetni vektor potencijal prave strujne niti 
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U slučaju beskonačno duge strujne niti i magnetni vektor potencijal ima 
beskonačnu vrednost. Međutim, jačina magnetnog polja je konačna. 
Takođe, magnetno lje se dobija kao izvod magnetskog vektor 
potencijala pa se diferenciranjem gubi uticaj izbora referentne tačke.  
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Projekcije u pravcima Descartesovih koordinatnih osa predstavljaju θ  
komponentu u polarno-cilindričnom koordinatnom sistemu. 
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potencijal koji je jednak razlici 
. Ako su nosioci struja 

● Dve paralelne struje suprotnih 
merova stvaraju magnetni vektor 

 
s

zzz AAA 21 −=
jednake duži 21,2 rrL >> , a struje 
jednakih jačina 21 III == , sledi 
izraz koji je savršena analogija sa 
izrazom za električni skalar 
potencijal koji stvaraju dva podužna 
naelektrisanja suprotnog znaka. 
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Konačni izraz za magnetni vektor potencijal ne zavisi od dužina strujnih 
niti i zato važi i za beskonačno duge antiparalene strujne niti. 
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42. Analogija između strujne
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43. Ampère-Laplace-Biot-Savartov zakon 
 
Kad su struje kanalisane provodnicima formula za 
magnetni vektor potencijal se svodi na linijski 
integral.  
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Podintegralna funkcija je, prema pravilima vektorskog računa, prostorni 
vod proizvoda dve funkcije, tj. iz

 

l
RRR ⎠⎝

ll
rrr

drot1d1gradd1rot +×=⎟
⎞

⎜
⎛ . 

 

  0drot
rr

=l  

  3
1grad

R
R

R

r

−=  

 D

  
 

  

rugi sabirak je jednak nuli, a za prvi sabirak je 
potrebno odrediti gradijent recipročne vrednosti 
vektora položaja. Tako se dobija konačan izraz za 
vektor ma

∫
×

π
μ

=
l R

RlIB 3
0 d

4

rr
r

 

  korektan naziv ALBS zakon. 
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gnetnog polja. 

 
će, istina veoma retko, 

đuje 
magnetno polje strujnog elementa, i najpoznatiji 
autori nazvivaju Biot-Savartov zakon ! 

 

 

Formulu je izveo Laplace na osnovu rezultata 
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d  i vektor položaja 
tačke, R
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, u kojoj se polje izračunava. 

Smer ovog vektora se određuje (kao kod 
svakog vektorskog proizvoda) po pravilu 
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Intenzitet vektora magnetnog polja je 
direktno srazmeran površini paralelo-
grama koji grade vektori l

r
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sinusu ugla koji ovi vektori zaklapaju. 
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U diferencijalnom obliku Ampère-Laplaceovu formulu nije moguće 
eksperimentalno potvrditi, ali se zato veoma jednostavno potvrđuje u svim 
slučajevima strujnih kontura konačnih dimenzija. 
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44. Kružna strujna kontura - ma
 
Linije polja magnetnog vektor potencijala u
okolini ružne strujne konture su kružnic
sa centrima na osi konture. Jačina
magnetnog vektor potencijala, zbog osne
simetrije, ne zavisi od ugla 
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ričnim koordinatama za komponente magnetnog polja se dobija 
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u cilind
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● U specijalnom slučaju kad tačke u kojima se 
određuje polje pripadaju osi konture, 

2/)0()0( π== EK  

0=r , 
čne0=k , eliptički integrali se svode na tabli

lučajeve, a za komponente polja se dobijaju 
od ranije poznati izrazi. 
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 Kad su tačke u kojima se određuje polje na velikim udaljenostima od 

a. 
ilindrična koordinata  se eliminiše pomoću  i 

●
strujne konture pogodno je problem razmatrati u sfernim koordinatam

z 222 zr +=ρ θρ= sinr . C
Tako se za rastojanje između tačke u polju i tačke izvora polja dobija 
 

φθρ−+ρ=φ−++= cossin2cos2 22222 aaarzarR . 
 

a velikim rastojanjima je a>>ρN  pa je 
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s o a  a iskoristiti Taylorov 
 član, 

 

Za izračunavanje recipročne vrednosti ra t j nj
red odgovarajuće funkcije i zadržati samo nulti i prvi

a treb
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Za magnetni vektor pote cijal se tako dobija 
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odgovara magnetnom monopolu, 
a drugi magnetnom dipolu. Dobijeni izraz nije tačan, već je samo veoma 
dobra aproksimacija za magnetni vektor potencijal na velikim rastojanjima. 
Za dobijanje tačnog izraza recipročnu vrednost rastojanja treba upotrebiti 

Ako se zbog jednoznačnosti u zapisivanju formula, stavi 

a>>ρ  

 

Prvi sabirak, čiji je doprinos jednak nuli, 

ratvoj u red bez zanemarivanja kvadratnog člana. Tada će se pojaviti uticaji 
viših multipola (kvadrupol, oktopol...) 
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U vektorskom obliku izraz za magnetni vektor potencijal je 
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odakle može da se dobije izraz za magnetno polje koji ne zavisi od izbora 
koordinatnog sistema. 
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Pošto je izraz za magnetni vektor potencijal kružne strujne konture izveden 
za velika rastojanja od konture, to je određivanje magnetnog polja iz tog 
izraza zapravo dipolna aproksimacija. Postavlja se pitanje koliko je ta 
aproksimacija tačna. Za kružnu strujnu konturu postavljenu kao na 
početnoj slici se dobija: 
 

   

Magnetni (dipolni) moment kružne
DMPDMP  zIam ˆπ= 2r  strujne konture je (lekcija 7) 

 
 

  
  

Dipolna aproksimacija (ova lekcija) DMPDMP  34
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U sfernim  koordinatama je 
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 pa se dobija dipolna aproksimacija

(ova lekcija). 
   

 

  ● U tačkama na osi konture je 
  i   0=θ . 
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  ● Tačno rešenje (lekcije 33 i 34) 

  ● Za daleke tačke, az >> , pa se 
dobija isti rezultat. 
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Magnetno polje kružne strujne konture u dalekoj zoni je dipolno 
dominantno. Moment monopola je jednak nuli, a momenti višeg reda su 
zanemarljivi u odnosu na dipoli moment. Dakle, za velika rastojanja kružna 

raz za magnetno polje magnetnog 
 za električno polje električnog 

I). Detaljn  alogija između magnetnog i 
u k snijem izlaganju ( kcija 48). 

Električni dipol je moguće rastaviti na 
naelektrisan monopole. 
etnog dipola ne postoji. Postojanje magnetnih 

monopola u prirodi nije do sada uoč no, niti je dokazano njihovo 
Dirac. 

 

strujna kontura je magnetni dipol. Iz
dipola je potpuno analogan izrazu

metričnog dipola (Sveska si a an
električnog dipola biće prikazana 
Međutim, ta analogija nije savršena. 

a le

dva pojedinačna tačkasta 
Takva mogućnost kod magn

ja koja predstavljaju 

e
postojanje koje je 1931. godine predvideo 
 

  

Veze između jediničnih vektora:  
  

Sferni preko Desca tesovDescartesovi preko sfernih 
 

r ih 
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45. Magnetni vek
 

tor potencijal solenoida 

finicije 

Opšte integralne formule za magnetni vektor potencijal koje su proistekle 
iz analogije sa elektrostatičkim poljem nije moguće primeniti kod  domena 
neograničenih dimenzija. Kad je provodnik beskonačno dug za magnetni 
vektor potencijal se dobija beskonačna vrednost (lekcija 41). To je slučaj i 
kod beskonačnog dugog solenoida gde nije moguće primeniti Ampèreov 
zakon u integralnom obliku (lekcija 24). Problem je sličan problemu 
određivanja magnetnog vektor potencija koji potiče od debelog provodnika 
(lekcija 40). Međutim, u ovom slučaju postoji jedna skrivena mogućnost 
(lekcija 39), a to je potpuna analogija između cirkulacija vektora 
magnetnog polja i magnetnog vektor potencijala. 
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Φ=∫ lA
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rr
d  Ako je moguće odrediti magnetno polje 

znajući konturom obuhvaćenu struju, 
 

onda je moguće odrediti magnetni vektor 
p ršinu. 
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Da bi odredili magnetni vektor potencijal solenoida, čiji je poluprečnik 
potrebno je upotrebiti zamišljenu kružnu konturu poluprečnika 

a , 
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kod primene Ampèreovog zakona. Za tačke u unutrašnjisti, 
to kao 
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površinu koje je obuhvaćena zamišljenjenom konturom prolazi o

opreč
sam

nog preseka, fluksa, dok kroz površinu koja je veća od površine p
ar > , prolazi ukupan fluks. 
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Polje magnetnog vektor potencijala uvek 
liči na magnetno polje. Tako je i u ovom 
slučaju.  U dobijeni izraz treba još uvrstiti
izraz za magnetno polje, koji se dobija  
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primenom Ampèreovog zakona, i sve 
napisati u vektorskom obliku. 

2
    

 

Na kraju ostaje provera rezultata.  
 

Da li je funkcija neprekidna ?  

 )()( +==−

Da li rotor daje magnetno polje ?  
Da li je divergencija jednaka nuli ?  
 

Q.E.D.
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46. Magnetno polje u materiji - magnetizacija 
 
Sve materije su podložne magnećenju, mada se efekti magnećenja 
kvantitativno razlikuju od materije do materije. Svojim prisustvom 
materije menjaju strukturu i jačinu polja u koje su unete. Kod većine 
materija magnećenje nestaje sa nestankom primarnog polja, ali postoji 
grupa materija kod kojih magnećenje ostaje i posle nestanka primarnog 
polja, a neke čak mogu i same da stvaraju polje. 
 
Prema današnjem shvatanju magnećenje materije je posledica postojanja 
magnetnih momenata u atomima i grupama atoma (molekuli) gde su 
elektroni i jezgra atoma nosici naelektrisanja u pokretu. Protoni imaju 
magnetni moment, ali je on znatno manji od magnetnog momenta 
elektrona. Elektroni u atomu vrše složeno kretanje koje se može opisati 
obrtanjem elektrona oko sopstvene ose, odakle potiče magnetni moment 
spina (lekcija 10) i kretanjem po orbiti oko jezgra, odakle potiče orbitni 
magnetni moment (lekcija 6). Makroskopski gledano, sve elementarne 
magnetne momente je moguće pripisati elementarnim mikro strujama koje 
teku u materiji obrazujući mnoštvo elementarnih strunih kontura.  
 
Ampère je prvi pretpostavio postajanje ovakvih struja koje su zato nazvane 
Ampèreove mikrostruje. Hipoteza o mikrostrujama je postavljena znatno 
pre otkrića elektrona, a u to doba nije bilo moguće objasniti održavanje 
ovih struja bez utroška spoljašnje energije. 
 
U odsustvu spoljašnjeg magnetnog polja magnetni momenti elementarnih 
strujnih kontura su orijentisani u svim pravcima tako da se ne primećuju 
bilo kakvi makroskopski efekti (izuzev kod stalnih magneta). Međutim, 
kad se materija unese u strano polje, zbog dejstva elektromagnetnih sila, 
elementarne strujne konture teže da se postave u položaj pri kome će se 
pravci i smerovi vektora magnetnog polja mikro i makro struja podudariti.  
 

Zbog termičkog kretanja 
uređivanje elementarnih 
strujnih kontura nije pot-
puno, ali je makroskopski 
efekat različit od nule. 

 0=M

0>M

0=M

0>M
 

 
Makroskopska veličina kojom se karakteriše
namagnećenost ili nenamagnećenost materije je
zapreminska gustina magnetnih momenata ili 
vektor magnetizacije. Jedinica za ovu makro-
skopsku veličinu se dobija iz definicije
magnetnog momenta. 
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47. Vezane struje 
 
Kad je materija namagnetisana zapreminska gustina magnetnog momenta 
je veća od nule i deo zapremine ima određeni magnetni moment. 
Elementarni magnetni dipoli potiču od elementarnih strujnih kontura.  
 
● Ako je namagnetisavanje homogeno, magnet-
izacija je u svim tačkama dela zapremine ista i 
jačine struja elementarnih kontura su jednake. 
Može da se uoči da se struje u susednim strani-
cama kontura međusobno poništavaju. Konture 
na granicama zapreminine nemaju odgovarajuće 
susede koji bi poništili struju u graničnoj stranici. 
Deo zapremine je u magnetnom smislu ekvi-
valentan površinskoj struji, oblika trake, koja teče 
samo po obodu. Mnoštvo elementarnih strujnih 
kontura se može zameniti jednom konturom i 
odgovarajućim magnetnim dipolnim momentom. 
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zIJ SaSa d/d=  Jačina i podužna gustina nastale površinske struje 
se dobijaju izjednačavanjem dva izraza za 
magnetni moment strujne konture . 

  
MJSa =  

. 

Za vektorski oblik se uobičajeno koristi jedinični 
vektor spoljašnje normale na površinu.   nMJSa ˆ×=

rr
 

 

Iz vektorskog zapisa je jasno da ove struje ne teku po osnovama 
elementarne zapremine gde su magnetizacija i jedinična normala paralelni 
vektori i gde je njihov vektorski proizvod jednak nuli. Pomalo je neobično 
što u ovom slučaju ni jedno pojedinačno naelektrisanje ne obiđe celu 
konturu. Naprotiv, svako naelektrisanje ima svoju zatvorenu putanju 
unutar atoma, a sva naelektrisanja zajedno, deo po deo, formiraju 
makroskopsku struju koja teče po površini namagnetisanog tela. 
 
● Ako namagnetisavanje nije homogeno, tada se 
magnetizacija menja od tačke do tačke. Zbog 
razlike u magnetizaciji, koja postoji između dva 
susedna elementarna dela zapremine, struje 
elementarnih kontura se neće u potpunosti 
poništavati. Javiće se struje unutar zapremine. 
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Neka se magnetizacija povećava u -pravcu i -pravcu. Na graničnim 
površinama normalnim na te pravce pojavljuju se struje tako da jednačina 
kontinuiteta (Kirchhoffov zakon)  bude zadovoljena. 

y z
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Prema formuli za jačinu površinske struje u 
slučaju homogene magnetizacije je 

 

zMI zxa ddd =′′     i    yMI yxa ddd- =′ . 
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Ovde se umesto konstantnog vektora magnetizacije koristi pritaštaj koji 
nastaje od jedne do druge elementarne zapremine po pravcu -ose, 
odnosno po pravcu 

y
z -ose. 
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Zbir dobijena dva doprinosa daje jačinu 
struje koja teče u pravcu x -ose, tj. 
normalno na elementarnu površinu koju 
grade priraštaji nezavisno promeljivih po 
kojima se magnetizacija menja. Odatle se 
dobija jedna komponenta gustine struje.  
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Za ukupnu struju postupak treba ponoviti 
za još dve komponente  i . yaJ zaJ

DMPDMP

 
 

 
 

Ova struja zadovoljavaja jednačinu kontinuiteta, jer je divergencija rotora 
uvek jednaka nuli. Prostorni izvod (rotor) je jednak nuli kad je 
magnetizacija homogena (konstantna u prostoru), pa u materiji ostaju samo 
površinski vezane struje. 
 
Magnetno polje koje stvaraju slobodne tj. makroskopske struje u prisustvu 
materije može da se analizira kao polje u vakuumu koje je nastalo 
istovremenim dejstvom makroskopskih struja i vezanih struja. Vezane 
struje (kao vezana naelektrisanja u elektrostatici) je termin koji stalno treba 
da podseća da se radi o Ampèreovim mikrostrujama koje stvaraju 
magnetno polje po istim zakonima kao i makrostruje ili slobodne struje. 
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48. Analogija između magnetnog i električnog dipola 
 
U elektrostatičkom polju uticaj materije je zamenjivan elementarnim 
električnim dipolima (Sveska I), što je analogno prikazanom postupku. Do 
izvedenih izraza za vezane struje može da se dođe i strogo matematičkim 
putem, preuređivanjem integrala za magnetni vektor potencijal. Puno lepe 
matematike nije dovoljan razlog da ovo izvođenje bude prikazano. Fizički 
zasnovano izvođenje je sasvim dovoljno. 
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49. Uopšteni Ampèreov zakon i magnetizaciono polje 
 
Makrostruje podrazumevaju prenos slobodnih naelektrisanja, pa se često 
koristi naziv slobodne struje. Mikrostruje potiču od namagnetisanosti 
materije i rezultat su uređivanja elementarnih magnetnih dipola, pa se 
nazivaju vezane struje. Magnetno polje ravnopravno potiče od svih struja. 
U tom svetlu u izraz za Ampèreov zakon treba dodati jačine, odnosno 
gustine mikrostruja. 
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Uopšteni Ampèreov zakon 
u integralnom obliku 

 
 

 
 

Uopšteni Ampèreov zakon 
u diferencijalnom obliku 
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Ovde je uveden novi vektor koji je Maxwell označio sa H
r

(lekcija 1).  
Vektor je nazvan magnetizaciono polje (jačina magnetnog polja, prilog A). 
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Prekookeanski istraživači su (kao i uvek) bili 
zaslužni za unošenje zabune kad su ovaj 
vektor nazvali magnetno polje. Tada su morali 
da izmisle drugi naziv za vektor B

r
. Tako su 

nastali termini kao gustina magnetnog fluksa 
ili još gore vektor magnetne indukcije, 
posebno što termin magnetna indukcija ima 
sasvim drugo značenje u elektromagnetici. 

  

m
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Magnetizaciono polje potiče isključivo od 
slobodnih tj. makroskopskih struja i zato 
kontura integraljenja može da prolazi kroz 
površine diskontinuiteta. Uopšteni Ampèreov 
zakon je primenljiv na homogeno i ne-
homogeno namagnetisane sredine. 
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50. Linearne magnetne sredine 
 

Rotor - Ampèreov zakon 

JB
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0rot μ=  JH
rr

=rot  

Divergencija - izvornost polja 

0div =B
r
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rr

divdiv −=  

Na prvi pogled zapis uoštenog 
Ampèreovog zakona je isti kao i 
zapis originalnog zakona, samo 
što je uvedena smena HB

rr
0μ= . 

Međutim, u opštem slučaju ova 
dva polja nisu kolinearna. 

 

  

 
To se odmah vidi iz izraza za divergenciju ova dva polja.  Pomenutom 
smenom bi se dobilo da je divergencija magnetizacionog polja jednaka 
nuli, što nije tačno. Samo kad je divergencija vektora magnetizacije 
jednaka nuli vektori magnetnog i magnetizacionog polja su kolinearni. U 
vakuumu je 0=M  pa je HB

rr
0μ= , kao što je u elektrostatici ED

rr
0ε= . 

 
Kod većine materijala magnetizaciju održava strano magnetno polje. Po 
prestanku delovanja polja, magnetizacija iščezava. Tačnije, magnetizacija 
je direktno proporcionalna jačini magnetnog polja, HM m

rr
χ=

m

. Ovakvi 
materijali su linearni. Koeficijent proporcionalnosti χ  je magnetna 
susceptibilnost. Kao što se u elektrostatici uvodi relativna permeativnost, 
tako se ovde uvodi relativna permeabilnost, koja je kao i magnetna 
susceptibilnost bezdimenziona veličina. 
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Magnetostatika 
  

Elektrostatika 
 

0div =B
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Iz osnovnih jednačina za polja u 
linearnim sredinama bez 
slobodnih struja i naelektrisanja 
 

0=J   i  0=ρ  
 

uočava se paralela između 
električnih i magnetnih veličina.  
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Tako se dobija sledeća transkripcija: 
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51. Homogeno namagnetisana sfera 
 
Određivanje magnetnog polja homogeno 
namagnetisane sfere ( const.=M ) ili 
električnog polja homogeno polarisane 
sfere ( const.=P ) su matematički složeni 
problemi. Vezane struje tj. vezana 
naelektrisanja nemaju homogenu raspodelu 
po površini sfere, što otežava primenu 
osnovnih zakona u integralnom obliku.  
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Ipak, kad se radi o određivanju polja u unutrašnjosti sfere do rešenja se 
može doći na jednostavan način. Uniformno polarisana sfera se može 
predstaviti pomoću dve zapreminske gustine naelektrisanja. Bez 
polarizacije dejstvo naelektrisanja je kompletno poništeno.  
Kad je materijal polarisan sva pozitivna naelektrisanja 
se malo pomere u pravcu polarizacije, a sva negativna 
u suprotnom pravcu. Dve sfere se više ne preklapaju u 
potpunosti. Naelektrisanja na sfernim kapama su 
zaprvo vezana površinska naelektrisanja. −− −
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U oblasti preklapanja, arr ≤21, , električno polje nastaje superponirajućim 
delovanjem dve homogeno naelektrisane sfere. 
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52. Vezane struje u pravom provodniku 
 
Za primenu uopštenog Ampèreovog zakona formira se zamišljena kontura 
baš kao i kod originalnog oblika. Kroz prvolinijski provodnik neograničene 
dužine i poluprečnika , koji se nalazi u slobodnom prostoru, protiče 
uniformno raspodeljena stalna struja jačine 

a
I . Zamišljena kružna kontura 

poluprečnika r  ima centar na osi provodnika.  
 
Uopšteni oblik Ampèreovog zakona 
(lekcija 49)  
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primenjen na kružnicu ar ≤ , a zatim 
i ar ≥  (lekcija 22). 
 

Magnetizacija je direktno srazmerna 
magnetizacionom polju jer je 
provodnik načinjen od linearnog 
materijala (lekcija 50), 
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Van provodnika  je 0=χm . 
 

Magnetizacionom polju je direktno 
srazmerno i magnetno polje, 
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što daje poznat rezultat (lekcija 22). 
 

Gustine vezanih struja se dobijaju 
pomoću  ranije izvedenih formula 
(lekcija 47). Potrebno odrediti rotor 
vektora magnetizacije  (lekcija 49) u 
polarno-cilindričnim koordinatama, 
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Konačno se dobija ukupna jačina 
vezane struje. 
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U unutrašnjosti provodnika magnetno polje je srazmerno permeabilnosti 
materijala . Međutim, susceptibilnost je veoma mala velićina, μ 1|| <<χm , 
pa je vrlo tačno ako se za provodnike usvoji 0μ≈μ  (lekcija 22), osim ako 
se ne radi o grupi materijala koji su poznati kao feromagnetici. 
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53. Magnetno polje solenoida - elektromagnet 
 
Uticaj Ampèreovih mikrostruja u 
homogeno namagnetisanoj materiji 
se svodi na uticaj površinskih struja, 
jer je 
 

const.=M ⇒ 0rot
rr

=M ⇒ 0=aJ . 

 

SaJ
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Neka se u unutrašnjosti veoma dugog solenoida nalazi cilindrično jezgro. 
Magnetizaciono polje dugog  solenoida  ( )  bez jezgra (lekcija 38) 
se dobija primenom Ampèreovog zakona.  
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U izrazu za polje se pojavljuje jačina struje pomnožena brojem zavojaka 
po jedinici dužine solenoida, što je u krajnjem zapravo podužna gustina 
makroskopske struje. Odavde sledi da je 
 

L
NIHBmakro

0
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μ
=μ=   Smakro JB 0μ= ,  

L
NIJS =  

 

Ovo magnetno polje uređuje elementarne magnente momente u materijalu 
jezgra i pojavljuje se makroskopski efekat u vidu magnetizacije. Vektor 
magnetizacije je paralelean osi solenoida i u svim tačkama ima istu 
vrednost. Osim kod posebne grupe materijala (feromagnetici), linije polja 
vektora magnetizacije u svenu liče na linije  magnetnog polja. Dejstva 
mikrostruja u susednim domenima u unutrašnjosti jezgra se međusobno 
potiru i ostaje samo struja po površini jezgra. Ova površinska struja takođe 
stvara magnetno polje.  

MnMJSa =×= |ˆ|
r

  Samikro JB 0μ=  

 

 

Ukupno magnetno polje je zbir magnetnih polja nastalih od svake od struja 
posebno. Uopšte, magnetno polje može da se izračunava kao polje u 
vakuumu nastalo jednovremenim delovanjem makro i mikrostruja. 
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odnosno, 
 

( ) HHHHHMHB rmm μ=μμ=χ+μ=χ+μ=+μ= 0000 )1()( . 
 
Ako je 0>χm  (paramagnetici) ukupno polje biće pojačano, a ako je 

 ukupno polje biće oslabljeno (diamagnetici). 0<χm
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54. Granični uslovi 
 
Granične uslove za magnetno polje na razdvojnoj površini dva magnetika 
je moguće izvesti iz opštih zakona, kao što je to urađeno za granične uslove 
u elektrostatičkom ili stacionarnom strujnom polju. 
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Kad se zakon o konzervaciji magnetnog fluksa primeni za elementarnu za-
tvorenu površinu oblika valjka, čije su osnovice paralelne razdvojnoj po-
vršini i čija visina teži nuli, dobija se da su normalne komponente mag-
netnog polja sa obe strane razdvojne površine su međusobno jednake. 

 

021 =− nn BB  
 

0d =∫
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rr
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Veza između tangencijalnih komponenti vektora magnetizacionog polja se 
dobija primenom Ampèreovog zakona na elementarnu zatvorenu konturu 
oblika pravougaonika čije su dve stranice paralelne razdvojnoj površini i 
čija visina teži nuli. 
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Pošto je fluks magnetnog polja kroz površinu koja je ograničena konturom 
čija visina teži nuli jednak nuli, to na osnovu definicije magnetnog vektor 
potencijala (lekcija 39) sledi da su tangencijalne komponente jednake.  
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U magnetostatici je divergencija magnetnog vektor potencijala jednaka 
nuli, pa odatle sledi da su i normalne komponente ovog vektora jednake. 
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Ako po razdvojnoj površini ne teku površinske struje i ako su obe sredine 
linearne dobijaju se veze između preostalih komponenti polja. 
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Za ilustraciju primene graničnih uslova najbolji je primer neogranićenog 
provodnika sa stalnom strujom koji leži na samoj razdvojnoj površini dva 
magnetna materijala. Kao i ranije, treba zočiti analogiju koja postoji sa 
odgovarajućim elektrostatičkim problemom. 
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55. Dijamagnetici, paramagnetici i feromagnetici 
 
Za razliku od električne polarizacije, koja je uvek istog smera kao i 
spoljašnje električno polje, magnetna polarizacija tj. magnetizacija može 
biti istog ili suprotnog smera u odnosu na spoljašnje magnetno polje.  
 
Materijali kod kojih se indukuju magnetni dipolni momenti suprotnog 
smera u odnosu na spoljašnje polje imaju negativnu susceptibilnost (lekcija 
50) i to su dijamagnetni materijali (Grk: δια - kroz, popreko). Sam termin 
potiče iz vremena prvih eksperimenata, kad je primećeno da se uzorak 
materijala oblika štapa okreće poprečno u odnosu na pravac polja. 
Dijamagnetizam je posledica uređivanja atomskih orbita (lekcija 24) i važi 
za sve atome, samo što je kod nekih materijala ovaj efekat zamaskiran 
znatno snažnijim efektom koji je nazvan paramagnetizam. 
 
Materijali sa pozitivnom magnetnom susceptibilnošću su paramagnetici 
(Grk: παρά - pored, blizu, kao). Elementarni magnetni dipoli se u stranom 
magnetnom polju postavljaju paralelno sa poljem. Paramagnetizam je 
posledica uređivanja magnetnih momenata spina (lekcija 10). Kako je 
magnetni momenat spina lakše zaokrenuti nego magnetni moment cele 
orbite ovaj efekat je snažniji od dijamagnetizma. Svaki elektron je 
magnetni dipol za sebe i trebalo bi očekivati da je i paramagnetizam 
univerzalna pojava. Međutim, elektroni u atomima su uvek u parovima sa 
suprotnim spinovima (princip isključenja), pa je magnetni moment takve 
kombinacije neutralisan. Zato se paramagnetizam pojavljuje samo u 
atomima (molekulima) sa neparnim brojem elektrona. Dijamagnetizam je, 
iz istog razloga, i pored toga što uvek postoji, primetan samo kod atoma sa 
parnim brojem elektrona. 
 
Svega nekoliko supstanci, od kojih je najpoznatije gvožđe, čini grupu 
feromagnetika (Lat: ferrum -  gvožđe). Ove supstance zadržavaju 
magnetizaciju i po prestanku delovanja spoljašnjeg polja. Šta više, 
magnetizacija feromagnetika je određena istorijom magnećenja, a ne 
trenutnom vrednošću polja. Stalni magneti su tipačan primer (prilog C). 
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56. Magnetna susceptibilnost dijamagnetika 
 
Na elektron, koji oko jezgra kruži po orbiti 
poluprečnika r , deluje centripetalna sila koja je 
uravnotežena sa privlačnom električnom silom. 
Kad se atom nalazi u stranom magnetnom polju 
dodatno se pojavljuje i magnetna sila. Neka je 
pravac magnetnog polja upravan na orbitu. 
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Magnetna sila je u pravcu koji spaja elektron i jezgro, a smer zavisi od 
smera stranog magnetnog polja i od smera rotacije elektrona. Prema 
smerovima sa slike magnetna sila je usmerena kao i električna (lekcija 11). 
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Da bi elektron ostao na svojoj 
orbiti centripetalna sila mora biti 
veća, a to znači da će elektron 
ubrzati kretanje. Promena brzine 
dovodi i do promene orbitalnog 
dipolnog magnetnog momenta 
elektrona (lekcija 6). 
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Promena brzine 001 >− vv  je mala (tako da je v 101 2vv ≈+ ) i može da se 
odredi oduzimanjem jednačina ravnoteže. 
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Promena dipolnog momenta, koja zapravo prouzrokuje magnetizaciju, se 
dobija oduzimanjem odgovarajućih izraza, i očigledno je suprotnog smera 
od smera stranog magnetnog polja, 
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Za drugi smer rotacije elektrona magnetni moment bio bi orijentisan 
suprotno. Magnetna sila bi takođe imala suprotan smer. Da bi elektron 
ostao na orbiti, centripetalna sila mora biti manja, tj. elektron će usporiti 
svoje obrtanje, 001 <− vv , i promena dipolnog momenta će ponovo biti 
suprotnog smera od smera stranog magnetnog polja. 
 

Konačno, sada je moguće odrediti magnetnu susceptibilnost (lekcija 50), 
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Na primer, za zlato je pm135=r , pa sledi da je , što je 
iznenađujuće tačno (tipična vrednost za dijamagnetike) jer je rezultat 
dobijen metodama klasične elektromagnetike. 

51057.1 −⋅−=χm
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57. Feromagnetici 
 
Kod dijamagnetika i paramagnetika elementarni dipoli su u uređenom 
poretku dok deluje strano magnetno polje. Feromagneticima nije potrebno 
strano magnetno polje da održe magnetizaciju. Uvek postoji neka 
uređenost dipola koja je od ranije zapamćena. Feromagnetizam, kao i 
paramagnetizam, počiva na uređivanju magnetnih momentata spina 
neuparenih elektrona. Međutim, kod feromagnetika postoji interakcija 
između susednih elementarnih dipola i to ih čini bitno drugačijim od 
paramagnetika. U okviru mikroskopski malih domena svaki  elementarni 
dipol se orijentiše kao i njegov sused, ali sami domeni su raspoređeni 
haotično tako da se njihova magnetna polja poništavaju. 
 
Neka je na samom početku materijal nenamagnetisan. Unošenjem 
materijala u strano magnetno polje počinje prvobitno magnećenje. Ovaj 
proces nije linearan i nije reverzibilan. 
 
Težnji magnetnog polja da uredi dipole (lekcija 
04) suprostavlja se težnja dipola da bude 
usmeren kao sused. Popuštaju prvo dipoli koji su 
skoro u pravcu polja. Na taj način granice 
domena se šire tj. raste broj domena orijentisanih 
u pravcu polja. Na kraju procesa magnetizacije 
samo jedan domen zauzima celu zapreminu. 
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Sa porastom magnetizacionog polja vrlo brzo 
raste i magnetno polje, ali samo do prevojne 
tačke. Nakon toga, porast vrednosti magnetnog 
polja je znatno usporen, postaje linearan i 
približava se graničnoj vrednosti. Granična 
vrednost odgovara zasićenju tj. pojavi da su svi 
elementarni magnetni momenti u materiji 
orijentisani u pravcu spoljašnjeg polja. Tada je 
magnetizacija maksimalna, maxMM = . 
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Magnetna permeabilnost feromagnetika nije konstantna veličina jer veza 
između vektora M

r
 i H

r
 nije linearna. Za svaku tačku na krivoj prvobitnog 

magnećenja magnetna permeabilnost ima drugu vrednost, pa se zato 
definiše diferncijalna magnetna permeabilnost dμ . Prava koja dodiruje 
krivu magnećenja u prevojnoj tački dovodi do ideje da je, pri većem broju 
praktičnih proračuna, feromagnetike moguće linearizovati. Koeficijent 
pravca te prave je 'magnetna permeabilnost' μ . 
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58. Curieova temperatura 
 
Feromagnetici imaju još jednu važnu karakteristiku. Magnetna perme-
abilnost feromagnetika zavisi od temperature. Naime, spontana paralelnost 
vektora magnetnih momenata svih atoma je osobina feromagnetika samo 
do određene temperature.  
 

T

mχ

cT T

mχ

cT
 

   

Metal [ ]KcT  [ ]KpT  

Gvožđe 1043 1808 
Nikl   627 1728 

U oblasti spontane magnetizacije magnetna
permeabilnost feromagnetika raste sa porastom
temperature, dostiže maksimum i zatim naglo
opada.  
 

Kritičnu temperaturu je eksperimentalno
odredio Piere Curie po kome je i nazvana
Curiejeva temperatura. Iznad te temperature
feromagnetik  je paramagnetik.  Kobalt 1388 1768 
 
Poređenjem Curiejeve temperature  sa temperaturom topljenja  dolazi 
se do zaključka da se usijano jezgro Zemlje ne ponaša kao feromagnetik. 

cT pT

 
59. Magnećenje feromagnetika 
 
Ako se prilikom snimanja prvobitne krive magnećenja u jednom trenutku  
jačina spoljašnjeg polja smanji za HΔ , smanjiće se i jačina magnetnog 
polja za BΔ , ali neće imati prethodnu vrednost već nešto veću od 
očekivane. U stvari, zbog smanjenja jačine spoljašnjeg polja neće baš svi 
elementarni magnetni momenti, koji su ranije bili usmereni, ponovo 
zauzeti prethodni haotičan prostorni raspored. Materija je upamtila 
prethodno magnećenje. Jačine vektora B

r
 i M

r
 ne zavise samo od jačine 

vektora H
r

 u trenutku posmatranja, već i od istorije magnećenja. Ako se 
zatim jačina spoljašnjeg polja ponovo poveća za istu vrednost HΔ , 
povećaće se i jačina magnetnog polja ali za neko BΔ  koje je vrlo malo 
različito od prethodnog. 
 
Na grafiku funkcije prvobitnog magnećenja 
primećuje se jedna petlja koja postaje 
zatvorena kad se ciklus smanjenje-povećanje 
ponovi više puta. Ova pojava se naziva 
histerezis (Grk: histerezio - kašnjenje). 
Koeficijent prave koja prolazi kroz vrhove ove 
petlje definiše reverzibilnu (Nlat: reversibilis - 
povratan) magnetnu permeabilnost. 
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60. Histerezis 
 
Ako posle dostizanja maksimalne magnetizacije, , magnetizaciono 
polje počne da opada od svog maksimuma  ka nuli, opadaće i 
magnetno polje, ali ne po krivoj prvobitnog magnećenja. Kad jačina 
magnetizacionog polja dostigne nultu vrednost, magnetno polje zadržava 
izvesnu vrednost  koja je nazvana remanentna (ili rezidualna) 
magnetizacija (Lat: remanens - koji ostaje). To je zapravo magnetno polje 
koje pokazuju stalni magneti. Objašnjenje ove pojave je isto kao i 
objašnjenje pojave malog histerezisa na krivoj prvobitnog magnećenja. 
Dalje, magnetizaciono polje menja smer i postaje sve jače. Pri nekoj 
vrednosti polja elementarni magnentni momenti će statistički gledano 
ponovo biti u haotičnom prostornom rasporedu i remanentna magnetizacija 
će biti jednaka nuli. Magnetizaciono polje u toj tački je koercitivno polje, 

 (Nlat: coercitivus - prinudan, prisilan). Dalje povećavanje polja 
uređuje elementarne magnetne momente u tom smeru sve do postizanja 
novog zasićenja. 

maxM

maxH
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Kad jačina polja promeni smer i kroz nultu
vrednost počne da raste, ceo proces se ponavlja, 
ali u suprotnom smeru. Tako se dobija skoro
zatvorena kriva, koja postaje sasvim zatvorena
ako se postupak ponovi više puta. Ova kriva je
histerezisna petlja (kriva ili ciklus). 
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Na postojanju remanentne indukcije zasnivaju se svi magnetni zapisi, od 
magnetofonske trake do računarskih diskova. Međutim, presnimavanje 
podrazumeva prethodno razmagnećivanje feromagnetika. To se postiže 
obrnutim postupkom. Jačina magnetnog polja se od najveće vrednosti 
smanjuje i zatim povećava u suprotnom smeru. U nizu ciklusa najveća 
jačina magnetnog polja je uvek manja od prethodne.  
 
To dovodi do sve manjih i manjih histerezisnih 
petlji. Na kraju postupka i remanentna indukcija 
je jednaka nuli. Ako je u svakom ciklusu jačina 
magnetnog polja sve veća i veća, dolazi se do 
maksimalnog magnećenja tj. zasićenja.  
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Oblik svake od histerezisnih petlji zavisi od najveće jačine magnetnog 
polja za taj ciklus. Kad se vrhovi histerezisnih petlji spoje dobija se 
osnovna kriva magnećenja koja se malo razlikuje od krive prvobitnog 
magnećenja, međutim baš se ova kriva daje kao karakteristika fero-
magnetika. Podaci za remanentnu magnetizaciju i koercitivno polje 
uzimaju se na osnovu krive magnećenja u uslovima zasićenja materijala. 
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61. Podela feromagnetika 
 
Na osnovu oblika histerezisne petlje feromagnetici su podeljeni u dve 
osnovne grupe. 
 

           

 Feromagnetici  
           
           

 Meki  Tvrdi  
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Kod mekih feromagnetika histerezisna petlja je veoma uska, dok je kod 
tvrdih feromagnetika ova petlja široka, a posledično jačina koercitivnog 
polja je velika. Zbog svojih osobina, pre svega velike početne i velike 
maksimalne magnetne permeabilnosti, meki feromagnetici se koriste za 
gradnju električnih mašina i svih vrsta transformatora. U primeni fero-
magnetni materijali su izloženi stalnom naizmeničnom magnećenju što 
prourzokuje dve vrste gubitaka i smanjenje efikasnosti električne mašine. 
Prvo, to su gubici usled histerezisa koji su proporcionalni površini 
histerezisne petlje, pa je poželjno da ova petlja bude što uža. Drugo, to su 
gubici usled vrtložnih struja pa je poželjno da feromagnetik ima što veću 
specifičnu otpornost. Najčešće se ovaj zahtev ostvaruje konstruktivno. U 
energetici se feromagnetna jezgra grade od tankih limova koji su 
međusobno izolovani, dok se u elektronici velika specifična otpornost 
postiže presovanjem feromagnetnog praha sa izolacionim vezivnim 
materijalom.  
 

Materijal Tvrdoća 0/μμa  [ ]TrB  [ ]A/mcH  

Superperalloy* mek 100000.0 0.6 0.4 
Gvožđe mek 25000.0 1.4 4.0 
Čelik tvrd 40.0 0.7 5000.0 
Barijum-ferit tvrd 1.0 0.2 250000.0 

 

 

* 79%-Ni, 15%-Fe, 5%-Mo, 1%-Mn. 
 

Sa druge strane, u proizvodnji stalnih (permanentnih) magneta i uređaja 
kod kojih se magnetno polje ne menja, karakteristike kao što su linearnost i 
velika specifična otpornost nemaju nikakav praktični značaj. Ovi materijali 
treba da imaju što veću remanentnu magnetnu indukciju, , i što veću 
jačinu koercitivnog magnetnog polja, . Proizvod ove dve veličine 
karakteriše kvalitet materijala za ove primene. Očigledno, ovaj uslov 
zadovoljavaju tvrdi feromagnetici. 

rB

cH
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62. Teorema lika u ravnom feromagnetnom ogledalu 
 
Poseban slučaj graničnih uslova (lekcija 54) je kad je jedna sredina 
feromagnetna, a druga nije. Magnetna permeabilnost feromagnetika je 
nelinearna funkcija magnetizacionog polja ali je uvek znatno veća od 
permeabilnosti vazduha. Na primer, neka je μ=μ1 , 02 μ=μ  i 21 μ>>μ . Iz 
zakona prelamanja linija polja, 
 

∞→
μ
μ
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α
α
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1

tg
tg , 

 

sledi da  za sve uglove 02 →α 1α , mada je za 2/1 π≈α  zakon automatski 
zadovoljen. Linije polja u vazdušnom delu prostora će biti skoro normalne 
na razdvojnu površinu i zatvaraju se preko površine feromagnetika.  
 
Paralelno sa ravni, koja razdvaja vazduh i 
feromagnetnk, je postavljen neograničen 
prav provodnik kroz koji protiče stalna struja 
jačine I . Da nema feromagnetika linije polja 
bile bi koncentrični krugovi. U ovom slučaju 
linije polja se deformišu i skoro pod pravim 
uglom prodiru ravan razdvajanja. 
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Međutim, isti oblik linija polja u vazdušnom delu prostora se dobija ako se 
feromagnetni materijal ukloni i simetrično sa razdvojnom površinom 
postavi još jedan provodnik kroz koji protiče struja iste jačine i istog smera 
kao u stvarnom provodniku. Problem se tako svodi na određivanje polja u 
okolini dve paralene struje (lekcija 30).  
   

● Zamena uticaja sredine uvođenjem novog 
provodnika je postupak poznat kao primena 
teoreme lika u ravnom ogledalu. Teorema je 
opšta i može da se primeni na bilo koju 
raspodelu struja u prostoru (lekcija 37). 

 

I
0μ

I
0μ

μ

I

I
0μ

I
0μ

μμ

I

 
   

● Teorema lika je poznata iz elektrostatike 
(Sveska I). U elektrostatici se uticaj savršeno 
provodnog poluprostora na raspodelu polja u 
ostatku prostora svodi na uticaj negativnih 
likova (suprotno naelektrisana tela), a samo 
formalno se smatra da je relativna 
dielektrična konstanta provodne sredine 
mnogo veća od jedan (što nije tačno).  

 

 

   

● U magnetostatici likovi su pozitivni, a relativna magnetna konstanta polu 
prostora je stvarno znatno veća od jedan. 
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63. Uopštenje teoreme lika 
 
Dve homogene magnetne sredine 1μ  i 2μ  razdvojene su ravnom 
površinom i ispunjavaju ceo prostor. Paralelno razdvojnoj ravni u sredini 

 nalazi se prav provodnik kroz koji protiče stalna struja 2μ I . 
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Uticaj susedne sredine 1μ na polje u sredini 
 moguće je zameniti strujom kroz 

lik provodnika, ali je pri tome ceo prostor 
ispunjen materijalom 

2μ ICI 11 =

2μ . 
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Uticaj sredine 2μ  na polje u sredini 1μ
moguće je zameniti dopunskom strujom kroz 
provodnik IC2I2 = , ali je pri tome ceo 
prostor ispunjen materijalom 1μ . 
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U tačkama na površini diskontinuiteta granični uslovi (lekcija 54) moraju 
biti zadovoljeni, te se odatle dobijaju vrednosti za nepoznate konstante. 
 

nn BB 21 =  )1()1( 2112 CC +μ=+μ  

tt HH 21=  21 11 CC +=−  
2

21
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μ+μ
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● U posebnom slučaju, kad se provodnik optican strujom nalazi u vazduhu 
iznad feromagnetne sredine, tada je 21 μ>>μ  i 02 μ=μ  , pa je . 
Prema tome, polje u vazduhu je isto kao i polje struje i njenog pozitivnog 
lika koji kao da se nalazi u vazduhu (lekcija 62). U feromagnetiku polje ne 
postoji jer je 

11 =C

12 −=C . Tačnije, linije polja se ipak zatvaraju kroz 
feromagnetik, ali kroz veoma tanak površinski sloj. 
 

● Drugi poseban slučaj je 12 μ>>μ , tj. 11 −=C  i 12 =C . Polje u sredini 
gde je provodnik stvaraju struja i njen negativni lik. U ostalom delu 
prostora polje potiče od dvostruko jače struje na mestu provodnika. 
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64. Magnetni skalar potencijal i magnetne pseudomase 
 
U odsustvu makroskopskih električnih struja
polje namagnetisane materije je definisano
generalisanim Ampèreovim zakonom, 
 

0
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=J  0rot
rr
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Odavde sledi mogućnost da se jačina polja 
predstavi kao degradijent skalarne funkcije 

, kao što je to urađeno u elektrostatici. 
Naime, rotor gradijenta bilo koje skalarne 
funkcije je jednak nuli. Ta funkcija je nazvana 
magnetni skalar potencijal. Polje vektora 
magnetnog polja je bezizvorno, pa sledi da su 
divergencije vektora magnetizaciong polja i 
vektora magnetizacije jednake po apsolutnim 
vrednostima, a suprotne po znaku. Ponovo po 
analogiji sa elektrostatikom, moguće je 
formalno uvesti pojam zapreminske gustine 
magnetne pseudomase 

mϕ

mρ  i od prvog izraza 
odrediti divergenciju. Tako se dobija 
Poissonova jednačina u magnetostatici čije 
rešenje je analogno rešenju za električni skalar 
potencijal u elektrostatici. 
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Ako se relacija za divergenciju magnetnizacionog polja integrali po 
zapremini koju magnet zauzima i ako se na integral divergencije primeni 
teorema Gauss-Ostrogradskyog, tada leva strana iskazuje fluks vektora 
magnetizacionag polja, a desna strana predstavlja magnetnu pseudomasu. 
Tako se dobija Gaussov zakon u magnetostatici koji je potpuna analogija 
sa odgovarajućim zakonom u elektrostatici.  
 

 Magnetostatika DMPDMP  Elektrostatika  
Poissonova jednačina 
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. 

Neka je stalni magnet oblika štapa i neka 
zatvorena površina  obuhvata ceo magnet. U 
slobodnom prostoru oko magneta magnetizacija 
je jednaka nuli (

1S

0=M ) i algebarski zbir svih 
magnetnih pseudomasa je jednak nuli. 
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Primena Gaussovog zakona na zatvorenu površinu koja obuhvata 
magnetnu masu jednog pola omogućava da se fluks vektora magnetiza-
cionog polja podeli na unutrašnji fluks tj. onaj kroz površinu koja preseca 
magnet i spoljašnji fluks tj. fluks kroz ostatak zatvorene površine. 
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Kod tankih magneta, , unutrašnji fluks je zanemarljivo mali, pa se 
merenjem spoljašnjeg fluksa približno može odrediti magnetna pseudo-
masa jednog pola. Međutim, upravo taj zanemareni sabirak pokazuje da u 
unutrašnjosti magneta postoje izvori (ponori) magnetizacionog polja. 

00 →S

 
Neka se zamišljena kontura podudara sa nekom od linija. Cirkulacija 
vektora magnetizacionog polja duž te konture je jednaka nuli, jer ne 
postoje makroskopske kondukcione struje. Kako je udeo spoljašnjeg dela 
konture pozitivan, to udeo dela konture kroz magnet mora biti negativan. 
U magnetu su magnetno i magnetizaciono polje suprotnih smerova. Linije 
ovog polja izviru iz severnog i uviru u južni magnetni pol. 
 
Ponovo po analogiji sa elektrostatikom, dolazi se do izraza za magnetni 
skalar potencijal tačkaste magnetne pseudomase, a odatle i do 
Coulombovog zakona za magnetizam. 
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65. Homogeno namagnetisan štap - stalni magnet 
 
Cilindrični štap (lekcija 66) dužine  i poluprečnika  namagnetisan je u 
pravcu svoje ose, 

L a
zMM ˆ=

r
. Štap je usamljen u slobodnom prosturu, pa je 

van štapa magnetizacija jdnala nuli, 0=M . U štapu je magnetizacija 
konstantna i divergencija ovog vektora je jednaka nuli. To znači da su 
magnetne pseudomase raspoređene po površinama osnova i njihova 
površinska gustina se može odrediti iz Gaussovog zakona primenljenog na 
svaki pol posebno. 
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Izraz za magnetni skalar potencijal se dobija iz opšteg rešenja Poissonove 
jednačine. Za tačke koje pripadaju osi štapa je 
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što nakon integracije daje 
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Vodeci računa da je van štapa magnetizacija jednaka nuli, za magnetno 
polje u svim tačkama na osi se dobija (lekcije 38 i 53) 
 

)(0 MHB
rrr

+μ= z
Lza

Lz

Lza

LzMB ˆ
)2/(

2/

)2/(

2/
2 2222
0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+

−
−

++

+μ
=

r
.

1.0/ =La5.0
M

B

0μ

M
H

0.1/ =La

Lz /

4.0+

0.0

4.0−

0.1

0.0
5.0− 0.0 5.0 0.0 5.05.0−

1.0/ =La5.0
M

B

0μ

M
H

0.1/ =La

Lz /

4.0+

0.0

4.0−

0.1

0.0
5.0− 0.0 5.05.0− 0.0 5.0 0.0 5.05.0− 0.0 5.05.0−  



Elektromagnetizam                                                                                                               95 

66. Solenoid, stalni magnet i elektromagnet 
 
Magnetno polje u tačkama na osi solenoida, elektromagneta i stalnog 
magneta se menja po potpuno istom zakonu. 
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● Magnetno polje solenoida sa vazdušnim 
jezgrom (lekcija 38). 

DMPDMP )(0 zfHBz μ= . 
    
    

● Magnetno polje solenoida sa jezgrom od 
magnetika (lekcija 53). 

DMPDMP )(zfHBz μ= . 
    
    

● Magnetno polje namagnetisanog štapa tj. 
stalnog magneta (lekcija 65). 

DMPDMP )(0 zfMBz μ= . 
    
    

● Ako je solenoid namotan oko namagnetisanog štapa (stalni magnet) 
ukupno polje se dobija kao vektorski zbir pojedinačnih polja.  
 

 

Očigledno da je solenoid moguće tretirati kao magnet oblika štapa na čijim 
se krajevima nalaze površinski raspodeljene magnetne pseudomase 

HLNIm ±=±=η / . Ceo proračun je onda potpuno isti kao za homogeno 
namagnetisani štap (lekcija 65). Ako je debljina solenoida znatno manja od 
njegove dužine, magnetne mase na polovima se mogu smatrati tačkastim, 
ceo solenoid kao dipol odgovarjućeg magnetnog momenta (lekcija 38), 
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Magnetno polje na kraju solenoida (ili stalnog magneta) se dobija iz opšte 
formule (lekcija 38), a od odatle može da se dobije i opšti izraz za 
magnenu pdeudomasu. 
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Ako su poznate nagnetne pseudomase, svi metodi elektrostatike, 
uključujuću Coulombov zakon mogu se primeniti i u magnetostatici. 
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Izraz za silu između dva 
dipola se dobija pimenom 
Coulombovog zakona. Izraz je 
izveden na bazi Gilbertovog 
modela (lekcija 04) i nije 
primenljiv za rastojanja koja 
teže nuli. 
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67. Sfera od linearnog magnetika u homogenom polju 
 
U sferi od linearnog magnetnog materijala 
homogeno magnetno polje 0B

r
 (ili 0H

r
) 

proizvodi magnetizaciju 0M
r

. Ova magne-
tizacija stvara dodatno magnetno polje 1B

r
, 

a ono daje novi doprinos magnetizaciji 
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, koja pak stvara polje 2B
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 i tako dalje. 
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Ukupno magnetno polje je zbir svih 
pojedinačnih doprinosa i dobija se kao 
zbir geometrijske progresije. Metod 
sukcesivnih aproksimacija nije moguće 
primeniti za određivanje polja van 
sfere jer polje u spoljašnjem prostoru 
nije konstantno.  
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Do istog rezultata se dolazi i pomoću izraza za električno polje u sferi od 
linearnog dielektrika koja se nalazi u homogenom električnom polju, a koji 
se dobija iz rešenja Laplaceove jednačine za električni skalar potencijal 
(Sveska I).  
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Magnetno polje 
se dobija upotrebom 

ranije prikazane 
transkripcije 
(lekcija 50). 
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68. Sfera od (fero)magnetika u homogenom polju 
 
Sfera poluprečnika , načinjena od homogenog i linearnog magnetika 
permeabilnosti 

a
μ , nalazi se u vazduhu u homogenom polju zHH ˆ00 =

r
, 

00 HB
rr

μ=  (lekcija 67). 0vo je problem graničnih uslova (lekcija 54) koji se 
rešava integracijom Laplaceove jednačine za magnetni skalar potencijal. 
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Problem je potpuno analogan 
problemu sfere od dielektrika
(koja se nalazi u homogenom 
električnom polju (Sveska I). 
Jasno, potrebno je zameniti sve 
električne veličine magnetnim 
transkriptima. 

 

o3 θϕ θ = − = −
∞→

cos),(lim 00 rHzHrmr
 

 

Upotrebom ove transkripcije (lekcija 50) iz rešenja za električni skalar 
potencijal sledi rešenje za magnetni skalar potencijal, 
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Pošto je θ= cosrz  dobija se da je polje u sferi homogeno i paralelno 
spoljašnjem polju (lekcija 67). 
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● Prethodni rezultati se mogu iskoristiti za sferu koja je pre unošenja u 
strano polje prethodno bila homogeno namagnetisana i to paralelno 
stranom polju. Dakle, opšta struktura polja biće ista kao i u prethodnom 
slučaju. Vektori B

r
, H
r

 i M
r

 su u prostoru sfere kolinearni, pa se može 
pretpostaviti da će raspodela magnetnog skalar potencijala biti oblika 
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Nepoznate konstante  i  potrebno je odrediti iz graničnih uslova. 
Uslov  iz postavke problema je automatski zadovoljen pretpostavljenim 
rešenjem. Na površini sfere tangencijalne komponente vektora 
magnetizacionog polja su jednake što se svodi na uslov jednakosti 
potencijala . Odatle se dobija prva veza između nepoznatih konstanti, 

1C 2C
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Na površini sfere moraju biti jednake i normalne (radijalne) komponente 
magnetnog polja. Granični usov  se sada modifikuje jer u unutrašnjosti 
sfere sada postoji magnetizacija, tj. 
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pa sledi druga veza između nepoznatih konstanti, 
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Nakon određivanja konstanti za magnetni skalar potencijal se dobija 
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Van sfere potencijal nastaje kao zbir potencijala primarnog homogenog 
polja i polja koje potiče o namagnetisane sfere. Uticaj namagnetisavanja se 
može zameniti uticajem magnetnog dipola koji je smešten u centru sfere, 
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gde je mr  ekvivalentni magnetni dipolni moment, 
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Polje u okolini sfere ima i radijalnu i aksijalnu komponentu. U 
unutrašnjosti sfere, gde su svi vektori kolinearni, polje je homogeno kao 
što je to i u prethodnom slučaju. 
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Slabljenje polja u unutrašnjosti 
sfere formalno se može povezati sa 
magnetnim pseudomasana koje se 
nalaze na površini feromagnetika 
(lekcija 64) i koje su izvori (ponori) 
magnetizacionog polja. 
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● Neka je sfera od diamagnetika ili paramagnetika i neka je 
nenamagnetisana uneta u strano polje. Tada je namagnetisavanje rezultat 
delovanja spoljašnjeg polja. Iz osnovnog para jednačina se dobija: 
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Dobijeni izraz za vektor magnetizacije je transkript izraza za vektor 
polarizacije kod sferere u homogenom električnom polju. Odavde sledi da 
po prestanku delovanja spoljašnjeg polja magnetizacija isčezava. Međutim, 
to očigledno nije tako kod stalnih magneta.  
 

● Neka je sfera od feromagnetika. Iz osnovnog para jednačina je jasno da 
polje zavisi ne samo od vrednosti spoljašnjeg polja, već i od vrednosti 
magnetizacije. Kod feromagnetika magnetizacija zavisi od trenutnih 
vrednosti spoljašnjeg polja ali i od istorije namagnetisavanja. Eliminacijom 
vektora magnetizacije iz osnovnog para jednačina se dobija jednačina 
radne prave namagnetisane sfere. 
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Vrednosti polja polja (radna tačka) se dobijaju u preseku radne prave i 
histerezisne petlje. 
 

Istorija namagnetisavanja 
 

 Radna tačka A. Pre unošenja u polje sfera 
nije bila namagnetisana.  
 

 Radna tačka B. Pre unošenja u polje sfera je 
bila namagnetisana do zasićenja. 
 

 Radna tačka C. Nakon namagnetisavanja do 
zasićenja spoljašnje polje je isključeno.  
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69. Pasivna magnetna zaštita 
 
Permeabila sferna ljuska čiji su unutrašnji i  
spoljašnji poluprečnk  i b  respektivno, 
nalazi se homogenom magnetnom polju 

a

zHH ˆ00 =
r

. U spoljašnjem domenu struktura 
polja mora biti ista kao i slučaju nena-
magnetisane sfere. U unutrašnjosti ljuske 
polje će ostati homogeno i težiće nuli. 

 

 
 

  
U ovom slučaju postoje 
tri domena i dve grani-
čne površine. 

DMPDMP (lekcija 68). 
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Nepoznate konstante se 
određuju iz graničnih 
uslova. 

 

Granični uslovi  i  izražavaju neprekidnost tangencijalnih komponenti o1 o2
H  polja, odnosno normalnih komponenti B  polja. 
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Rešenje dobijenih jednačina daje vrednosti 
nepoznatih konstanti, a odatle slede izrazi za 
potencijal i polje. Najznačajnije je odrediti 
polje u unitrašnjosti ljuske tj. za ar ≤ . 
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Za velike vrednosti relativne magnetne 
permeabilnosti, 1>>μr , izraz za polje dobija 
jednostavniji oblik. Za tanke ljuske je ba ≈  i 

, pa sledi praktična formula iz koje 
je jasno da je polje u šupljini zanemarljivo. 
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Mu-metali (na primer, 77% Ni, 16% Fe, 5% Co i 2% Cr ili Mo) imaju 
veliku permeabilnost (i do sto hiljada) i služe za zaštitu od statičkih ili 
sporo promenljivih polja. 
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70. Efikasnost magnetne zaštite 
 
Početak zaštite od elektromagnetnih polja obično se vezuje za Faradayev 
eksperiment sa peharom (Sveska I) iz 1836. godine. Međutim, to je bio 
samo ponovljeni ogled Franklina iz davne 1755. godine. Prvi proračuni 
pasivne zaštite (oklapanje) od uticaja elektromagnetnih polja potiču sa 
kraja deventnaestog (1899) i početka dvadesetog veka. Eksperimenti 
rađeni radi poboljšanja karakteristika feromagnetika doveli su 1914. 
godine do otkrića legure permalloy (lekcija 61). Zbog poboljšanja meha-
ničkih osobina ovoj leguri je dodat bakar i tako je 1923. godine nastao mu-
metal, prvobitno namenjen proizvodnji kablova. U stvari, radi se o 
engleskom zapisu grčkog slova , pa je ispravnije μ -metal. Danas se μ
znatno više zna o uticaju elektro agnetnih polja na zdravlje, pa postoji m
izvesna opsednutnost gradnjom μ -soba i μ -zgrada - savremenim 
verzijama Faradayevog kaveza. 
 

● Kvantitativna mera efiksanosti zaštite (Eng. 
Shielding Effectiveness) je odnos jačina polja 
kad je posmatrana tačka nezaštićena (nema 
oklopa) i kad je zaštićena (oklopljena).  
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0SE =  

SElog20SEdB =H  
 

● Ako se indeks (koji se odnosi na magnetizaciono polje) izostavi, prema 
usvojenoj definiciji za SE, za sfernu ljusku (lekcija 69) se dobija 
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● Za štićenje telekomunikacionih kablova, kako je i počela cela istorija 
elektromagnetne zaštite, poseban značaj ima proučavanje cilindričnih 
ljuski. Sada, kad je jasno o čemu se radi, bilo bi pravilnije reći oklop. Kad 
se radi sa linearnim magneticima, raspodela magnetnog skalar potencijala 
(lekcija 64) je određena rešenjem Laplaceove jednačine. 
 

Cilindrični oklop je transverzalno 
postavljen u magnetno polje koje je 
pre unošenja cilindra bilo homogeno. 
Za veoma dug cilindar (efekti krajeva 
se zanemaruju)  raspodela potencijala 
se ne menja u aksijalnom pravcu, pa je 
problem dvodimenzionalan. 
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ethodnim primerima, 
Kao i kod sfernog oklopa, rešenje za potencijal se traži za tri domena. Iz 
pšteg rešenja Laplaceove jednačine treba, kao i pro

izdvojiti samo ono za 1=n . Naime, za bilo koju drugu vrednost 
zadovoljavanje svih graničnih uslova dovodi do trivijalnih rešenja. Dalje, 
rešenje je osno simetrično i treba sačuvati parnost funkcije potencijala. U 
unutrašnjosti cilindra (kao što je to bio slučaj u unutrašnjosti sfere) polje 
treba da ostane homogeno, a očekuje se da bude znatno manje jačine. 
 

Kad se odbace članovi koji 
remete konačnost poten-
cijala za 0=r  i za ∞→r  
ostaje oblik koji sadrži četiri 
nepoznate konstante, a od 
največeg interesa je 1C  
(unutrašnjost oklopa). 
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Nakon što se iz dobijenog
integracije za magnetni skalar potencijal u štićen
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71. Magnetno polje planete Zemlje 
 
Magnetna igla kompasa se na Zemlji uvek orijentiše na isti način. Odavde 
se zaključuje da naša planeta predstavlja jedan veliki magnet, što je još 
1600. godine tvrdio Gilbert. 
 
Gilbert je napravio terelu (Lat. Terrella -

θ
π

=ϕ cos
4 2r

m  mala Zemlja) tj. magnetni mo
u obliku kugle od oksida
Magnetna i l  postavl u
tačku na kugli okreće se uve
kao i igla kompasa na Zemlji. 
polje na Zemlji je zbir so stv
(95%) i stranog polja (5 )

lja nalazi. Model 
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kugle (lekcija 67)

etnog polja Zemlje imaju 
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ob tapa ešten u centru i 
čija osa sa osom od 
približno Ju magnetni pol Zemlje 
nalazi se na severnoj hemisferi i obrnuto.
 

z đ va je 

Pošto se magnetni polovi Zemlje ne 
poklapaju sa geografskim polovima to se 
magnetna igla postavlja samo približno u 

 

Zem
iako nije adekvatan daje iznenađujuće 
tačne rezultate. 
 
Linije magn
raspored koji bi 

a š  koji je sm
davao 

lik
 rotacije zaklapa ugao 

o11 . žni 

Rastojanje i me u magnetnih polo
oko 2700 km, a rastojanje između 
geografskih polova je oko 12000 km. 

 pravcu sever-jug.  
 

Srbija 
srednje vrednosti 

 

 

Magnetna igla je zakošena o o be ose. U odnos
aginje na dole v

k o  
na se ernoj hemisferi, 

odnosno na gore na južnoj hemisferi. Ugao 
nagnutosti 

u
na horizont n

iα , je magnetna inklinacija, a ugao 
i e ose je magnetna deklinacija 

 

  

T46 μ=B  
T23 μ=hB  

o60=αi  
krać dα .nagnutost

Kosinus ugla inklinacije je odnos horizontalne 
komponente, , i ukupne jačine polja hB B . o8=αd  
 
Zemljino magnetno polje sferu čij
naleta solarnog vetra. Magnetosfera se prostire

čini magneto oblik najviše zavisi  
 do desetak poluprečnika 
i od
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prečnika na tamnoj strani. 
čenja skreće na velike 

Zemlje na svetloj strani, i čak do hiljadu polu
agnetosfera je zaštitni sloj koji kosmička zraM

visine. Odsustvo magnetnog polja bilo bi pogubno za život na Zemlji. 
 

 
 

www.newstalk.com 

ći 

 

U blizini magnetnih polova kosmičke 
estice ostaju zarobljene stvarajuč

polarnu svetlost. Postoje saznanja da je 
Galileo Galilei 1629. godine za severnu 
polarnu svetlost sačinio kovanicu aurora 
borealis kombinujući imena rimske 
boginje zore (Aurora) i grčkog boga 
severnog vetra (Boreas). Iz tog doba za
južnu polarnu svetlost potiče naziv 
aurora australis. 

 

 
 
Norveški fizičar Kristian Birkelandje 19
šuplje mesingane lopte u čijem središtu 

zređenom gasu dovod

13 godine napravio terelu od 
je bio solenoid. Takva terela u 

i do pojave polarne svetlosti baš kao u prirodi. 

ouzrokuju dnevne i godišnje 
java pega na Suncu na svakih 

agnetni pol rotira oko severnog 
 godina. Na os ja 

uje da su u vrlo dalekoj prošlosti 
i  mesta, i to četiri ili pet puta u 

tno polje k ns . Od 
poslednjih  a, 

č n unazad pokazuje da 
gije na svakih sedam stotina 
 godina magnetno polje Zemlje 
va. 

najvećim delom sastoji od gvožđa i nikla. Međutim, 
magnetne osobine. 

 zasnovane na rotaciji 
žn  i 
fiz ara iz Letonije i 
Gilberta, u Rigi je 

an ispravnost modela koji 
najviše utiče 

e  objašnjava što neke planete sa 
hlađenim jezgrom (Mars) ili sporom rotacijom (Venera) nemaju 

.. 

ra
 
Promene Zemljinog magnetnog polja pr
promene provodljivosti jonosfere, ali i po
jedanaest godina. Utvrđeno je da južni m
geografskog pola sa periodom od hiljadu
magnetnih svojstava starih stena se zaključ

emlje magnetni polovi više puta zamen

 novu ispitivan

Z li
poslednjih milion godina. Zemljino magn
kad postoje stalna merenja, a to znači u
jačine magnetnog polja je opala za 10%. Prora
magnetno polje gubi polovinu svoje ener
godina. Predviđa se da će za oko dve hiljade
nestati, da bi posle toga počela zamena pol
 
ezgro Zemlje se 

e o tantno slabi
 sto pedeset godin

u

o

J
temperatura jezgra je tako velika da ne može da ima
Najnovije pretpostavke o poreklu magnetnog polja s
tečnih metala u jezgru zbog čega se formiraju kru
prateće magnetno polje. Zajedničkim radom tima 
Nemačke 2000. godine, tačno četiri veka posle 
napravljena verodostojna terela i tako je dokaz a 
je nazvan tečni dinamo. Na jačinu magnetnog polja 
provodnost jezgra i brzina rotacije. Tim  se

 fero
u

i
ič

strujni laštovi p

o
magnetno polje, ili pak imaju polje snažnije nego Zemljino (Jupiter).  
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72. Magnetna otpornost i Hopkins-Rowlandov zakon 
 
 

ad se solenoid povije po zatvorenoj liniji, obično   K
I

a

b
r

I
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b
r

 

kružnog oblika, dobija se torusni namo
Torus - okruglo ispupčenje) ili torus (lekci
 

U unutrašnjosti torusa magnetno polje 
približno homogeno. Srednja vrednos
magnetnog polje se dobija kad se Ampère
primeni na srednju liniju torusa, tj. na zat
konturu koja prolazi kroz torus i leži 
poprečnog preseka.  

taj (Lat. 
ja 24) 

je vrlo 
t jačine 

 
vorenu 

u ravni 

ov zakon

   

Iz definicije se d
olja, iz koga j

obija izraz za jačinu magnetnog 
e jasno da sam oblik namotaja p

provodnika oko tela torusa nije od uticaja. Ako je 
dužina srednje linije π= rl 2  i površina poprečnog 
preseka S , za magnetni fluks se dobija približna 

 
 

formula, jer se u proračun magnetnog polja 
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uključuje srednja linija torusa. 
 
Najveći deo magnetnog fluks se zatvara kroz unutrašnjost torusa, što je 
očigledna analogija sa protokom struje u zatvorenom električnom kolu. 
Zato, treba primetiti da je izraz za fluks moguće mapisati u formi koja je 
analogna izrazu za Ohmov zakon (Sveska II) u linearnom električnom 
kolu. Ova formulacija je poznata kao Hopkinsonov zakon, mada je 
istorijski gledano to ipak Rowlandova analogija. Na ovaj način se dolazi 
do pojma magnetne otpornosti mR  koja je nazvana reluktanca (Lat: 
rĕluctor - opirati se), a recipročna vrednost magnetne otpornosti je Λ , 
permeanca (Lat: permĕo - probiti kroz nešto). Veličina INFm =  naziva 
e magnetno pobudna sila, po analogiji sa s elektromotornom silom i 

jedinica je amper-navojak, mada je dimenziono to samo amper, kao što je 
za elektromotornu silu jedinica volt. 
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 uvek znatno veće od 
u. Zato je primena 
kom broju slučajeva 

er, kad su namotaji torusa 

73. Torusni namotaj pravougaonog poprečnog preseka
 
Kod električnih kola dužine provodnika i otpornika su
poprečnih dimenzija, što nije slučaj u magnetizm
prikazane analogije veoma ograničena. Ipak, u veli

obijaju se dovoljno tačni rezultati. Tako na primd
pravougaoni, fluks je moguće izračunati tačno. 
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Međutim, magnetni fluks može da se izračuna i približno,  
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i to tako što se magnetna otpornost izračuna za srednju liniju torusa čija je 
dužina 2/)(2 bal +π= , a površina poprečnog preseka odredi tačno, 

)( abdS −= . Tako se dobija da je približna vrednost fluksa, 
 

1/
1/2)(2)(2

2 00 +
−

Φ=
+
−

Φ=
+
−

π
μ

=
μ

=Φ
ab
ab

ab
ab

ab
abdINS

l
NI

p . 

 
Ako se uporede tačno i približno izračunate vrednosti i odredi relativna 
reška, vidi se da je približnu formulu za izračunavanje fluksa moguće sa 

zado nošću erno debelih toru . 
 

1.01 1.50 2.00 2.50 3.00 

g
voljavajućom tač  upotrebiti i kod srazm sa

ab /  ∞→  

pt ΦΦ /  1.00 1.01 1.03 1.06 1.09     2 0 .0

[ ]%δ  0.07 1.35 3.82 6.45 8.98 100.00 
 
Č je fluk i nije od posebnog značaja. 

đutim, kao što će biti pokazano, na promeni fluksa bazira čitava teorija 
elektromagnetne indukcije.  

ini se da izračunavan sa samo po seb
Me
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74. Linearna magnetna kola i linearna električna kola 
 
Linearni magnetni materijali i vazduh imaju približno istu magnetnu 
permeabilnost. Pomoću ovih materijala nije moguće kanalisati magnetni 
fluks i realizovati magnetna kola. Međutim, analogija koja postoji između 
linearnih magnetnih i električnih kola ima primenu u rešavanju problema 
nelinearnih magnetnih kola. Analogija je samo matematička i zasnovana je 

 sličnosti formalnih zapisa nekih veličina i zakona.Ove dve teorije su u 
fizičkom smislu sasvim različite. Najveća razlika je činjenica da električna 
struja predstavlja tok nosilaca naelektrisanja što znači i prenos mase, dok 
magnetni fluks ne predstavlja nikakav tok bilo koje čestice što znači da 
nema prenosa mase. 
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75. Nelinearna magnetna kola  
 
● Određivanje magnetopobudne sile kad je poznat fluks. 
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1 

Neka su zbog jednostavnosti svi feromagnetni 
delovi magnetnog kola istog preseka 1S , te se 
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● Određivanje fluksa kad je poznata magnetopo na sila. 
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● Radna tačka ma eta 
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Jednačina radne prave se dobija, kao i ranije, 
iz zakona o konzervaciji magnetnog fluksa i 
Ampèreovog zakona. 
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Michael Faraday 
 

Dosta im je učenja. Sve su škole jednake. 
Deca znaju da čitaju i pišu - šta im još treba? 
Dosta im je učenja. Sve su škole jednake. 
Deca znaju da čitaju i pišu - šta im još treba? 

 

Nakon tih reči svog oca četrnaestogodišnji 
Michael je počeo da zarađuje svoj hleb radeći kao 
raznosač novina u jednoj knjižari i izgledalo je da 
je njegova budućnost rešena. Nešto kasnije 
Michael je počeo i da uči knjigovezački zanat.  

 

 
 
Uveče, kad su knjigovesci završavali svoj posao, Michael je ostajao sam u 
radionici i pri ostatku lojalne sveće žedno čitao knjige. Najviše su ga 
privlačile naučne knjige svojim naslovima i slikama, ali ubrzo ih je 
ostavljao sa uzdahom - skoro ništa nije mogao u njima da razume. Ali 
jednog dana Michaelu je u ruke dospela knjiga 'Razgovori iz hemije', a 
koju će on tokom celog života smatrati svojom prvom učiteljicom i 
najboljim drugom. U knjizi su bili opisani eksperimenti koje je svako 
mogao sam da izvede i Michael ih je odmah izvodio.  
 
Pošto je savladao štivo 'Razgovori iz hemije', Michael je odabrao članak o 
elektricitetu i odmah izveo eksperimente sa komadićem voska protrljanim 
tkaninom i sa oduševljenjem posmatrao parčiće hartije koji poskakuju i 
lepe se za vosak. Nekoliko večeri kasnije izradio je i električnu mašinu sa 
čijim se crtežima upoznao iz enciklopedije. Prvi eksperimenti oduševili su 
Michaela pa je napravio i drugu električnu mašinu pomoću koje je izvodio 
najjednostavnije električne eksperimente. Od tada Michael vodi svoj 
'Filosofski zbornik' u koji je zapisivao beleške, rasprave i slučajeve koji se 
odnose na umetnost, ali prevashodno na nauku. 
 
Jedne večeri Michael je ugledao privatni oglas koji je obaveštavao da će 
biti održan niz predavanja iz prirodnih nauka. Kad je predavanje otpočelo 
o Newtonovoj gravitaciji i magnetizmu, Michael je otvorio svoju svesku i 
počeo tako marljivo da beleži da više nikoga nije primećivao. Jedna 
činjenica ga je rastužila - nije mogao da pravilno prenese crteže sa table. 
Michael nije umeo da crta i od tog dana je kod suseda počeo da uči 
slikanje. 
 
Na predavanjima o elektricitetu slušao je o Franklinu koji je za vreme 
oluje puštao zmaja od hartije u oblake, a primetio je da se svi predmeti od 
čelika u kući u koju udari grom namagnetišu, ali veza između elektriciteta i 
magnetizma još uvek nije bila otkrivena.  
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Do tada Michael je samo slušao o Davyju koji je, nesumljivo u to vreme, 
bio najbolji engleski hemičar i poznat u celom svetu. Na njegovim 
predavanjima bili su sasvim drugi slušaoci. Govorilo se o hloru, a kad su 
počeli eksperimenti, Michael je sasvim bio osvojen. Od tada je imao samo 
jednu misao - doći do mogućnosti da se bavi naukom. I mislio je u sebi: 
ljudi koji se bave naukom nisu kao trgovci ili fabrikanti, to su ljudi osobite 
plemenitosti, dobrote, finih i uzvišenih osećanja. Ako ma ko od njih sazna 
o mojoj žarkoj želji da služim nauci, pružiće mi, naravno, ruku pomoći. 
Potrebno je da se samo nekom obratim. Posle toga Michael je rešio da 
napiše pismo predsedniku Kraljevskog londonskog instituta, koga je 
smatrao glavom učenog sveta. Pismom mu je objasnio svoj položaj, 
interesovanja, i molio ga da dobije ma kakvo, pa i najbeznačajnije mesto u 
ma kojoj naučnoj ustanovi. Odgovor nikad nije stigao. Michael se obratio 
Davyju. Napisao je pismo i poslao ga zajedno sa sveskom koja je sadržala 
sva njegova predavanja i crteže eksperimenata. Odgovor je stigao. Nešto 
kasnije, Michael je dobio mesto u laboratoriji Kraljevskog instituta - 
postao je asistent. Posle šest meseci Davy mu je ponudio da sa njim i 
njegovom suprugom krene na putovanje po Francuskoj, Italiji i 
Švajcarskoj. Tako se susreo sa Ampèreom i prisustvovao Gay-Lussacovom 
predavanju. Tokom putovanja Michael je asistirao u mnogim Davyevim 
eksperimentima, uključujući otkriće joda i eksperimente sa dijamantom 
kojima je potvrđena Newtonova pretpostavka da je dijamant kao čist 
ugljenik zapaljivo telo. Michael je vršio i samostalne eksperimente sa 
svicima želeči da utvrdi oktud potiče svetlost. 
 
Po povratku u Englesku, na inicijativu svojih prijatelja, Michael počinje da 
drži prva predavanja u Filozofskom društvu. Nešto kasnije njegov rad o 
analizi krečnjaka štampan je u jednom naučnom časopisu. Ovim se 
Michael postepeno osamostaljuje. Sledeći samostalni rad je bio ogled 
prevođenja hlora u tečno stanje, što je bio veliki udarac za Davyjevu sujetu 
jer je njegov učenik to uspeo pre njega. Posle ovih naučnih doprinosa 
predloženo je da Michael Faraday bude primljen u Londonsko kraljevsko 
društvo. Davy je osporavao njegov prijem u ovo društvo. Proteklih 12 
godina on je posmatrao Michaela sa visine i sa zavišću. Još jedan incident 
je pogoršao postojeću situaciju. Michael je stao u odbranu naučne istine i u 
odbranu života mnogih rudara govoreći o mogućnosti eksplozije i pored 
primene Davyjevih "bezopasnih" rudarskih lampi. Michael Faraday je 
ipak primljen u Londonsko kraljevsko gruštvo. Postao je i počasni doktor 
na Oksfordu i mnogim akademijama.  
 
Davy je kasnije stalno, kao u šali, govorio: Ja sam učinio nekoliko otkrića 
koja nisu bez značaja za nauku, ali među njima najveće je što sam otkrio 
Faradaya. 
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Faradayeva formulacija elektromagnetne indukcije 
 
Kao samostalni naučnik Faraday je, kao i većina naučnika tog vremena, 
bio zainteresovan za Aragoov eksperiment iz 1824. godine u kome bakarni 
rotirajući disk prouzrokuje okretanje igle kompasa. Faraday je 
pretpostavio, a to je i zapisao, da je uzrok te pojave elektricitet. I mada je 
ponovio Aragoov eksperiment, nekoliko godina nije uspeo da dokaže 
svoju pretpostavku. Onda je 1831. godine započeo seriju eksperimenata.  
 

U svom prvom eksperimentu Faraday je 
obmotao dva navoja na torusno jezgro. Očekivao 
je da kad struja protiče kroz jedan od navoja 
dobije struju u drugom navoju. 

 

 
 

Raniji eksperimenti su pokazivali da električna struja stvara magnetno 
polje, pa je Faraday pokušao da dokaže pogrešnu naučnu hipotezu tj. da 
pomoću stalnog magnetnog polja izazove električnu struju. Međutim, 
dobio je samo kratkotrajne impulse, koje je nazvao talas elektriciteta, dok 
je ukljičivo ili isključivao struju u prvom navoju.  
 

U sledećih nekoliko meseci Faraday je izvršio 
više ekperimenata ali svi se mogu svesti na dva 
tipična slučaja. U prvom slučaju pomerao je 
žičanu konturu ili izvor polja, dok su u drugom 
slučaju kontura i izvor polja nepokretni ali se 
menjala jačina polja. U svim eksperimentima je 
dobijao samo talase elektriciteta.. 

 

 
 

Objašnjavajući Aragoovu rotaciju konstruisao je generator jednosmerne 
struje koji je postao poznat kao Faradayev disk (lekcija 77). Tako je otkrio 
i formulisao zakon elektromagnetne indukcije koji predstavlja jedan od 
najvažnijih zakona elektrodinamike i elektrotehnike. 
 

Mada je bio genijalan eksperimentator, Faraday nije vladao jezikom 
matematike, bar ne u tolikoj meri, da svoja otkrića tako i zapiše. Faraday 
je doneo sintetički zaključak: Intenzitet indukovane struje je srazmeran 
brzini promene fluksa. 
 

Ako horizontalma žica ...
seče magnetne krive ...
tada se dobija struja u žici.

Ako horizontalma žica ...
seče magnetne krive ...
tada se dobija struja u žici.  

 U fusnoti je objasnio da su magnetne 
krive linije magnetne sile. On ih je 
snagom svoje naučne uobrazilje tako 
predstavljao kao da ih je i video. 

 

Faraday je svojim duhovnim okom video kako linije sile prelaze ceo
prostor, dok su matematičari videli privlačne centre sila delovanja na
daljinu. Maxwell

Faraday je svojim duhovnim okom video kako linije sile prelaze ceo
prostor, dok su matematičari videli privlačne centre sila delovanja na
daljinu. Maxwell  
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Faraday - Letz - Neumannov zakon 
 
Sasvim nezavisno od Faradaya, 1832. godine Henry 
je otkrio elektromagnetnu indukcju. U Americi se još 
nije znalo da je Faraday već saopštio svoje rezultate. 
Mnogo godina kasnije priznanje mu je odato u vidu 
naziva jedinice za induktivnost (lekcija 88). 
 

Smer indukovane struje je odredio. Heinrich Lenz 
1834. godine. 
 

Ako indukovana struja teče, njen smer je
takav da se protivi promeni koja je stvara.
Ako indukovana struja teče, njen smer je
takav da se protivi promeni koja je stvara.  

 

Zakon je tako uskladio sa zakonom o očuvanju 
energije. Priznanje mu je odato u vidu oznake za 
induktivnost (lekcija 88). 
 

Matematički zapis zakona indukcije je dao Neumann 
tek 1845. godine. 
 

td
dΦ

−=ε
Neumann

Lentz Faraday

td
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Neumann

Lentz Faraday

 

 

 
 

 
 

 
 

Indukovana elektromotorna sila u zatvorenoj konturi je jednaka negativnoj 
brzini promene magnetnog fluksa obuhvaćenog tom konturom.  

 
Neumann je zapravo predložio dva zakona elektromagnetne indukcije. Prvi 
je bio za elektromotornu silu generisanu usled kretanja konture u odnosu 
na polje (zakon generatora), a drugi za elektromotornu silu usled promene 
samog polja (zakon transformatora). I bio je u pravu. Potpuna dva različita 
fenomena opisana su istom formulom. U prvom slučaju na naelektrisanja 
koja se kreću zajedno sa provodnikom deluje Lorentzova sila (lekcija 11), 
pa je pitanje da li se pojava struje u konturi može nazvazi indukcijom. U 
drugom slučaju neelektrisanja u konturi su nepokretna i samo neko 
električno polje može da ih pokrene. Međutim, električnog polja nema, 
osim ako ne nastaje usled promena magnetnog polja. To je jeste 
elektromagnetna indukcija. 
 
Dakle, potpuno je začuđujuće što dve fizički različite pojave dovode do 
iste (Faraday je to eksperimentalno dokazao), veoma jednostavne i 
savršeno tačne formule. U ovom slučaju fizičari su saglasni da je u pitanju 
čudna podudarnost sa značajnim posledicama. Upravo ova podudarnost je 
i dovela Einsteina do specijalne teorije relativnosti. 
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76. Zakon elektromagnetne indukcije 
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Kad god se iz bilo kog razloga magnetni fluks 
kroz zarvorenu konturu promeni, u konturi se 
pojavljuje elektromotorna sila.  
 

Elektromotorna sila (napon) nastaje kao posle-
dica indukovanog električnog polja . iE
 

Promene magnetnog polja dovode do promene 
fluksa. Međutim, do promene fluksa dolazi i 
ako se menja površina obuhvaćena konturom i 
ova pojava se objašnjava Lorentzovom silom.  
 

Izvod fluksa po vremenu dimenziono je 
poptencijal.  V]d[/]d[ =Φ t  
 

Faradayeva otkrića pokazuju da postoje dva različita električna polja. Prvo 
koje potiče od naelektrisanja i drugo koje je rezultat promene magnetnog 
fluksa. Međutim, električno polje stacionarnarnog toka naelektrisanja je 
konzervativno i cirkulacija tog polja je jednaka nuli (Sveska II).  
 

Stoga se umesto indukovanog električnog polja 
u izrazima može uzimati ukupno polje, pa se 
dobija konačani oblik Faradayevog zakona.  
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U opštem slučaju izvod fluksa po vremenu 
(izvod proizvoda) dovodi do zbira elektro-
motornih sila koje nastaju bilo zbog promene 
površine (kretanje ili deformacija konture), bilo 
zbog promene polja (po pravcu ili jačini). 
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Dakle, tačno onako kako je predložio Neuamann. 
 
 Dinamička i statička indukcija 
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77. Dinamička indukcija nije indukcija? 
 
Dinamička indukcija nije ništa drugo do puko razdvanje i grupisanje 
naelektrisanja koje nastaje kao posledica delovanja magnetne sile na 
naelektrisanja koja se zajedno sa provodnikom kreću kroz magnetno polje.  
 

● Neka se pravolinijski provodnik kreće kroz 
homogeno magnetno polje indukcije B , brzinom 

. Osa provodnika, pravac brzine i pravac 
magnetnog polja su međusobno normalni. Na 
elektrone deluje elektromagnetna sila (lekcija 12). 

tsv d/d=

 

)( vBEqqvBqEFFF me +=+=+= . 

 

 
 

Na početku kretanja nema električnog polja. Tokom kretanja na krajevima 
provodnika se pojavljuju viškovi raznoimenih naelektrisanja, usled čega 
nastaje - indukuje se - električno polje. To električno polje sprečava dalje 
kretanje elektrona. U ravnotežnom stanju elektromagnetna sila je jedanka 
nuli (električna sila je jednaka magnetoj) odakle je vBEi −= . Elektro-
motorna sila (ustvari, napon između krajeva provodnika, lekcija 76) je 
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Zahvaljujući poslednjem delu zapisa celu pojavu nazivamo indukcijom. 
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● Četvrti deo Faradayovog saopštenja iz 1831. 
godine je interpretacija Aragoovog eksperimenta. 
Između polova stalnog magneta postavljena je roti-
rajući bakarni disk. Na osu diska i na njegov obod
montirana su dva klizajuća kontakta koji sa 
galvanometrom čine zatvoreno strujno kolo. 
 

Neka je  poluprečnik diska i a ω  ugaona brzina. 
Zbog dinamičke indukcije u svakoj tački diska se 
indukuje radijalno električno polje čija jačina se 
određuje iz magnetne sile i čiji smer je od centra ka 
periferiji diska. Elektromotorna sila, koja se može 
meriti voltmetrom, je jednaka linijskom integralu 
električnog polja duž radijusa. 
 

Do istog rezultata se dolazi i pomoću priraštaja 
fluksa, koji je u ovom slučaju negativan, pa sledi: 
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78. Model generatora jednosmernog napona - 1 
 
Šine na rastojanju  kratko spaja kilzni 
provodnik. Sistem se nalazi u homogenom 
magnetnom polju 

h

B  (lekcija 76). Na jednom 
kraju šine su vezane na otpornik R .  Silom 

 klizač je pokrenut brzinom .  0F 0v
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U kilizaču se indukuje elektromotorna sila ε . DMPDMP

0hBv=ε  
Kroz električno kolo protiče struja i . DMPDMP RhBvRi // 0=ε=  
Kretanju se suprotstavlja magnetna sila . mF DMPDMP RvhBIhBFm /)( 0

2==  
   

● Ako je  klizač će se kretati ubrzano, povećavajuću brzinu i 
struju u kolu koja je stalnog smera (Eng. DC - direct current) 

mFF >0

 

● Ako je ostvaren uslov mFF =0  sistem je stanju dinamičke ravnoteže, sve 
veličine su stacionarne, a sistem radi kao generator jednosmernog napona. 
 

Klizač se kreće konstantnom brzinom 0vv = . DMPDMP
2

00 )/(hBRFv =  
Mehanička snaga sistema je vFPM = . DMPDMP

22
0 )/(hBRFPM =  

Generiše se stalna elektromotorna sila 0E=ε . DMPDMP )/(00 hBRFE =  
Kroz kolo protiče stalna struja 0Ii = . DMPDMP )/(00 hBFI =  
Električna snaga generatora je ε= iPG . DMPDMP

22
0 )/(hBRFPG =  

 

Mehanička snaga se se u celosti pretvara u električnu snagu (svi gubici 
zanemareni) i u celosti troši na otporniku, jer je . RiPPP JGM

2===
 

● Ako nakon pokretanja sila  prestane da deluje klizač će se kretati po 
inerciji ali usporeno sve dok ga magnetna sila ne zaustavi.  

0F

 

Neka je masa klizača . U nekom trenutku 
 ravnoteža sila je 

m
t 0=+maFm , odakle sledi 
diferencijalna jednačina za brzinu. 
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U rešenju diferencijelne jednačine konstanta 
integracije se određuje iz početnog uslova da 
je  za 0vv = 0=t . 
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Elektromotorna sila i struja su direktno srazmerene brzini što znači da u 
vremenu opadaju po istom eksponencijalnom zakonu. Kao i u prethodnom 
slučaju ukupna mehanička energija se pretvara u električnu. 
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79. Model motora jednosmerne struje 
 
Princip rada motora jednosmerne struje može 
da se objasni pomoću elektrodinamičkog 
sistema iz prethodnog primera. Šine su 
priključe izvor jednosmernog napona , a 
klizač savladava silu 
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Po uključenju napona protiče struja 0Ii = . DMPDMP REI /00 =  
Klizač se pokreće zbog magnetne sile mF . DMPDMP RhBEhBIFm /000 ==  
U klizaču se indukuje elektromotorna sila ε . DMPDMP

0hBv=ε  
Nova jačina struje je sada REi /)( 0 ε−= . DMPDMP RhBvEi /)( 00 −=  
Magnetna sila se smanjuje na ihBFm = . DMPDMP RhBhBvEFm /)( 00 −=  
 

Sa povećanjem brzine smanjuje se magnetna sila i u jednom trenutku 
postaje jednaka sili opterećenja. Od tog trenutka klizač će se kretatati 
konstantnom brzinom . Ako je sila opterećenja (na primer sila težine) 
onda će elektomotor dizati teret stalnom brzinom. 
 

Dinamička ravnoteža nastupa za 
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80. Slobodan pad konture u magnetnom polju 
 
Pravougaona kontura se samo svojim gornjim 
delom nalazi u homogenom magnetnom polju 
(lekcija 2). U trenutku 0=t  kontura se pusti 
da pada. Pojavom brzine u konturi se javlja 
struja koja će imati takav smer da magnetna 
sila konturu podiže. Slobodan pad je usporen. 
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Jednačina kretanja  (lekcija 78) daje rešenje 
za brzinu, 
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81. Relativno kretanje konture i magnetnog polja 
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Neka je trougaona kontura iz prethodnog slučaja 
ostavljena tako da joj se sada kateta nalazi na p

rastojanju 0x  od provodnika. Brzopleto se može
zaključiti da su fluksevi u oba slučaja jednaki. 

 

 

Konture, nazovimo ih 'trougao donji' i 'trougao gornj
ista je jednačina prave na kojoj im leže hipotenuze
rastojanju od provodnika i nalaze se u ist m mag
fluksevi obuhvačeni ovim konturama ni  isti. M
astojanjem i najjače je u neposrednoj blizini pr

i', imaju iste površine, 
, na istom su početnom 
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su agnetno polje opada sa 

ovodnika. U oblasti jačeg 
e i ona se povećava u 
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r
polja  'trougao donji' manjom površinom zadire u po
pravcu u kome polje opada. Suprotno, 'trougao gorn
oblasti jačeg polja. 
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Ako se dve trougaone konture sastave tako da 
formiraju pravougaonik, elektromotorna sila biće 
zbir pojediničnih, što daje već poznati rezulta

00 . 
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ptgtd ε=ε+ε . 
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2. Fluksmetar 8

 
Određivanje jačine magnetnog polja pomoću 
fluksmetra (lekcija 16) zasnovano je na merenju
indukovane količine naelektrisanja koja protekne 
kroz balansni galvanometar.  1Φ=Φ
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Navojak fluksmetra ukupne otpornosti R  se unese u magnetno polje. Kroz 
površinu  postoji magnetni fluks S Φ . Zatim se magnetno polje isključi ili 
se navojak bilo kojom brzinom i po bilo kojoj putanji iznese iz magnetnog 
polja, tako da je na kraju fluks jednak nuli. Zbog promene magnetnog 

 izmerena. fuksa kroz navojak protekne količina naelektrisanja koja je
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83. Model generatora naizmeničnog na
 
Klizanje provodnika po šinama ne obezbeđuje ko
napona jer šine imaju ograničenu dužinu. Prav

pona 

tinualnu proizvodnju 
ougaona kontura povšine 

n
S  

rotira ugaonom brzinom ω  oko osovine koja je normalna na pravac 
homogenog magnetnog polja B . Krajevi konture su vezani na  prstenove 
koji rotiraju zajedno sa navojkom. Sa prstenova se pomoću kliznih 
kontakta (četkice) odvodi indukovana struja.  
 

U trenutku t  normala površine konture i 
vektor magnetne indukcije zaklapaju ugao 

tω=α . Indukovana elektromotorna sila je  
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d
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Ovaj generator daje prostoperiodični napon. 
enično menja smer nakon svakog polu

Struja kroz potošač 
period . Otuda potiču nazivi 

naizmenična struja (Eng. AC - alternating curren alternator. 
 

naizm a
t) i 

Ako se po nekim uglom ϕ  na postojeću 

k nakon radova Nikole Tesle (obrtno polje). 

 
konturu doda još jedna ili više njih, isto-
vremeno se dobija više fazno pomerenih
apona. Polifazni sistemi su postali značajni n

te

     ↑π=ϕ 2/   3/2π=ϕ↓  

 

 
84. Model generatora jednosmernog napona - 2 

ba naizmenične struje 
nije bilo ni pomisli da 
bilo važno proizvesti 

 nazvan je dinamo. 

 
Od Faradayevih otkrića do prve praktične upotre
prošlo je četvrt veka. U vreme prvih eksperimenata 
bi naizmenična struja mogla da se koristi. Zato je
jednosmerni napon. Generator jednosmernog napona
 

 

Pionir u oblasti proizvodnje naizme ične 
struje Pixi  je pronašao mehaničko rešenje tj. 
komutator napona. Prsten za skidanje napona 
sa rotora je podelio na polovine. Svaki put 
kad dođe do promene polariteta, polovine 

 
  

n
i

mene mesta i struja uvek teče u istom 
smeru. Struja je bila jednosmerna ali
menjala amplitudu. Napon na četkicama j

o pu irajući. Bolji rezulati su dobijeni sa 
većim brojem seg enata na komutatoru i 
većim brojem kontura. 
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e 
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m
 

Danas se naizmenični napon ispravlja pomoću poluprovodničkih dioda. 
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85. Druga Maxwellova jednačina 
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Faradayeva otkrića pokazuju da stvarno postoje 
dva električna polja. Prvo čiji su uzrok naelek-
trisanja i drugo koje je prati svako promenljivo 
magnetno polje. Razrađujući ovu ideju, Maxwell
je bitno uopštio zakon elektromagnetne 
indukcije pretpostavivši da postojanje provodne 

te

induko o u 
materijalnim sredinama tako i u vakuumu. U to
doba direktna eksperimentalna provera ove 
retpostavke nije bila moguća bez provodne 

 

konture uopš  nije bitno za važenje zakona.
Dakle, kontura može da bude od bilo kog 
materijala ili može da bude samo zamišljena, a 
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p
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Otkriće elektromagnetnih talasa bila je prva indirektna eksperimentalana 
otvrda Maxwellove pretpostavke i cele teorije elektomagnetnihp  polja. 

g električnog polja, pro-
mponente ima i vrtložn  
po  koje imaju izvore i 
nog polja koje se zatvaraju 

 

Za razliku od elektrostatičkog i stacionarno
menljivo električno polje pored izvorne ko
komponentu. Dakle, pored linija električnog 
ponore u naelektrisanjima, postoje linije električ
same u sebe. U opštem slučaju (lekcija 39) je  

u
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Ukupno električno polje je bezvrtložno i može da se izrazi pomoću 
gradijenta neke skalarne funkcije (Sveska I), jer je rotor gradijenta uvek 
ednak nuli. U slučaju stacionarnih stanja izvod po vremenu je jednak nuj li 

i električno polje postaje elektrostatičko.  

Znači da je i za promenljiva polja tražena skalarna 
funkcija zapravo električni skalar potencijal. 
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Međutim, izrazi po kojima se određuju poten
struje i nepokretna naelektrisanja i zato mog
slučaju sporo promenji

c jali izvedeni su za stalne 
 da se primene samo u 

vih tj. kvazistatičkih polja gde se efekat kona ne 

i
u

č
brzine elektromagnetne promene ne primećuje (lekcija 108). 
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86. Indukovano električno polje - beskonačan solenoid 
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Analogija koja postoji između zapisa Ampèreovog
Faradayevog zakona može da se iskoristiti 
određivanje indukovanog električnog polja. Jasn
poznavanje samo rotora funkcije nije dovoljno. A
se posmatra ono električno polje koje je generisano
indukcijom (nema slobodnih naelektrisanja) tada s
divergencije i električnog i magnetnog polja jedna
nuli, pa analogija postaje potpuna. Indukovan
električno polje je određeno izvodom magnetno
polja na potpuno isti način kao što je magnetn
polje određeno gustinom struje. Kod problema 
visokim stepenom simetrije (lekcija 21) analogija se
može koristiti i u integralnom obliku. 

 i 
za 
o,
ko 

 
u 

ke 
o 
 
 

sa 
 

  

g
o

IlB
C

0d μ=∫
rr

 

 

đutim, poMe stoji važna razlika između ova dva zakona. Ampèreov zakon 

ova 

reme prenošenja promene 
jednako nuli, što je poznato kao kvazistatička aproksimacija (lekcija 108). 
 

Tipičan primer je beskonačan (veoma du ) 
solenoid sa promeljivom strujom. Smatra se da u 

podrazumeva struje nepromenljive u vremenu, dok Faradayev zakon 
podrazumeva samo vremenske promene. U diferencijalnim oblicima 
dva zakona razlika se ne primećuje, jer se izrazi svode na jednu tačku. U 
integralnom obliku zakona indukcije to znači da sve tačke koje pripadaju 
oblasti integracije treba posmatrati u istom trenutku. Elektromagnetne 
promene se ne prenose trenutno već brzinom svetlosti. Potrebno je 
konačno vreme da se promene sa jednog kraja domena osete na drugom 

mala rastojanja uzima se da je vkraju. Za 

g

jednom trenutku, struja, magnetno i indukovano 
električno polje svuda imaju istu vrednost. 
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 Linije električnog polja su 

koncentrične kružnice čiji smer 
je određen Lenzovim pravilom i 
pravilom desne zavojnice.  
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87. Fluksevi dve koaksijalne kružne konture 
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Date su dve koaksijalne kružne konture
poluprečnika b  i ba << koje pripadaju 
međusobno paralelenim ravnima na 
rastojanju z . Struja koja protiče kroz veću 
konturu stvara magnetno polje (lekcija 33)
za koje može da se smatra da je u oblasti 
površine manje konture konstantno.  
 

Tako se dobija da magnetni fluks kroz 
manju konturu, osim od jačine struje kroz 
veću konturu (i magnetne permeabilnosti), 
zavisi samo od geometrijskih odnosa. 
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Neka sada ista jačina struje protiče kroz manju konturu. Magnetno polje u 
oblasti površine veće konture nije konstantno. Kako je manja kontura 
stvarno mala, može da se aproksimira magnetnim dipolom (lekcija 22). 
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Polje koje potiće od elementarnog dipola 
(lekcija 44) ima komponente u radijalnom i 
aksijalnom pravcu. 
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Nakon integracije po površini veće konture dobija se ukupni fluks. Dva 
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88. Induktivnost i Neumannova formula 
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Date su dve konture u mirovanju (lekcija 
Struja koja protiče k u od kontura stva
magnetno polje. Neke od linija polja prolaze
kroz površ u koju gradi druga kontura. Fl
kroz površinu druge konture je proporciona
struji kroz prvu konturu. Dakle, 
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osti, koji zavisi samo od geometrijskih odnosa, je 
međusobna induktivnost. Sam in induktivnost (lekcija 11) dao je 
1886. godine Heaviside, a oznakom  je odata počast Lenzu. 
 
U raspodeli počasti nije izostavljen Joseph 
Henry prema kome je jedinica za induktivnost 

henri sa oznakom
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Odavde se sagledava ve  induktivnosti i otpornosti, analogna 
onoj koja postoji između kapacitivnosti i otpornosti. Istovremeno, ovo je 

če odavanja počasti, 
vn st. 
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za između 
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Faradaya ranije namirili jedinicom za kapaciti
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Opšta formula za međusobnu induktivnost može da se izvede na jedan 
veoma elegantan način koji koristi magnetni vektor potencijal (lekcija 39)
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dan za obilazak po 
ma (lekcija 89) 

 nema stvarnu upotrebnu 
avde se otkriva naj-

 

Dobijena formula uključuje dva linijska integrala, po je
akoj od kontura. Već u najjednostavnijim slučajevisv

formula dovodi do velikih matematičkih teškoća
vrednost u praktičnim proračunima. Međutim, od
važnija činjenica u vezi međusobne induktivnosti.
 

 

 i

Prvo, vrednost integrala se ne menja 
ako se zameni redosled integracije. 
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μ
===

1 2

210
2112

dd
4

C C
R

llLLM
rr

 
nture 

ogu međusobno da zamene uloge. 

 

 m
 

Tako se dobija konačan izraz poznat kao Neumannova formula. Pošto su 
međusobne induktivnosti iste, indeksi u oznakama postaju suvišni. 
Usvojeno je da se međusobna induktivnost obeležava sa M . 
 

Za bilo koji oblik i međusobni položaj kontura 1 i 2 važi: Fluks kroz 
konturu 2 prouzrokovan tokom struje kroz konturu 1 je jednak fluksu 
kroz konturu 1 kad ista struja teče kroz konturu 2. 

 

Promena struje u nekoj konturi ne samo da induk
obližnjim konturama, već indukuje elektromotor

uje elektromotornu silu u 
u silun  sε  i u sopstvenoj 

c e. konturi i to je pojava samoinduk ij
 

Magnetno polje i fluks su proporcionalani jačini 
a konstanta proporcionalnosti L  je koeficijent 
indukcije ili induktivnost. 
 

st
s

ruje, 
amo-

a bi se uspo i, izvor napo
prvo mora d lektromotornu sil
indukcije (lekcija 90). Induktivnost u električnim 
kolima ima sličnu ulogu kao masa u mehaničkim 

mima. Što je veća induktivnost teže je promeniti 
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Induktivnost (kao i kapacitivnost) je pozitivna 
veličina, pa negativan znak u zakonu indukcije diktira 
da će elektromotorna sila samoindukcije biti takvog 
smera da se protivi bilo kakvoj promeni struje. 
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u samo-

 
siste
struju - što je veća masa teže je promeniti brzinu. td

vmF d
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Određivanje koeficijenta samoindukcije (i međusobne indukcije) u opštem 
slučaju je veoma složen zadatak. Samo kod sistema sa velikim stepenom 
simetrije i pri kvazistatičkoj aproksimaciji mogu se dobiti približne 
praktično upotrebljive formule. 
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89. Međusobna induktivnost dve kružne konture 
 
Određivanje međusobne induktivnosti dve koaksijalne kružne konture 
(lekcije 37 i 88) je jedan od osnovnih problema. Neumannova formula. 
koja inače nema baš upotrebu vrednost, već u ovom primeru dovodi do 

ričnom koordinatnom priličnih matematičkih teškoća. U polarno-ciind
sistemu se dobija redom: 
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Ako se imenilac podintegralne funcije razvije u Tayloro
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Određeni integral po jednoj od promenljivih daje kons
integrala po preostaloj promenljivoj jednak gornjoj grani
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● Konačno, ako je ab >>  
dobija se prethodno izveden 
rezultat (lekcija 87). 
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konture 
 

● Neumannova formula za međusobnu induktivnost dve kružne 
ože da se napiše i u obliku u kome je razlika uglova zamenjena jednimm

uglom koji se, jasno, nalazi u istim granicama kao i razlika uglova, a koje 
opisuju pun krug. 
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Potpuna sličnost izraza za magnetni vektor potencijal kružne konture i 
međusobnu induktivnost dve kružne konture je posledica primene 

ure Neumannove formule, Naime, magnetni vektor potencijal kružne kont
(lekcija 44) u bilo kojoj tački prostora je 
 

)(
2

0 kf
r
aIA

π
μ

=φ . 
 

Prema Neumannovoj formuli (lekcija 88) je 
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90. Samoinduktivnost i kružna kontura 
 
Samoinduktivnost neke konture dobija se iz direktno iz Neumannove 
formule ako se pretpostavi da se dve identične konture poklapaju. 

đutim, tada konture ne mogu da budu beskonačno tanke. Ova nerealna 
pretpostavka daje 
Me

 1dl
r

 i 2dl
r

 0=R  kad se na putu integracije elem tien
podudare, što dovodi do beskonačne vrednosti integrala.  

o gde na površini prov ka. 

 
Za konturu koja ima konačnu debljinu može da 
se smatra da struja teče po osi provodnika što čini 
jednu konturu za integraciju. Druga kontura može 
da leži bil odni

 C′ a
0r

IC

C′ a
0r

IC  
 

Ovakv
  

im postukom se ne razmatra polje u 
unutrašnjosti provodnika i zbog toga  dobija 
samo spoljašnja (eksterna) induktivnost. 
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Ukupnu induktivnost čini zbir spoljašnje i unutrašnje induktivnosti. 
Problem unutrašnje induktivnosti ne postoji kod beskonačno tankih 

i kod proračuna međusobne induktivnosti. Međutim, kod prora-
čuna samoinduktivnosti debljina provodnika mora da se uzme u obzir, a tu 
nastaje problem definicije fluksa. Naime, u provodniku konačne debljine 

može da se odredi iz formule za 
međusobnu induktivnost dve konture (lekcija 89) kao specijalan slučaj u 
kome je 

kontura 

može da se obrazuje beskonačno mnogo zatvorenih kontura, a kroz svaku 
od njih postoji različiti fluks. Da bi se izbegle ove teškoće, samoindukcija 
se najčešće određuje pomoću energije magnetnog polja (lekcija 95). 
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č l druge vrste pti ki integra E  argumenta eli ima vrednost jedan, ali eliptički 

integral prve vrste K  za 2/π=α  postaje besko
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Pomenuti singularitet koji se pojavljuje u tački 2/π=α  može da se 
premesti u tačku nula tako što se uvede smena β−π=α 2/ . Zatim oblast 
integracije treba podeliti uglom 0→δ  na ma ži singularitet 
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o kome se integrali Prvi sabirak i dalje sadrži singularitet, ali je ugao p
vek mala veličina, 00 →δ≤β≤ , pa može da se napiše da je u
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U drugom sabirku uvek je 0>β , tako da može da se zameni 1=k . Za 
vrednost integrala se onda dobija  
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Kad se dobijeni rezultati saberu proizvoljni 
ugao δ  kojim je podeljena oblast integracije 
se eliminiše iz rezultata. 
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Dobijena aproksimativna formula za potpuni eliptički integral prve vrste 
važi za 1≈k  ali i dalje nije moguće koristiti granični slučaj 1=k . 
Međutim, kad se zamene vrednosti za koje se dobija usamljena kružna 
kontura, ba =  i 0rz = , ar <<0 , sledi 
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Konačno, iz formule za međusobnu induktivnost dve kružne konture 
dobija se formula za približno izračunavanje spoljaš

samljene kružne konture. 
nje induktivnosti 

u
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−μ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −μ=

2(2
0 E

k
Kk

k
abM ≈Le 28ln

0
0 r

aa  

eđusobmo 

− )() kk

 

Ovde treba napomenuti da se formula za induktivnost kružne konture 
skoro redovno izvodi tako što se smatra da je m rastojanje dve 
konture jednako nuli 0=d , a da su poluprečnici kontura a  i 0rab += , 
pri čemu je ar <<0 . To dovodi d too is g rezultata, sam

riznati, izgleda manje logično.  
o što, mora se 

p
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91. Induktivnost pravih paralelenih odsečaka 
 
U prethodnim razmatranjima prećutno je pretpostavljeno da su smerovi 
obilaska po konturama, tj. smerovi struja isti. Međutim, veličina i znak 
oeficijenta međusobne indukcije zavise od skalarnog proizvoda 

uočava kod pravih provodnika.  
 

Međusobna induktivnost međusobno upravnih provodnika je nula. 
 

k
elemenata kontura. To se najlakše 
 

 

Kod paralelnih provodnika struje mogu biti 
paralelne ili antiparalelne (lekcija 30), pa je 
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● Spoljašnja samoinduktivnost se dob ad se 
provodnici preklope, tj. kad je 
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U 
čnih omotača provodnika, 

istog pravca i smera (lekcija 30), pa je  

92. Dvožični vod i dva dvožična voda 
 
● Dva veoma duga paralelna provodnika, kružnih poprečnih preseka, kroz 
koje teku struje iste jačine i suprotnih smerova čine dvožični vod. 
Spoljašnju induktivnost dvožičnog voda najlakše je odrediti pomoću 
spoljašnjeg fluksa i definicije inudktivnosti (lekcija 89) 
 

tačkama površine između najbližih  
I

B
r

izvodnica cilindri
vektori magnetnog polja koje stvaraju 
struje koje teku po osama provodnika su 

02r01r d l

B
r

I

02r01r d
02r01r d ll

 
   

 Fluks vektora magnetnog polja treba 
izračunati kroz površinu konačnih dim -
zija, na primer kroz odsečak dužine , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

π
μ

=+=
21

0
21

11
2 rr

IBBB  en
l

 

0201

02010
2211

))((ln
2

dd
01

0201
rr

rdrdlIrBlr
rd

rr

−−
π

μ
=+ ∫

−

. 
02

Bl
rd

e =Φ ∫
−

 

Kad je rr  dr <<== 00201

ne provodni
nduktivnost, L

 sledi približna 

jedinici duži ka i naziva se 
podužna i

formula za spoljašnju induktivnost dvo-
žićnog voda koja se uobičajeno računa po 

0rI π
 

0 ln dlL e
e

μ
≈

Φ
=  

 

0

0 ln
r
dLe π

μ
≈′  

lL /=′ . 
 
● Dvožični vod čine provodnici 1-2, a A  
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se određuje fluks k

se
r

ak pov  3
unava eđ
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93. Koaksijalni solenoidi 
 
Kroz solenoid dužine 1l , kružnog poprečnog 
preseka poluprečnika a , tj. površine 1S  sa 

1N  namotaja protiče promenljiva struja 1I . 
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2ε

11IN
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1l
11IN
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Jačina indukovanog električnog polja (lekcija 
86) srazmerna je brzini promene struje i zavisi
od rastojanja od ose solenoida. 
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Rezultat očigledno zavisi od veličine obuhvaćenog fluksa. Kad kružna 
kontura obuhvata solenoid, ceo fluks se zatvara samo kroz popre ni presek 

olje je jednako nuli), pa poluprečnik konture, a i 
 više nisu od zna

č
solenoida (van solenoida p
njen oblik čaja. 
 

1

110
1 l

INB μ
= 11SB=Φ  π

μ
−=

Φ
−=ε 21

1

10
2 d

d
d
d a

t
I

l
N

t
 

žne ko re oko solenoida namotan drugi kraći 
olenoid sa  namotaja. U prethodnom razmatranju se ništa ne menja, 

 sila  puta veći. 

 

● Neka je umesto kru ntu
 Ns 2

osim što su fluks i indukovana elektromotorn
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● Zbog pojave samoindukcije u solenoidu se istovremeno induku  je
povratna elektromotorna sila koja je srazmerna broju namotaja 1N . 
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● Ako promenljiva struja teče kroz spoljašnji solenoid 
čno je nemoguće odrediti fluks kroz svaki od t

IM
d
d 2

1 −=ε  prakti
DMPDMP

t

namotaja dužeg solenoida jer je polje kraćeg solenoida 
veoma složeno i svi ti fluksevi su različiti. Međutim, 
međusobne induktivnosti su iste i problem je rešen. 

I2L
d
d

22 −=ε  

● Ako su solenoidi istih dužina onda se koeficijenti 
sopstvenih induktivnosti razlikuju samo po broju 
namotaja, pa se dobija veza između tih koeficijenata. 
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2

1

2

1

L
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M
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Alternativni naziv za pačje govno je Ljiljana Živković 
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o
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94. Model transformatora
 
Kad su dva solenoida namotana oko istog 
jezgra, tada sigurno buhvataju isti fluks. 
Jezgro je koncentrator fluksa. To je primitivan 

nsformator - uređaj za povećavanje li 
smanjivanje napona izvora promenljive struje. 
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Princip rada transformatora otkrio je Faraday
831. godine. Međutim, za otk

 svojim eksperimentom iz
riće transformatora vezuju se ena onih 

(dodatak B). Pošto svaki 
ol oida prožima isti fluks 
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gde su  i  povratna elektromotorna sila samoindukcije (u primaru), 1ε 2ε
odnosno indukcije (u sekundaru). Realniji primer nije bitno različit. 
 

Na primar je doveden prostoperiodičan napon. DMPDMP

 tUU ω= cos01  
Indukovana povratna elektromotorna sila u celosti
se suprostavlja dovedenom napo
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 11 U−=ε  nu. 
Na sekundar je priklju en potrošač . Ind 2Rč ukovana

DMPDMP

 222 RIU =  
stuja u sekundaru stvara pad napona na potrošaču. 
Pad napona je jednak indukovanoj elektromotornoj
sili jer nema drugih izvora napona. 
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Ako se prva jednačina pomnoži sa

12 / LL , a zatim oduzme od druge
direktno se dobija . Smenom tog 
izraza u prvu jedna inu dobij

, odnosno nakon i tegracije .  
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Na sekundaru se može dobiti
znatno veći napon od primarnog.
Međutim, to ne znači da je narušen
zakon o održanju energije. Naime, 
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95. Energija magnetnog polja 

retnom i kvazistatičkom 
 kretanju koja stvaraju 

 
U opštem slučaju, u nekom izolovanom, nepo
sistemu postoje naelektrisanja u mirovanju i
električno polje 

k

E , koje potiče od samih
promenljivog magnetnog polja (lekcija 85). Ta
energija, što može da se prikaže ekvivalentn

 naelektrisanja ali i od 
kvom sistemu se dovodi 

im spoljašnjim (eksternim) 
električnim poljem eE . Ukupna gustina struje u sistemu se dobija iz 
Ohmovog zakona (Sveska II) u diferencujalnom obliku. 
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i se elektromotorna sila samo-
ponentu. Izvor 

Uspostavljanju struje u sistemu protiv
dukcije koja električnom polju dodaje vrtložnu komin

napajanja ulaže rad da bi savladao tu prepreku i time deponuje deo energije 
u magnetno polje. Za elementarno vreme td  jačina magnetnog polja se 
poveća za Bd .  
 

 ∫=
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m VBHW ddd
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B

Magnetna energija je zbir svih priraštaja u toku 
procesa uspostavljanja struje, odnosno magnetnog 
polja. Za praktičan proračun energije potrebno je 
poznavanje krive magnećenja, odnosno krive 
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Gustina energije je jednaka površini koju ova 
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kriva gradi sa ordinatom (osa magnetnog polja).  
 
Za linerane sisteme je HB μ=  i izraz za energiju 
može da se napiše u sledećem obliku, 
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rugim rečima, spoljašnji izvor napona U  mora u celosti da savlada 
elektromotornu silu samoindukcije, 0=
● D

ε+U  (lekcije 88 i 94). Ako nema 
ubitaka, tada se celokupna energija izvora troši na vršenje tog rada, tj. na 

formiranje magnetnog polja
g

, Wmd tUId= , odnosno 
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Ako se upotrebe ranije izvedeni izrazi za fluks, prvo pomoću koeficijenta 
oindukcije (lekcija 88), a zatim moću magnetnog vektor potencijala 

(lekcija 39) dobijaju se još dve korisne formule za proračun magnetne 
energije, 

sam  po
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U poslednjem izrazu za energiju integracija se vrši po celoj zapremini u 
če struja. Međutim, integracija po zapremini koja je veća od one 

zaposednute strujama, dovodi do istog rezultata, jer je u proširenom delu 
takve zapremine gustina struje jednaka nuli. Takvim razmišljanjem dolazi 
se do zaključka da je ma netna energija lokalizovana u prostoru gde su 
lokalizovane struje.  
 
Sa ne o
m

kojoj te

g

 tra
ože da se izrazi preko magnetizacionog polja (lekcija 49), 

druge s , pomoću uopštenog Ampèreovog zak na gustina struje 
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Dalje, potpuno istim transformacijama 
koje su već primenjene kod jednačine 
bilansa snaga, izraz za energiju može 
da se dovede do oblika koji analogan 
izrazu za sn

 ∫=
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agu. Jedina razlika je što se 
u izrazima za energiju pojavljuje 
magnetni vektor potencijal, a u ovima 
za snagu izvod ovog vektora po 
vremenu. Istim rezonovnjem, kao i 
malopre, zaključuje se da površinski 
integral teži nuli. Dakle, u integraciji po 
celom prostoru ostaje samo prvi član.   
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raz za energiju, u kome se pojavljuje isključIz ivo
no isti kad se izvede na dva  

 
magnetno polje, je potpu
načina, ako su to uopšte dva načina. 
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● Na osnovu ovog izraza može da se zaključi da je 
celom prostoru gde magnetno polje postoji, a ne u prostoru ispunjenom 

a, kako je prethodno zaključeno. Gde je lokalizovana magnetna 
er

 sistema da magnetno polje ne vrši 
elogično da se energija deponuje u magnetnom 

polju. Međutim, nastajanje struje u sistemu prati promenljivo ma netno 
polje, a promenljivo magnetno polje, prema Faradayeovom zakonu, prati 

 sadrži feromagnetne materijale, samo deo 
uložene energije može da  gnetnog polja. Deo 
energije je o e agnećenje materijala. Gde je energija 

eđu ta dva procesa? Zato o energiji magnetostatičkog polja govore 

energija lokalizovana u 

strujam
energija? Logično je da je magnetna en gija lokalizovana u istom 
prostoru u kome je več lokalizovana energija električnog polja (lekcija 21). 
Gde je magnetna energija nakon završetka procesa uspostavljanja struje?  
 

Pošto je energija sposobnost  vrši rad, a 
rad (lekcija 18), izgleda n

g

promenljivo električno polje i protiv sila tog polja se vrši rad. Uloženi rad 
odlazi u formiranje magnetnog polja. Proces je obrnut kad struja u sistemu 
nestaje. Tada sile promenljivog električnog polja vrše rad tj. magnetno 
polje sistemu vraća uloženu energiju. U linearnim sistemima energija se 

ća bez ostatka. Kad sistemvra
 se vr
š

ati razgradnjom
n na m

ma
 nepovratno utr

izm
samo oni koji sebi nisu postavili prethodna pitanja. 
 
● Postoji značajna sličnost izraza za 
energiju magnetnog polja i izraza za 
energiju električnog polja (Sveska I). Ta 
sličnost ima svoje korene u definicijama 
nduktivnosti i kapaci
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ije debljina 
, a tada se 
cije 0-92). 
e, tako što 
 konture. 

 ● Kod proračuna koeficijenta samoinduk
provodnika mora da se uzme u obzir
javljaju teškoće oko definicije fluksa (lek
Ovaj problem treba izbeći, ako je moguć
se proračun izvrši preko izraza za energiju

c
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● Prilikom proračuna energije integracija
Zapremina koju zauzimaju provodnici j
prostora je spoljašnji domen.  
 

Prema tome ukupna energija može da s
kao zbir energije lokalizovane u polju
icima (interna energija) i energije lo

 se vrši po celokupnoj zapremini. 
e unutrašnji domen, a ostatak

e predstavi 
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kalizovane u 

a koeficijenta - 
. zbir unutrašnje i spoljašnje induktivnosti. 

 

 

∫=
iV

i VHB
I

L d1
2

rr
 

∫=
eV

e VHB
I

L d1
2

rr
 

 

n
polju van provodnika (eksterna energija). U opštem 
slučaju magnetne permeabilnosti sredina su različite. 
Koeficijent samoindukcije je zbir dv
tj ie LLL +=  
 
● U opštem slučaju raspodela struje u provodniku zavisi od učestanosti 
(lekcija 105). Zbog toga od učestanosti zavisi i raspodela magnetnog polja, 
a posledično vrednosti koeficijenata indukcije. Ako su provodnici tanki 
spoljašnja induktivnost ne zavisi bitno od od raspodele struje, jer je 
magnetno polje van provodnika isto kao da struja teče po osi provodnika. 
Međutim, unutrašnja induktivnost uvek zavisi od učestanosti. Koeficijenti 
indukcije su statički ili dinamički zavisno od toga da li su računati pod 
uslovima kvazistatičnosti ili ne. 
 
● Neka je posmatrani sistem provodna kontura C  u kojoj deluje izvor 
napona U  i koja ima svoju otpornost R  i induktivnost L . Kad se 
diferencijalni oblik Ohmovog zakona skalarno pomnoži elementom 
konture l

r
d  i integrali po celom obimu konture dobija se jednačina napona 

koja ima formu II Kirchhoffovog zakona. 
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96. Energija solenoida 
 
Sve formule koje su izvedene za energiju uključ
zapremini, mada se to eksplicitno ne vidi kod formule z
preko induktivnosti. Sistemi koji imaju bar jednu 

uju integraciju po 
a proračun energije 

beskonačnu dimenziju 
ali bi beskonačnu energiju. U takve sisteme spadaju dvožićni vodovi, 

aja za problem su konstantne. Takođe, ako 
 daleko tako da ne 
ipičan primer j  

 solenoidu konačne 
 polovinu vrednosti 
lenoid veoma dug 
bija se rezultat koji 

t 
ivnost i 

im
koaksijalni vodovi i usamljeni provodnici. U stvari, te sisteme smatramo 
veoma dugim. U posmatranom delu zapremine, oko nekog poprečnog 
preseka, karakteristike od znač
povratni vod nije obuhvaćen sistemom, smatra se da j
utiče na polje u posmatranom delu zapremine. 
beskonačan solenoid kroz koji protiče stalna struja. U
dužine, jačina magnetnog polja na krajevima opada na
koju ima na sredini ose (lekcija 38). Ako je so
(beskonačan) polje se može smatrati konstantnim i do
inače daje primena Ampèreovog zakona (lekcija 24 ili 53). Induktivnos

eskonačnog solenoida je takođe beskonačna. Zbog toga se indukt

e
T e

b
energija solenoida računaju po jedinici dužine, a to važi i za vodove. 
 
● Proračun energije preko induktivnosti  
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● Proračun energije preko magnetnog vektor potencijala  
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● Tri form l za energiju ogu
za prora oindukcije (lekcija 95).  

 u e daju alternativnu m ćnost 
čun koeficijenta sam 2

2
I
WL =  m

 

P
(l

roračun koe cije samoindukcije m že da bude složen problem 
ekcija 90  često je jednostavnije izračunati energiju sistema pomoć  
čine magnetnog polja, pa zatim iz energije izračunati induktivnost. 
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i 

nta o veoma 
) u

ja
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nost pravog provodnika 97. Unutrašnja induktiv
 
Izračunavanje induktivnosti pravog provodnika je 
jedan od elementarnih problema koji se javlja u 
svim proračunima u kojima debljinu provodnika 
nije moguće zanemariti. Magnetnu energiju pro-
vodnika poluprečnika a  i konačne dužine l  je 
najlakše izračunati pomoću jačine magnetnog polja 
(lekcija 22). 
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Integracija je izvršena po zapremini zaposednutoj 
provodnikom i to je unutrašnja (interna) energija. 
Shodno tome, izračunava se unutrašnja podužna 
induktivnost provodnika. Dobijeni izraz, kao i do 
sada izvedeni, važi samo u kvazistatičkom slučaju. 
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Ukupna induktivnost sistema je zbir s
eksterne) i unutrašnje (interne) induktivnosti. U

poljašnje 
 

tom smislu treba uopštiti ranije izvedne formule. 
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98. Podužna induktivnost koaksijalnog voda 
 

irektnom primenom postupka za proračun energije preko jačine polja i 
lni vod (lekcija 23) se 

obijaju sledeći rezultati. 
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99. Energija induktivno spregnutih kontura 
 
Razmatranje koje važi za sistem koji se sastoji 
od n  zatvorenih kontura može se, bez gubljenja 
na opštosti, prikazati za sistem od dve konture. U 
stacionarnom stanju kroz dve konture protiču 
stalne struje 1I  i 2I . Koliko energije je uloženo?
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r
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r

1B
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Naka se u prv 1I . oj konturi uspostavlja struja 
a je u početku otvorena, 02 =I . Druga kontur

Prvi generator ulaže energiju 1W . 

DMPDMP
2
111 2

1 ILW =  

 

 

U drugoj konturi se sada uspostavlja struja 2

U prvoj konturi se održava stalna struja 1I . 
Drugi generator ulaže energiju 2W . 

I . 
2
222 2

1 ILW =  DMPDMP

 
 

Zbog pojave struje 2I  u prvoj konturi se javlja 
elektromotorna sila međusobne indukcije 1ε . t

IM
d
d 2

1 −=ε  DMPDMP

 
 

Da bi struja 1I  ostala stalna, prvi generator 
ulaže dodatnu energiju 12W  savladavajući 1ε . 2112 IIMW =  DMPDMP

 
 

Ukupna energija sistema je  W . DMPDMP

1221 WWWW ++=  
    

 

● Drugi  stacionarnom stanju kroz dve kontu ve 
stalne struje. Energija sistema je energija rezultujućeg polja, koje je pak 
vektorski zbir komponenti, 

m rečima, u re protiču d

21 BBB
rrr

+= , 21 HHH
rr
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r

. Tako se čisto
atematičkim postupkom dolazi do istog rezultata kao i pomoću fizički 
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zasnovane prethodno sprovedene  analize. 
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U linearnim sredinama, rad o zvrše generatori napona, savladavajuć
indukovane elektromotorne sile prilikom uspostavljanja struja, u celosti se 

u energiju. Energija magnetnog polja ne zavisi od 

k ji i i 

transformiše u magnetn
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a zakonom o 
ći takav način 

ju polje vraća bila veća 

 d  

načina i redosleda uspostavljanja struja, što je u skladu s
držanju energije. Da nije tako, uvek bi se mogao pronao

razgradnje magnetnog polja pri kome bi energija k
od energije koja je uložena u njegovu gradnju. 
 
● Iz izraza za energiju dve spregnute konture  
uopštavanjem se obija izraz za energiju sistema 
od n  kontura. 
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● Izraz za energiju dve spregnute ko

nturam
nture može da se napiše u obliku u 
a kome figuriše odnos struja u ko
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Iz ovog oblika može da se od di re ekstremna vrednost, izjednačavanjem 
d uvek pozitivna veličina, prvog izvoda sa nulom. Pošto je drugi izvo

ekstremna vrednost je minimum. 
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Energija je uvek nenegativn ve
ledi uslov za koeficijente indu

a ličina, te odatle 
kcije. U opštem 21LLM ≤  

s
slučaju međusobna induktivnost se izražava 
pomoću koeficijenta sprege k . 

  

21LLkM =  

 
● Kad kroz dve induktivnosti protiče ista struja (na primer, dva solenoida u 
rednoj vezi) izraz za energiju može da se napiše u obliku u kome figuriše 

ivnost. ekvivalentna indukt
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Međutim, induktivna sprega između dva elementa sistema zavisi od 
etrijskih odnosa (i od smerova struje što se svodi na međusobni 

položaj) i može da bude pozitivna, negativna i jednaka nuli. 
 

geom

    
  

L21

  

MLL 221 ++  M2L −+  MLL 221 −+  2LL +  1
 

enjanjem međusobnog položaja kalemova  M
podešava se i ekvivavelntna induktivnost, a uređaji 
su nazvani promenljivi induktori ili variometri. 
Teorijski je moguće postići nultu induktivnost.  
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. 

● Induktivnost je često nepoželjna karakteristika, na primer, kod žičanih 
otpornika kod kojih se otporna žica namotava u obliku kalema ili ravne 
spirale. Spiralni solenoid zanemarljive samoinduktivnosti, koji je Tesla 
patentirao kao kalem za elektromagnet 1894. godine, danas je široko 
oznat kao Teslina palačinka (Tesla pancake). p

 
 Da bi se induktivnost svela na najmanju 

moguću vrednost koristi se bifilarno 
at. bi - dva, filum - nit) motanje. Kad(L

se na jednom kraju namotaja provodnici 
spoje, struja kroz dva identična kalema   
protiče u suprotnim smerovima i ukupna 
induktivnost je jednaka nuli. 

 
02 1111 =−+= LLLLLe  

 
 Kad se kalemovi predstavljaju šematski ne postoji mogućnost 

 naponi i struje promenljivi u vremenu, 
 se referentni smer struje. Referentni smer određuje smer obilaženja 

po konturi koja sadrži indu ne elemente, a posledično određuje znak 
koeficijenta međusobne indukcije i indukovane otorne sile. 

●
određivanja znaka koeficijenata međusobne indukcije. Zbog toga je 
usvojena konvencija o obeležavanju induktivnih elemenata pomoću 
tačaka. Pošto su u opštem slučaju
uvodi

ktiv
 elektrom
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a  da oba 

ferentna smera struje ulaze u solenoide

Neka su induktivni elementi solenoidi. 
Ako se na osnovu posmatranja utvrdi da 
je koeficijent međusobne indukcije 
pozitivan, tačke se crtaju t ko

 

0≤M 0≤Mre
kod nacrtanih tačaka i obrnuto.  
 
● U svakom od dva induktivno spregnuta 

 po tri elektromotorne sile. 
Prva potiče od dejstva generatora, druga  

oindukcije i treća od 
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izraziti u formi 

Ohmovog zak a.
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i ako se jednačina 
 za slučaj dve ili više 
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Do istog sistema diferencijalnih jednačina se dola i 
bilansa energije za jednu konturu (lekcija 95) uopšti
spregnutih kontura. 

z



144                                                           Dejan M. Petković 
 
100. Struja u kolu sa otpornikom i kalemom - RL kolo 
 
Data je redna veza otpornika R  i kalema L . Ovi 
elementi, i pred toga što se prikazuju posebno, nisu 
bavezno koncentrisani jer svaki provodnik U L

R
P

21
o  ima 

otpornost. 

 

svoju induktivnost i svaki kalem ima svoju 
U L

R
P

21

 

binacija priključi na izvor 
indukovana 

ji koja se iznenada pojavila.
 silu samoindukcije i u kolu se 

e teče jednosmerna struja 
alne jačine 

 
 NEMOJ DA DOLAZIŠ. Kad se RL kom

jednosmernog napona u kolu se trenutno pojavljuje 
elektromotorna sila koja se protivi stru
Priključeni napon savladava elektromotorn
postepeno uspostavlja stacionarno stanje u kom

 
u

RUI /0 = . st
 

 NEMOJ DA ODLAZIŠ. U stacionarnom stanju izvor napajanja se isključi 
prespajanjem krajeva RL kombinacije. Istovremeno sa isključivanjem 
napona, u kolu se pojavljuje elektromotorna sila koja koja bezuspešno 
pokušava da održi struju koja nestaje, čak skokom varnice ako električno 
kolo nije zatvoreno. Kad se sva energija akumulirana u magnetnom polju 
utroši struja pada na nultu vrednost, 0=I . 
 

Prelazni režim   Uključivanje   Isključivanje  
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Početni uslov   0=t , 0II =  DMPDMP
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O  vremenska konstanta, a recipročna vrednosdnos RL /=τ  je t )2/(1 τ=α  
je nja  Što je induktivnost veća prelazni režim je duži. 

rno stanje se uspostavlja nakon beskonačnog vremena. 
Praktično, potrebno je nekoliko vremenskih konstanti. Dobijene rezultate 

ma, gde magnetna permeabilnost ne zavisi od jačine 
polja, energija magnetnog polja je jednaka radu koji izvor napajanja utroši 

 faktor priguše .
Teorijski, staciona

treba uporediti sa onima (Sveska II) koji se dobijaju za punjenje i 
pražnjenje kondenzatora preko otpornika. 
 

U linearnim sredina
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za uspostavljanje magnetnog polja. Ako se jednačina uspostavljanja struje
 kolu pomnoži članom tI d , dobija se jednačina energetskog bilansa, 

 
u
 

tIRtIU dd 2 += IIL d  
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d
d tI
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   Ju WW dd  mWd+=
      
      
    

Energija 
izvora napajanja 

Energija 
 Jouleovih gubitaka

Energija 
magnetnog polja 

 

Leva strana jednačine predstavlja energiju koju izvor troši u toku 
uspostavljanja struje u kolu. Desna strana jednačine pokazuje kako se ta 
energija raspoređ je. Prvi sabirak predstavlja Joulove gubitke, a drugi 
energiju koje se 

u  
zbog samoindukcije pretvara u magnetnu. Na kraju 

prelaznog režima struja dobija svoju stacionarnu vrednost. U stacionarnom 
režimu (struja je konstantna) nema pada napona na kalemu i napon izvora 
jednak je padu napona na otporniku. Međutim, u magnetnom polju je 
akumulirana energija koja može biti vraćena izvoru ili pretvorena u neki 
drugi vid energije. 
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gde je  zapremina solenoida. Dobijeni izraz, takođe analogan sa izrazom 
g polj  (sveska I), pok uje da je ener ija 

polju. 

ti se vraća
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● Ukupna energija sadržana u polju je reverzibilna i u potpunos  
prilikom isčezavanja polja. U posmatranom slučaju energija ne može da 
bude vraćena izvoru (jer je isključen) i transformiše se u Joulove gubitke. 
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eka je kondenzator inicijalno priključen na napon 
 i tako napunjen količinom naekektrisanja 

. U trenutku 

101. Pražnjenje kondezatora preko kalema - LC kolo 
  
N
U
Q CU= 0=t  kondenzato
nikom prespoji na kalem. 
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−
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r se preklop-

 

Uspostavljanje struje u kolu znači smanjivanje količine n ja u 
kondenza

aelektrisan
toru, pa je QI /d td−= . Istovremeno se poj  avljuje indukovana

elektromotorna sila dt/dd/d QLtIL =−=ε . Kako nema spoljašnjih 
izvora, diferencijalna jednačina ovog kola je 0

22

=ε+U . Međutim, do iste 
jednačine, sasvim elegantno, se dolazi i iz jednačine energetskog bilansa. 
 
   

Energija kola u nekom trenutku 
posle prebacivanja preklopnika. 
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Kad nema generatora i otpornosti 
energija se ne menja u vremenu, 
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Konstanta 0ω  je sopst
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Diferencijalna jednačina 
električmog kola. 
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Opšte rešenje diferencijalne 
jednačine  tCtCI 020010 sincos ωω+ωω−=  
 
 

Početni uslovi DMPDMP

 0=t , 0=I  0=t , CUQ =  
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Energija električnog kola tokom 
vremena se ne menja. 
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U prvoj četvrtini perioda kon- 2

denza
raste, električna energija 
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vraća energiju električnom polju.
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102. Otpornik, kalem i kondenzator - RLC kolo  

kao i u 

 
ealno električno kolo uvek ima otpornost, bar  R
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onu koja potiče od kalema i provodnika. Jedini 
izvor u kolu je napunjeni kondenzator, pa je 

prethodnom slučaju tQI d/d−= .  
U svakom trenutku snaga Jouleovih gubitaka 

niku je jednakna otpor a brzini smanjenja 
elektromagnetne energije, 
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Sa već uvedenim oznakama )2/( LR=α  i LC/10 =ω  sledi razmatranje:  
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DMPDMP

tteCUI α−α= 2  
tetCCQ α−+= )( 21  

 
 

2 Nadkritično prigušenje βLR 02ω> ±α−=2,1k , 2
0

2 ω−α=β  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

β
α

+β= α− ttCUeQ t sinhcosh  
tt CCQ )(

2
)(

1
β−αβ+α +=  DMPDMP

teCUI t β
β
β−α

= α− sinh
22

 
ee −−

 
 

3 Podkritično prigušenje LR 02ω< ω±α−=2,1k , 22
0 α−ω=ω  

teUCQ t ω= α− cos  
tetCtCQ α−ω+ω= )cossin( 21  DMPDMP

⎟
⎠
⎞

⎜
⎝
⎛ ω

ω
α

+ωω= α− tteUCI t cossin  
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● Neka u RLC kolu deluje gener
diferencijalne jednačine se pretpost
 

    
 Prinudne

ator prostoperiodičnog napona. Rešenje 
avlja u prostoperiodičnom obliku. 

 o cilacije u RLC kolu s  URI
t
ILQ

C
=++

d
d1

       

       UU t
      

ωsin0  =  ][Ω DMPDMP

 
       
      

)sin(0 ϕ−ω= tII   
       

      
)cos(

d
d

0 ϕ−ωω= tI
t
I

  

       

 

U

      
)cos(1

0 ϕ−ω
ω

−= tIQ  

L

C

R

~ U

L

C

R

~~~~

 R  
 
 LX L ω=  
 

 
C

XC ω
=

1
 

  

  
tUtRItILtI

C
ω=ϕ−ω+ϕ−ωω+ϕ−ω

ω
− sin)sin()cos()cos(1

0000  

 

Iz dobijene jednačine treba odrediti amplitudu i fazu struje u kolu. 
Trigonometrijske funkcije razlike dva ugla treba razviti, a zatim uporediti 
levu i desnu stranu jednačine. 
 

 Članovi uz tωcos   Članovi uz tωsin   
 
 

0

0cossin1
I

UR
C

L =ϕ+ϕ⎟
⎠
⎞

⎜
⎝
⎛

ω
−ω  0sincos1

=ϕ−ϕ⎟
⎠
⎞

⎜
⎝
⎛

ω
−ω R

C
L  

 
   

Obe jednačine se kvadriraju, a zatim 
saberu. Dobija se izraz za nepoznatu 
amplitudu struje. Odavde je jasno 
odakle potiču pojmovi koje je uveo 
Heaviside (lekcija 11). 

 
DMPDMP

 ( )22
0

0
)/(1 CLR

UI
ω−ω+

=  

 

ZUI /00 =  
   

   

DMPDMP

 LX L ω= , CXC ω= /1  Induktivna i kapacitivna reaktansa 
 
 

  
  

DMPDMP

 CL XXX −= , 22 XRZ +=  Ukupna reaktansa i impedansa 
 
 

  
  

. DMPDMP

 CL XX = , 0=X , RZ =  Kolo je u rezonansi za 0ω=ω
 

 

  

  

Iz prve jednačine se donija fazni stav.
 

R

Z CL XX −ϕ
R

Z CL XX −ϕ

 

DMPDMP

 RX /tan =ϕ  
 

ZR /cos =ϕ  
 

ZX /sin =ϕ  
   

 

Srednja snaga na impedansi se dobija ako se proizvod trigonometrijskih 
funkcija transformiše u zbir i zatim integrali za jedan period. 
 

RItt
T
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T
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2
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103. Energija i sila 
 
Na osnovu ukupne energije sistema je moguće 
momente) koje deluju u sistemu. Metod je zasno
energije, a poznat je kao metod virtuelnih pomera
 

odrediti rezultatne sile (i 
van na zakonu o održanju 
ja (Sveska I).  

 

gδ

nΦ

1Φ

2Φ
nI2I

1I fgδ

nΦ

1Φ

2Φ
nI2I

1I f  
   

je izvršen virtuelni 
rad (Lat. vir a  skoro takav, ima osobine), 
koji je rezultat delovanja uopštene sile duž 

Virtuelni pomeraj je zamiš ntaljena eleme rna 
promena neke koordinate sistema, tokom koje 
vreme ne teče. Zamišljeno pomeranje nekog 
elementa sistema znači da 

tu lis -
f

uopštene koordinate g .  gfA δ=δ  

 

g  dužina, tada je  sila, a ako je f g  ugao, tada je  moment sila. 
 sistemu zna menu geometrijskih odnosa, 

funkcije 
kih od

f

sti koje su 

Ako je 
Pomeranje nekog elementa u

nosa (

či pro
a to znači promenu svih kapacitivnosti i induktiv
samo geometris

no
 i  μ  su konst e ve ine).  

 

anε tn lič
 

ϕ= /qC  Po definiciji kapacitivnos
  

t je odnos količine 
st je 

atranje:  
naelektrisanja i potencijala, a induktivno
odnos fluksa i struje, pa sledi razm

 

IL /Φ=  
 

 Ako je tokom vršenja rada sistem uključen na izvor napajanja, 
struje u sistemu ostaji olazi do preraspodele 

eva. Rad je izvršen na račun energije izvora. 
e ećava za pr aštaj koji je jedn

A rada sistem nije priklju
i fluksevi u sistemu ostaju kakvi su i bili, a dolazi 

do promena potencijala i struja. Rad je izvršen na račun energije sistema 
koja se smanjuje za priraštaj koji je jednak izvršenom radu. 

m

potencijali i konstantni, a d
količina naelektrisanja i fluks
En
 

rgija sistema se pov ir ak izvršenom radu.  

 
kol

ko tokom vršenja 
čine naelektrisanja i 

čen na izvor napajanja, 

 

Ele entarni virtuelni rad Aδ  je brojno jednak virtuelnom priraštaju 
rene gije Wδ , a odatle se dobija izraz za proračun uopštene sile. 

 
    

    

 Izvor napajanja   uključen    isključen  
 

IAIzvor Φ=δ , 2/IWm Φ=δ   
 

    

mIzvor WA δ=δ 2      0=δ IzvorA  
Ene mSistemIzvor WArgetski bilans A =δ δ + δ bez Jouleovih gub aka it

   
mSistem WA δ=δ     mSistem WA δ−=δ  

 

 Potencijali i struje su konstantni 
g
Wf
δ
δ

+=  
Naelektrisanja i fluksevi su konstantni g

Wf
δ
δ

−=  
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erova struja u sistemu. Primena metoda virtuelnih pomeraja biće 
a ranije rešav

 
 Dvožični v d 

 
 

Predznak u izrazu za generalisanu silu određuje samo smer sile. U većini 
slučajeva je jednostavnije smer sile odrediti iz fizičke ralnosti, tj. pomoću 
sm
ilustrovana n anim primerima.  

● o
  

MDPMDP

π
μ

+
π
μ

≈Ukupna sopstvena induktivnost 
du 97) po jedinici žine (lekcija 

′
40

0

r
dL  

 
 

ln
  
  

MDPMDP ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ μ
+

π
μ

=′=′
4

ln
22

1

0

202 r
m r

dIILW  
  
  

Ukupna magnetna energija po 
jedinici dužine (lekcija 95) 
 
 

MDPMDP ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

μ
=

′Sila između provodnika zavisi 
sam  od spoljašnje energije. o

=′
0

2
0 ln

d
d

2d
d

r
d

d
I

d
WF m  

   
   

Sila po jedinici dužine (lekcija 
31). Smer zavisi od smerova 
struja u provodnicima. 

MDPMDP II
d
IF ⋅
π

μ
=′ ~

2

2
0  

   

 
● Koaksijalne kružne konture 
 
   

Međusobna induktivnost 
u slučaju  (lekcija 87) ab >>

MDPMDP

2/322

22
0

)(2 zb
baM

+
πμ

=  
 
 

  
  

Spoljašnja energija sistema 
(lekcija 95) 

MDPMDP

2/322

222
02

)(42
1

zb
baIMI

+
πμ

==  Wm

  

  

 

 

Ukupna sila između kontura. 
Smer zavisi od smerova II

zb
0

MDPMDP

 struja. 
Ibaz

z
WF m ⋅

+
πμ

== ~
)(4

3
d

d
2/522

222

 
   

 
● Koaksijalni solenoidi - U širi solenoid ( oprečni presek ) dužinom

opre i presek
 jedna  nuli, tako da samo  z ičkom

p  1S
). U najgrubljoj aproksimaciji 

ajed

 z  

2Suvučen je uži solenoid (p čn
polja van solenoida su ka

 
 u n  delu 

zapremenime ( zSV 212 = ) dejstvuju polja koja potiču od o enoida. 
 
 

ba sol
  

MDPMDP ∫ +
μ

=
V

m VHHW d)(
2

2
21

0  Ukupna energija sistema 
(lekcija 95) 
   
   

Deo energije u delu preklapanja 
solenoida. 

MDPMDP zSHHWm 221012 μ=  
  
  

 
 

MDPMDP

212210
12 ~

d
dUkupna sila između solenoida. 

Smer zavisi od smerova struja. IISHH
z

WF m ⋅μ==  
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104. Noseća sila (elektro)magneta 
 
Spoljašnja energija elektromagneta je lokali-
zovana u vazdušnom procepu tj. između 
polova i kotve i može da se odredi pomoću 

 

gmr
xS

gmr
xxS

 

prethodno izvedenh formula (lekcija 95). 
 

SxBVBWm
0

2
0

0

2
0

22 μ
=

μ
= , 

 

gde je x  rastojanje pola od kotve, S  površina 
procepa i 0B  jačina polja na polu. 
Virtuelni pomeraj kot e zv a xδ  menja energiju sistema za mWδ , pa sledi 
 

g
Wf
δ
δ

=  m

x
F m

d
d

=   
W

0

2
0

2d
d

μ
=

SxB
x

F   
0

2
0

2μ
=

SBF  

 

● Neka je, zbog jednostavnost proračuna, jačina magnei tnog polja u 
vazdušnom procepu T10 =B  i neka je polupre
elektromagneta m02.0

čnik jezgra potkovi astog č
=r , tada je noseća sila N1000=F . Takva jačina 

a i malim jač ama 
azdušnog 

magnetnog polja postiže sa relativno malim dimenzijam
 proračunu može se uzeti da je površina v

in
struje. U približnom
procepa ista kao i površina poprečnog preseka jezgra i da je magnetno kolo 
linearno (lekcija 74). Za jezgro kvadratnog oblika se onda dobija: 
 

  

SS
R

r
m

00 μ
+

μμ
= , xl 24

mm RR
==Φ , 

 

m INF

NIFm =

xl
IN

S
B

r

r

μ+
μμ

=
Φ

=
24

0
0 ,   i ne zavisi od S . 

Ako je 
cm8=l , m10 5− , 3000 =x =μr  i A100=NI  

sledi T10 ≈B . 

Φ

l

l

x

NIFm =

Φ

l

l

x

 
   

● činjeno od 
mekog gvožđ . Maksimalana noseća sila se 
dobija ako u proračun ljuč jačina polja pri 
zasi

 Neka je jezgo elektromagneta na
a

uk i 
ćenju, T59.1≈B . Tada je 3000=μr . 

Snažnija polj do pada magnetne 
permeabilnost materijala (lekcija 57). 

 

a bi dovela 
]A/m[H

6.1

300

]T[B

100

8.
Fe

0
]A/m[H

6.1

300

]T[B

100

8.
Fe

 

enim jezgrom može da 
u pola. 

0

 

2  Teorijski, magnet sa gvozd6
nosi oko 100 tona po kvadratnom metrmax N/m10/ ≈SF
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a 22). Ako provodnik ima 
cilindričan) raspodela struje nije ravnomerna ali 

zapremini provodnika. Međutim, struje promenljive u 
inu provodnika. Uzrok ove pojave je 
enljive struje stvaraju promenljivo 

ukovano promenljivo električno polje. Ovo 
ovane struje koje stvaraju sekundarno 
elektromagnetne indukcije sekundarn  

, tako da je ukupni fluks u provodniku 
o su promene fluksa brže. Na visokim 
 samo u površinskom sloju provodnika. 

skin effect) i prvi je primetio 
ći elektrode sfernog oblika. 

m. Neka se  
prostire u  pravcu kroz 

no, 
đutim, svi rezultati 

 praktični značaj. 

105. Površinski efekat 
 
U cilindričnom provodniku stalnog poprečnog preseka vremenski stalna 
struja se ravnomerno raspoređuje (lekcij
promenljiv presek (ili nije 
postoji u celoj 
vremenu se koncentrišu uz površ
elektromagnetna indukcija. Prom
magnetno polje, koje prati ind
električno polje prouzrokuje induk
magnetno polje. Prema zakonu 
fluks se suprostavlja primarnom

i

smanjen. Efekat je sve izraženiji št
učestanostima struja i polje postoje
Pojava je nazvana površinski efekat (Eng. 
Horace Lamb 1833. godine, proučavaju
 

Odaberimo jednostavniji proble
rostoperiodična struja 

zJy

z

xB

⋅⋅ ⋅

⋅

p  z
homogeni poluprostor 0≥y . Površno gleda

 je čisto teorijski. Meproblem
koji će biti dobijeni imaju

⋅ ⋅⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅

σμ,

zJy

z

xB

zJy

z

xB

⋅⋅⋅⋅ ⋅⋅

⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅

σμ,  

ja teč , magnetno polje ima samo
 

Pošto stru e u z  pravcu  x  komponentu 
pèreovog i Faradyevog zakona dobija par 
čina. 

(lekcija 26), pa se iz Am
povezanih jednameđusobno 
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Kada se obe jednačine diferenciraju po y oguće je eliminacijom jedne, 
pa zatim i druge funkcije, dobiti dve nezavisne jednačine. Kad se struja 
menja po prostoperiodičnom zakonu, po istom zakonu se menja

, m

 i 
agnetno polje. Nakon uvođenja komleksnog predstavljanja trigono-

de dve obične diferencijalne jednačine sa 
a. NA DALJE SU SVE VELIČINE KOMPLEKSNE

m
metrijskih funkcija sle

 koeficijentimkonstantnim
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moji saradnici o ovome imaju samo maglovitu predstavu 
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ωμσ=γ j  

 

ωμσ
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=γ
2

)j1(
 

k)j1( +=γ  

 

 

ome 
 

te  

vodnike je 

Obe dobijene jednačine su istog oblika u k
nkcija Y  predstavlja gustinu struje ili magnetnofu

polje i gde je γ  konstanta  prostiranja. U opš
slučaju (Sveska V) je 
 

)/j(22 ωσ−εμω−=γ . 
 

m

Za dobre pro 1)/( >>ωεσ , pa se dobija, 
kao što je i ovde dobijeno, 
 

ωμσ=γ j2 . 
 

 

Realni deo je kostanta slabljenja, a maginarni 
je fazna konstanta (lekcija 108) i ob

i deo 
e su jednake. 

  

2
ωμσ

=k  

 

Rešenja gornjih diferencijalnih jednačina su takođe istog oblika. Na 
graničnoj površini 0=y

o )0(Bx

 obe funkcije kompleksne efektivne vrednosti 
 od0)0( JJ z = , 0B= , što u zajedničkoj notaciji odgovara  0Y .nosn

 

    yy eCeCY γ−γ += 21
Pošto ni gustina struje ni polje ne 
mogu neograničeno da rastu kad 

∞→y , sledi da je 01 =C 02 YC i = .     kyeYY )j1( +−=  ⎭
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Jasno, isti funkcionalni oblik imaju i električno i magnetizaciono polje. 
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● Faza vektora gustine
netnog i električnog polja) menja se 

janjem od granične površine. 
Na rastojanju 

 struje (i mag-

sa rasto
k/

0=y  

 )j1(0 ++= kHJ z  

ky /π=y π=
          gustina struje 

akom trenutku suprotnog smera 
oji  

je u sv
noga k  ima na površini. od o )j1(0 +−= π−ekHJ z  

 

● Ampltuda vektora gustine struje (i magnetn
električnog polja) sa rastojanjem od gran
površine op d ksponencijaln m
dubini ky /1

og i 
ične 

a a po e o  zakonu. Na 
=δ=  amplituda ima e  puta manju 

vrednost nego na površini (Sveska V). Ta dubin
azvana dubina prodiranja struje i polj

k
12

=
ωμσ

=δ  

  

δ
σμ,

aδ
σμ,

a

 

a je 
a u provodnik. 

(Eng. skin depth). D
struja tangenta na površ

n
obijeni rezultat važi kad god je 

inu provodnika. 
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oma tankom sloju uz površinu provodnika. 
integracijom zapreminske gustine po 

● Struja je koncentrisana u ve
ovršinska gustina struje se dobija P

koordinati y . Za proizvoljnu dubinu y  se dobija 
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Pošto je provodnik poluprostor ∞<≤ y0 , 
ukupna površinska gustina struje se dobija za 

∞→y  i jednaka je jačini magnetizacionog polja 
uz površinu provodnika, što je jasno realna 
veličina. Odnos površinskih gustina struje za 
proizvoljnu i ukupnu (beskonačnu) debljinu 
pokazuje koji deo energije je koncentrisan uz 
površinu provodnika. 
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loj debljine δ , tj. ky /1S =δ= , sadrži oko 63% , a sloj debljine δ3  oko 
vo  

dužna  
95% ukupne energije. Zato, šuplji (cevasti) pro
opterećeni istom gustinom struje kao i puni. Po
poluprečnika a  i debljin a

dnici mogu biti
otpornost cevi

e <<δ  se dobija iz definic
 

ione formule osi 
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Veličina je ost,S  R  dimenziono otporn  ][ SR = Ω , i nazvana je površinska 
otpornost provodnika. Pravilniji naziv bi bio efektivna otpornost ili 
dinamička otpornost, jer se ne radi o otpornosti po jedinici površine. 
 

● Za razmatrani poluprostor, iz Joulevog zakona (Sveska II) se dobija 
srednja snaga gubitaka po jedinici površine provodnika. Kako je 
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U izrazu se pojavljuje površinska otpornost, a taj pojam je več uveden 
prethodnim elementarnim razmatranjem. Odavde se dobijaju opšti izrazi za
ukupnu snagu Jouleovih gubitaka i uk otpornos  
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a  ● Neka kroz puni provodnik kružnog poprečnog pr
protiče struja jačine 0I . Magnetizaciono polje uz p
dobija iz ALB  zakona (lekcija 43) i iznosi H

eseka poluprečnika 
ovršinu provodnik

S
a se 

)2/(00 aI π= . Po
pšteg izraza za ukupne Jouleove gubitke, 

dužna 
otpornost se dobija iz o
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Dobijeni rezultat je potpuno isti kao rezultat za cevasti provodnik koji je 

edstavlja snagu gubitaka, 

omoć
Međutim, lj je 

stičnu impedansu (Sveska V), 

pak dobijen elementarnim razmatranjem. 
 
● Snaga je kompleksna veličina čiji realni deo pr
a imaginarni deo reaktivnu snagu. Međutim, način na koji je ovde izložen 
proračun snage ne dozvaljava analizu imaginarnog dela. Za takvu analizu 
potreban je pristup p u Poyntingove teoreme o kojoj još nije bilo reči. 

može i ovako: Odnos električnog i magnetizacionog po a 
dimenziono otpornost i definiše karakteri
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Podužna unutrašnja induktivnost provodnika u dinamičkom režimu nije 
ista kao ona koja se r na pri kvazistatičkoj ap ks maciji (lekcija 97). 
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(unutrašnja) reaktansa induktivnog karaktera, XR == SR . Sledi da je 
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ćava aktivnu otpornost i smanjuje unutrašnju Površinski efekat pove
induktivnost provodnika, jer je ω′ ~R ω′ /1~L i . 
 

● Primenom formule za dubinu prodira
objašnjava već te činjenice. G
prodiranja. Jezgra električnih uređaja s
gvozdenih limova da bi se koristio pun
Gvožđe ne može da zameni sku

nja dobijena je kratka tabela koja 
 pozna vožđe  veom alu dubinu 

e prave od m o izolovanih 
i presek, a ne samo površinski slo

plji bakar u energetskim kablovima, koji se 
arnom košuljicom. 

nskim slojem zlata. 

ima a m
eđusobn

j. 

izrađuju od čeličnih užadi sa aluminijumskom ili bak
Na visokim učestanostima vodovi se premazaju mikro
Srebro, koje je najbolji provodnik, brzo oksidiše.  
 

]m[μδ magnetik r μ  ]S/m[106σ  50 Hz 1 kHz 1 MHz 
Ag dia 0.99998 63  8964 2004  63  
Cu dia 0.999991 59  9220 2061  65  
Fe fero 1000 10  708 158  5  
Al para 1.00002 35  11597 2593  82  
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l ve struje su indukovane 
ne struje u provodniku koji se nalazi u magnetnom polju koje je ili 

promenljivo ili postoji relativno kretanje između polja i provod ka. Kao 
što je površinski efekat posledica samoindukcije, tako su vrtložne struje 
osledica indukcije. 

Arago 

u polova m

106. Efekat vrtložnih struja 
 
Vrtložne struje (Eng. eddy - vrtlog) i i Foucaulto
kontur

ni

p
 
Ovu pojavu je 1824. godine primetio 

i nazvao je obrtni mehanizam. 
Objašnjenje je 1931. godine dao Faraday 
(lekcija 77), a smer struja je određen 
1834. godine Lenzovim zakonom. Tek 
1855. godine Foucault je zabeležio da se 
Aragoov bakarni disk zagreva i da je 

2 3

potrebna veća sila za njegovo okretanje 
kada se nalazi izmeđ agneta.  

1

0
d
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>
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Za deo površine diska koji ulazi u prostor između polova (sektor 1), 
magnetno polje raste. U tom delu diska se indikuje konturna struja čije 
magnetno polj  se protivi prom ni. Za deo površine koji izlazi iz prostorae e  
između polova (sektor 2), magnetno polje opada e struje u tom 
delu će proizvesti magnetno polje koje se pono promeni, a t
znači polje koje pojač će primarno polje. Na ivici gde su 

merova javlja se odbojna si eđu magneta i 
diska. Na drugoj ivici, gde su polja istog smera, javlja se privlačna sila. 
Obe sile usporavaju rotaciono kretanje i to je pojava koju je otkrio 

oucault (lekcija 80). Kinetička energija koja se troši na savladavanje sila 
ormiše u

 

daljeg nagomilavanja (lekcije 12 i 77). 

U pojavi vrtložnih struja nema ničeg spektakularnog, a efekati ovih struja 
su pojava elektromagnetne sile i Jouleov efekat. 

aterijala iz otpada (Eng. Eddy Current 
Separator). Toplota može  se koristi za 
indukciono zagrevanje (kuvanje). 

. Indukovan
vo protivi o 

ava opadaju
magnetna polja suprotnih s la izm

F
kočenja se kroz Jouleove gubitke transf  toplotnu energiju. Kad bi 
disk bio radijalno ispresecan (sektor 3) ili perforiran (sektor 4), formiranje 
vrtložnih struja bi bilo svedeno na najmanju moguću meru. Indukovano 
lektrično polje bi u neprekinutim delovima diska, slično Hallovom efektue

(lekcija 12), dovelo do gomilanja elektrona. Nagomilani elektroni bi 
stvorili elektrostatičko polje suprotnog smera koje bi zaustavilo proces 

 

 

Elektromagnetna sila može da se koristi za 
elektromagnetne kočnice, ostvarivanje 
levitacije ili odvajanje neferomagnetnog 

 
m

da
    http://www.kwsupply m/ 
    http://www.brighthubengineering.com/ 

.co
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- 

Vrtložne struje su često neželjena pojava. 
Feromagnetna jezgra ređaja se izrađuju 
od tankih limova koji su međusobno 
izolovani i postavljaju se paralelno sa 

 magnetnog polja. Time se isto-
y

z
 u

vremeno umanjuju uticaji površinskog 
efekta i efekta vrtložnih struja. Za protok 
fluksa se koristi ceo poprečni presek 

vektorom

jezgra i ne dolazi do pregrevanja. 
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rovodnik oblika neograničene ploče deblP jine  se nalazi u promenljivom  d
magnetnom polju čiji se smer poklapa sa pozitivnim smerom x  ose. 
Pravac indukovanih struja je tada paralelan z  osi.  
 
   

Raspodela magnetnog polja je
određena istom jednačinom kao u
prethodnom problemu (lekcija 105). 
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Rešenje je pogodno napisati u
MDPMDP yCyCBx γ+γ= sinhcosh 21  obliku hiperboličkih funkcija. 

   
   

Konstante se određuju iz uslova
MDPMDP 02 =C , )2/cosh(01 dBC γ=  simetrije, )2/()2/( dBdB xx =− . 

   
   

U konačnom rešenju 0B je
efektivna vrednost polja na grani-
čnim površinama, /dy 2±=  
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jedinici površine ploče je 
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Do istog rezultata može da se dođe i direktnom primenom zakona 
elektromagnetne indukcije (lekcija 76), pri čemu treba voditi računa da 
magnetno polje zavisi od koordinate y , a da je 02BBm = . 
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e je uvek vrlo složen zadatak, a raspodelu gustine 
ruje (i polja) nije moguće dobiti analitičkim metodama čak i u 

 analiza koja sledi samo 

ničene 
 ose, 
istih 

107. Efekat blizine 
 
Efekat blizine (Eng. proximity - blizina) je uticaj promenljive struje u 
jednom provodniku na raspodelu struje u drugom bliskom provodniku. 
Ovaj efekat se objašnjava elektromagnetnom indukcijom i nije ga moguće 
odvojiti od površinskog efekta, te se često naziva i kombinovani efekat. 
Analiza efekta blizin
st
najjednostavnijim slučajevima. Stoga je
ilustrativnog karaktera. 
 

Neka su date dve veoma bliske neogra
ploče istih debljina d , kroz koje u pravcu z
a u suprotnim smerovima, protiču struje 
jačina. Magnetno polje ima samo x  kompon
Kao i u prethodnim analizama (lekcije 105 i
gustina struje i polja su funkcije sam

z

e
 
o

ntu. 
106) 
 y  

koordinate, a odgovarajuće raspodele su date 
rešenjem već poznate diferencijalne jednačine. 

⋅ d
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x eCeCB γ−γ +
ωσ
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U tačkama koje pripadaju ravni dy =  magnetno polje je jednako nuli, što 
je rezultat delovanja dve vrlo bliske struje suprotnih smerova, 0)( =dBx .  
 

Kad se iz ovog uslova odredi veza između 
konstanti integracije, i kad se kao i ranije 
uzme da je 0)0( JJ z = , dobija se konačno d

dyJJ z γ
−γ

=
cosh

))(cosh(
0  

 

Gustine struja su najveće na površinama koje su bliske jedna drugoj, a 
najmanje na udaljenim površinama. Za struje istih smerova efekat bi bio 
obrnut. Da nema efekta blizine, gustine struje bi na svim površinama bile 
najveće i jednake, a najmanje na simetralnim ravnima ploča. 
 
● Isti zaključci važe za realan koaksijalni vod. Da 
ema efekta blizine struja bi tekla u tankom 

na 
truje je na unutrašnjoj površini spoljašnjeg 

n
površinskom sloju na spoljašnjoj površini 
spoljašnjeg provodnika. Ovako, najveća gusti

r

J

r

J

 
i sa dodatkom za uticaj 

s
provodnika. 
Ranije izvedene formule ostaju u važnost
spoljašnjeg provodnika. 
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108. Uslovi kvazistatičnosti magn
 
Kod velikog broja problema praktične i teo
smatrati da su elektromagnetne promen
pojednostavljuju analiza i rešavanje pr
promena stigne do svih tačaka u posmatrano
ili količine naelektrisanja značajnije prom
Kod prostoperiodičnih polja uslov kvazist
dimenzije oblasti od interesa znat

etnog polja 

rijske elektrotehnike moguće je 
e trenutne, čime se znatno 

oblema. Ako elektromagnetna 
j oblasti pre nego što se struja 

ene, problem je kvazistatičan. 
atičnosti je ispunjen ako su 

no manje od talasne dužine. Na primer, 
za idustrijske učestanosti, Hz50=f , talasna dužina je km6000≈λ , pa 
se svi problemi rešavaju kao kvazistatički. 
 
Jačina magnetnog polja koja potiče od 
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strujnog elementa opticanog staciona
električnom strujom se izračunav
osnovu dobro poznatog ALBS za

rnom 
a na 
kona 
užina 

elementarnu 
rnom 

. U sferno  koordi
og 

 im samo 
lučaju 

enu i na 
mora 

d čna brzina 
ektroma promene bila 

netna 
promena osi k m brzinom 
i na rastojan

(lekcija 43). Za strujni element čija d
je zanemarljivo mala, 0→l , 
dužinu, ld , je moguće zameniti stva
dužinom, m natnom 
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sistemu sa početkom u centru struj
elementa magnetno polje a 
ugaonu komponentu. U opštem s
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velikim rastojanjima izraz za polje 
da bude korigovan 
prenošenj el
uključena u proračun ktromag

 pren no
ju 

v  
r  od izvora se detektuje 

a rt / v=Δ . tek posle vremenskog interval
 
Međutim, naelektrisanja duž strujnog elementa ubrzavaju i usporavaju 
voje kretanje što znači da magnetno polje mora da ima još jednu s

komponentu koja je srazmerna prvom izvodu struje i koja isčezava na 
malim rastojanjima. Ta komponenta može da se rekonstruiše iz definicije 
prvog izvoda. 
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Granična vrednost može da se izostavi jer je veličina  veoma mala čak 
i za velika rastojanja. Na primer, u vakuumu vazduhu) j

 i za rastojanje 

t
lim
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vr /
 (i vrlo približno u e 

cv = cm3=r  kašnjenje iznosi svega ns1.0/ =cr . 
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Neka su promene struje prostoperiodične, tada je 
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gde je λπ=ω= /(2/ fvk λπ= /2)f  fazna konstanta ili talasni broj. 

ALBS zakon sledi izraz 
u Hertzovog dipola kao 

 
Kad se dobijeni izrazi za jačinu struje zamene u 
koji je identičan onom koji se dobija pri proučavanj
osnovnog zračećeg elementa (Sveska V). 
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Indukciona komponenta Zračeća komponenta  

astojanjim
tno polje naelektrisanja 
brzanom kretanju 

ika izraza je očigledno da kad su promene 

harmonijske promene, 
ente polja su jednake 

dominantna na malim rastojanjima dominantna na velikim r a 
Magnetno polje naelektrisanja 

u stalnom kretanju 
Magne

u u
 
Iz prvog obl  za magnetno polje 
jačine struje u vremenu spore, prvi izvod teži nuli i drugi sabirak je 
moguće zanemariti. Takođe, na malim rastojanjima je moguće zanemariti 
kašnjenje koje potiče zbog konačne brzine prenošenja elektromagnetne 
promene. 
 
Drugi oblik izraza za magnetno polje, koji važi za 
pruža kvantitativne podatke. Amplitude obe kompon
kad je rkr //1 2 = , odnosno kad je 1=kr  ili za r
mogu tretirati kao kvazistatički ako je 6/

6/λ≈ . Problemi se 
λ<<r , odnosno ako je 1<<kr . 

nljivost kvazistatičke aproksimacije (lekcije 86 ili 88) zavisi 
 
Dakle, prime
od učestanosti, veličine sistema i elektromagnetnih osobina sredine, jer je 

εμ= /1v . Na primer, pri učestanosti GHz1=f

, polje je kvazist

, u vazduhu gde je brzina 

prenošenja promene atim/s108⋅≈= cv 3 čko za rastojanja 
m05.0<<r . 
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109. Prva Maxwellova jednačina 
 
U ranijem izlaganju (lekcija 19) je naznačeno da postoji neusaglašenost 
između osnovnih zakona elektrodinamike. Da bi se ovo uočilo, potrebno 
da se potraži divergencija levih strana Faradyevog i Ampèreovog zakona. 
Divergencija rotora vektora je uvek jednaka nuli. Kad se to pravilo primeni 
na zakon indukcije sve je tačno, jer se dobija da je divergencija vektora 
magnetnog polja jednaka nuli, što je zapravo zakon o konzervaciji 
magnetnog fluksa. Međutim, isti postupak primenjen na Ampèreov zakon 
daje da je divergencija ve tine struje jednaka n čno 
samo za stalne struje. Van okvira magnetost

ktora gus uli, što je ta
atike Ampèreov zakon ne važi. 

 
 

lekcija 85   lekcija 17  
DMPDMP  Faradayev zakon   Konzervacija fluksa DMPDMP
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lekcija 19   
 

Sveska II  
 

Postoji još jedan način da se uvidi da Ampère
zakon nije moguće primeniti na problem
promenljivim strujama. Na primer, punjenj
pražnjenje kondenzatora (lekcija 101) 
magnetostatički procesi, jer tom prilikom do
do nagomilavanja naelektrisanja na elektroda

ov 
e sa 
e ili 
nisu
lazi 
ma.
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Za primenu Ampèreovog zakona u integralnom 
obliku potrebna je zamišljena kontura C  
obuhvta provodnik do jedne od e . 

  

koja 
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ra da bude kružna, oslanja se bezbroj površina, a vrednost 
integrala na desnoj strani zavisi od izbora površine. 
 

Za površinu  rezulat je isti kao i za površinu 

struje je jednak nuli. U ko

Najjednostavnija površina S  je ona koja leži u ravni konture. Tada 
provodnik probija površinu pod pravim uglom, jedinični vektor površine i 
vektor gustine struje su kolinearni. Vrednost površinskog integrala je 
jednaka jačini struje kroz provodnik i ako je kontura kružna sve se svodi 
na Biot-Savartov zakon (lekcija 21). Međutim, na istu zamišljenu konturu, 
koja čak ne mo

1S
S . Međutim, za površinu 2S , koja prolazi kroz 
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Matematički gledano, problem je što divergencija rotora mora da bude 
jednaka nuli, a nije. Maxwell je ovaj problem rešio 1861. godine, dodaj i 

š jedan član na desnu stranu Ampèreovog zakona, čineći je tako 
datni član nazvao struja 

omeraja (Eng. Displacement current). Dimenziono to jeste gustina struje, 
mada  u vakuumu ne može objasniti kretanjem nosilaca naelektrisanja. 
Ova genijalna korekcija (ako se uopšte može nazvati korekcijom) posebno 
je obrađena u drugim tekstovima. Ovde je dato samo matematički kratko 
izvođenje, na način za koji ja mislim da je razumljiv. 
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U opštem slučaju je PED
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+ε= 0  i struja pomeraja ima dve komponente: 
struja pomeraja u vakuumu i struja polarizacije (detaljnije, Sveska IV, ako 
je ikada budem napisao). Dakle, kad se struja pomeraja doda na desnu 
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Kad promene u vremenu ne postoje (ili su veoma spore) izvodi po 
vremenu su jednaki nuli (ili vrlo bliski nuli), prva Maxwellova jednačina se 
svodi na stacionarni slučaj tj. na Ampèreov zakon.  
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Kad se prva Maxwellova jednačina u integralnom obliku primeni na bilo 
koju površinu dobija se uvek isti rezultat. 
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110. Sistem Maxwellovih jednačina 
 
Oko redosleda Maxwellovih jednačina ne postoji jedinstven stav. Ovde su 
jednačine date redosledom koji je već pomenut (Sveska V), a koji su 
koristili profesori kod kojih sam ja sticao znanja [18, 22, 25] 
 

   

Maxwell U vakuumu U materiji 
   
   

Prva 
t
EJB
∂
∂

εμ+μ=
r

rr
000rot  

t
DJH s ∂
∂

+=
r

rr
rot  

   

   

Druga 
t
BE ∂

−=
∂

r
r

rot  
t
BE ∂

−=
∂

r
r

rot  
 
 

 

 

 

 

0ε
ρE =

r

sD ρ=
r

div  div  Treća 
 
 

 

 

 

 

0div =B
r

 0div =B
r

 
 

Četvrta 
  

 
Ovde je prvi pu  struje i naelektrisanja dodat indeks da bi se naznačila 
raz i h struja i naelektrisanja. U dosadašnjim 
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Za potpuno opisivanje elektromagnetnih polja, 
sistemu Maxwellovih jednačina treba dodati 
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konstitutivne eze i Ohmov zakon. Jednačina 
kontinuiteta je već sadržana u prvoj jednačini. 

ao što Maxwellove jed čine pokazuju da 
naelektrisanja stvaraju polje, tako elektomagnetna 
sila pokazuje kako polje deluje na naelek je
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0BA. Zbunjujući nazivi za magnetno polje 
 

Magnetno polje Magnetic field 
Gustina magnetnog fluksa Magnetic flux density 

Magnetna indukcija Magnetic induction B
r

 
(ne koristi se) Field B 

Magnetizaciono polje Magnetizing field 
Magnetic field strength 

Jačina magnetnog polja
Magnetic field intensity 

Magnetno polje Magnetic field 
Auxiliary field 

H
r

 

(ne koristi se) 
Field H 

 
Ja isključivo koristim termine magnetno i magnetizaciono polje. 
 
Sve loše je uvek stizalo s druge strane okeana (dobro, kukuruz može da se 
izuzme), pa smo tako za magnetno polje B  dobili besmislen naziv 
magnetna indukcija. Ovaj pojam, mada je već davno odomaćen, pa sam ga 
i sam ranije upotrebljavao, u elektrodinamici ima sasvim drugo značenje i 
treba ga izbegavati [5, p.271]. 
 
Zaboravili smo Тривундан, a prihvatili smo Velentine's day. Sada 
prihvatamo apsurdan naziv за magnetno poljе - gustina magnetnog fluksa 
[3]. Zaboravili smo da je pojam magnetnog polja, uostalom kao i pojam 
električnog polja, uveden pomoću sile (lekcija 1).  
 

U zvaničnom opisu novčanice od sto srpskih 
dinara piše da je prikazana formula za jedinicu 
magnetne indukcije, a formula prikazuje 
gustinu magnetnog fluksa. Dakle potpuno 
zbunjujuće. Da je bar to ona formula iz prve 
lekcije, ali nije. Tako je to, oni koji prave pare 
ne čitaju knjige. 

 

Am
NT=Am
NT=
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B. Kratka istorija magnetizma 
 
U ovu kratku istoriju magnetizma nisu uključena otkrića vezana za strogo 
električne pojave i elektromagnetne talase, te njihovo nastajanje i 
prostiranje. 
 

- 4000.   Tšu-ši, kamen ljubavi  Kineski zapisi 
-2637. Prva upotreba kompasa Huang-ti, kineski car 
-1110. Prva plovidba pomoću 

kompasa 
Taheon-Koung, kineski ministar 

-1000. Prvi opis prirodnog magneta, 
Lodestone 

Oμηρος , tj. 
Homer, starogrčki pesnik  

- 950.  Redovna upotreba kompasa Solomon, izraelski kralj 
-900. Otkriće grčkog ovčara u 

oblasti Magnesia u Maloj 
Aziji, prema zapisima 

Gaius Plinius Secundus (23-79) 
Giambattista Della Porta (1538-1615), 
italijanski prirodnjak i filozof 

-600. Prvi zapis o svojstvima 
prirodnog magneta 

Θαλῆς ὁ Μιλήσιος ( pne 624-546), 
Tales iz Mileta, starogrčki filozof 

121. Prvi zapis pojma magnet Kineski rečnik Choue Wen 
1186.  Prvi zapisi o kompasu u 

zapadnoj civilizaciji 

Alexander Neckem (1157-1217), 
engleski monah 

1269.  Prvi koncept polova i 
detaljan opis kompasa  

Petrus Peregrinus de Marincourt, 
francuski krstaš: Epistola de Magnete  

1600.  Prvo racionalno objašnjenje 
rada kompasa  

William Gilbert (1544-1603), engleski 
dvorski fizičar 

1730.  Prvi složeni magnet  Servigton Savery  
1740.  Prvi komercijalni magnet  Gowen Knight (1713–1772) 
1742. Sila između polova obrnuto 

srazmerna trećem stepenu 
rastojanja 

Thomas Le Seur (1703–1770) 
Francis Jacquier(1711–1788)  

1750.  Prva knjiga o proizvodnji 
magneta. Sila između polova 
obrnuto srazmerna kvadratu 
rastojanja  

John Mitchell (1724–1793) 

1778. Otkriće diamagnetizma 
(bizmut i antimon) 

Sebald Justinus Brugmans (1763-1819) 

1819.  Otkriće elektromagnetizma  Öersted  
1820. Magnetna indukcija strujnog 

elementa 
Biot i Savart  

1825. Ampèreov zakon Ampère 
1824. Rotirajući bakarni disk Arago  
1824. Magnetni skalar potencijal Poisson 
1825. Prvi elektomagnet William Sturgeon (1783-1850)  
1830.  Induktivnost  Henry 
1831.  Elektromagnetna indukcija  Faraday  
1832. Nezavisno otkriće indukcije Henry  
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1832.  Prvi alternator i komutator  Pixii 
1833.  Prvi telegraf  Gauss i Weber 
1834. Lenzov zakon Lenz  
1837.  Prvi komercijalni telegraph   Samuel Morse (1791-1872) 
1845. Magnetni vektor potencijal 

matematički zapis indukcije 
Frantz Ernst Neumann (1798–1895) 

1846. Diamagnetizam Faraday  
1855.  Prva prakticna upotreba 

naizmenične struje  
Guillaume-Benjamin-Amand Duchenne 
(1806-1875) 

1855. Vrtlože struje Foucault 
1855. Divergencija, rotor - Fizičko 

tumačenje magnetnog polja 
Maxwell 

1860.  Motor jednosmerne struje  Antonio Pacinotti (1841–1912)  
1861. Zvučnik 

Ampèreov zakon - korekcija 
Johann Philipp Reis (1834–1874) 
Maxwell 

1865.  A Dynamical Theory of the 
Electromagnetic Field  

Maxwell  

1871.  Generator jednosmerne 
struje, dinamo  

Zenobe Theophile Gramme (1826-1901) 

1872.  Komercijalni generator 
jednosmerne struje  

Kompanija Siemens and Halske 

1873.  A Treaties of Electricity and 
Magnetism  

Maxwell  

1873. Rowlandov zakon ili 
Hopkinsonov zakon 

Rowlad, i Hopkinson  

1875.  Telefon  Alexander Graham Bell (1847-1922) 
1878.  Mikrofon  David Edward Hughes (1831-1900) 
1879.  Usavršeni generation 

jednosmerne struje  
Thomas Alva Edison (1847-1931) 

1879. Hallov efekat Hall 
1883.  Obrtno magnetno polje  Tesla 
1883. Površinski efekat Sir Horace Lamb (1849-1934) 
1881.  Prvi patent  

transformatora  
Lucien Gaulard (1850-1888) 
John Dixon Gibbs (1834-1912) 

1886.  Prvi komercijalni 
transformator  

William Stanley (1858-1916) 

1885.  Široka proizvodnja 
naizmenične struje  

George Westinghouse (1846-1914) 

1887. Diferncijalni operatori u 
Maxwellovim jedna;inama 

Heaviside  

1888. Prva proizvodnja 
elektromagnetnih talasa 

Hertz 

1889. Pupinov kalem Mihajlo Pupin (1858-1935) 
1891.  Teslin kalem  Tesla  
1895. Curieova temperatura  Curie  
1895. Komutator i ispravljač Karol Franciszek Pollak (1859-1928) 
1897.  Otkriće elektrona  Thomson 
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1898. Prvi magnetni zapis Valdemar Poulsen (1869-1942)  
1902. Uticaj magnetizma na 

zračenje* 
Lorentz  

1905. Objašnjenje diamagnetizma 
paramagnetizma i  

Paul Langevin (1872-1948) 

1906. Otkriće elektrona, maseni 
spektrometar* 

Thomson 

1906. Objašnjenje feromagnetizma Ernest Weiss  Pierre (1865-1940) 
1911.  Superprovodljivost  Heike Kamerlingh Onnes (1853-1926) 
1917.  Prvi kobaltni magnet  K. Honda i T. Takai 
1920. Prvi magnetron Albert W. Hull (1880–1966) 
1923. m-metal Willoughby S. Smith, Henry J. Garnet 
1928. Prva magnetna traka Fritz Pfleumer (1881-1945) 
1930.  Prvi Alnico Magnet 

(Fe+Al, Ni, Co) 
Mishima Tokushichi (1893-1975) 

1931.  Prvi ciklotron 
(postao operativan 1943) 

Lawrence 

1931. Prva električna gitara George Delmetia Beauchamp 
(1899–1941)  

1940. Betatron Donald William Kerst (1911–1993) 
1943. Magnetni moment protona* Stern 
1944. Magnetna svojsta atomskog 

jezgra* 
Isidor Isaac Rabi (1898-1988) 

1947.  Memorije sa magnetnim 
jezgrom 

John Adam Presper Eckert (1919–1995) 

1952. Keramički magneti 
 (Fe+Ba i Fe+Sr)  

J.J. Went, G.W.Rathenan, 
E.W. Gorte i G.W. Van Oosterhout 

1953. Prvi magnetni disk Kompanija IBM 
1955. Magnetni moment elektrona* Polykarp Kusch(1911–1993) 
1966.  Samarijum-kobalt magnet 

(SmCo5)  
Dr Karl J. Strnat  

1970. Antiferromagnetizam i 
ferrimagnetizam* 

Louis Eugène Félix Néel (1904–2000) 

1972.  Samarium-kobalt magnet 
(Sm2Co17)  

Dr Karl J. Strnat 
Dr Alden Ray 

1983.  Neodijum-Gvožđe-Bor 
magnet (Nd2Fe14B)  

Dr Masato Sagawa  
Dr John Croat 

1999. Öerstedov satellit, snimanje 
Zemljinog magnetnog polja 

Prvi danski satelit 

2007. Džinovska 
magnetootpornost* 

Peter Andreas Grünberg (1939– ) 
Albert Fert (1938– ) 

 

*
 Nobelova nagrada za otkriće 
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C. Gustina energije permanentnih magneta 
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D. Osnovne jednačine kinematike 
 

s  space - put 
u  initial velocity - početna brzina,  0v
v  velocity - brzina 
a  acceleration - ubrzanje 

Osnovne jednačine kretanja 
su popularno nazvane suvat 

prema oznakama za 
osnovne veličine 

pravolinijskog kretanja. t  time - vreme 
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 ugao s→θ  
 početna ugaona brzina 00 v→ω  
 ugaona brzina v→ω  

suvat jednačine ostaju u 
važnosti ako se linijske 

veličine zamene 
ugaonim.  ugaono ubrzanje a→α  

 
θ= rs  Između osnovnih veličina pravolinijskog i 

rotacionog kretanja postoje veze: rv rrr
×ω=  
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E. Izračunavanje potpunih eliptičkih integrala 
 

DMPDMP FORTRAN potprogram SUBROUTINE dmpeike(ak,ek,ee,ir) 
 

! dmplib     - Ellipt.Int.Comp. 
! AGM method - August, 1987. 
! Rev #1     - April, 1996. 
! ek = K(k)  - 1st kind 
! ee = E(k)  - 2nd kind 
! ak = k     - modulus 
! ir = -1    - error 
! ir > -1    - # of iterations 
   
IMPLICIT REAL*8 (a-h,o-z) 
 

IF(ak .GT. 1.d0)THEN 
   ier=-1 
   RETURN 
ENDIF 
 

IF(ak .EQ. 1.d0)THEN 
   ek=HUGE(ek) 
   ee=1.d0 
   ir=0 
   RETURN 
ENDIF 
 

ek=2.d0*DATAN(1.d0) ! pi/2 
eps=1.d-15          ! epsilon 
a0=1.d0 
b0=dsqrt(1.d0-ak*ak) 
c0=ak 
s=c0*c0 
ir=0 
dif=DABS(a0-b0) 
DO WHILE(dif .GT. eps) 
   a1=(a0+b0)/2.d0 
   b1=DSQRT(a0*b0) 
   c1=(a0-b0)/2.d0 
   ir=ir+1 
   s=s+2**ir*c1*c1 
   a0=a1 
   b0=b1 
   dif=DABS(a1-b1) 
ENDDO 
 

ek=ek/a0 
ee=ek*(1.-s/2.d0) 
 

RETURN 
END 
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Indeks imena 
 
Ovoj indeks ne prikazije sva pojavljivanja nekog imena u tekstu, već su 
date samo najbitnije odrednice za osnovni tekst bez priloga. To je urađeno 
iz praktičnih razloga, jer se, primera radi, odrednice Ampère ili Ampèreov 
zakon pojavljuju više od 90 puta.  
 
Andre - Marié Ampère, 1775-1836 17, 19, 42, 50, 64, 73, 

77, 83, 160 
Francois Joan Domènec Arago, 1786-1853 17, 112, 115, 156 
Aristotélēs -Aριστοτέλης, 384-322 pne 15 
Kenneth Tompkins Bainbridge,1904 -1996 33 
Jean Baptiste-Biot, 1774-1862 21, 42, 64, 160  
Kristian Birkeland, 1867-1917 19 
Charles-Augustin de Coulomb, 1736-1806  93. 95 
Piere Curie, 1856-1906 87 
Sir Humphry Davy, 1778-1829 16, 112 
René Descartes, 1596-1650 26,68 
Paul Dirac, 1902-1984 68 
Albert Einstein, 1879-1855 114 
Michael Faraday, 1791-1867 16, 17, 101, 111, 113, 

120, 122, 156, 160 
Jovan Filopon, 490-570 15 
Sir John Ambrose Fleming, 1849-1945 20 
Jean Bernard Léon Foucault, 1819-1868 156 
Benjamin Franklin, 1706-1790 15, 101, 111 
Galileo Galilei, 1564-1642 104 
Johann Carl Friedrich Gauss, 1777-1855 17, 63, 77, 82, 92, 93 
Joseph Louis Gay-Lussac; 1778-1850 111 
Walther Gerlach, 1889-1979 27 
William Gilbert, 1544-1603 15, 22, 94, 103 
Edwin Herbert Hall, 1855-1938 29, 156 
Oliver Heaviside, 1850-1925 28, 124, 148 
Hermann Ludwig Ferdinand von Helmholtz, 1821-1894 55, 59 
Joseph Henry, 1797-1878 114, 124 
Heinrich Rudolf Hertz, 1857-1894 159 
John Hopkinson, 1849-1891 104, 107 
James Prescott Joule, 1818-1889 135, 147, 149, 154, 

157 
Gustav Robert Kirchhoff, 1824-1887 74, 106, 138 
Giuseppe Luigi Lagrange, 1736-1813 31 
Pierre-Simon, marquis de Laplace, 1749-1827 20, 64, 96, 100 
Ernest Orlando Lawrence, 1901-1958 33 
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Heinrich Lenz -  
Эмилий Христианович Ленц, 1804 - 1865 

 
114, 123, 124, 156 

Hedrik Antoon Lorentz, 1853-1928. 28, 49, 114 
James Clerk Maxwell, 1831-1879 19, 34, 49, 76, 122, 

161, 163 
Franz Ernst Neumann, 1798-1895 114, 125, 127, 129 
Sir Isak Newton, 1642-1726 48 
Alfred Nobel, 1801-1872 28, 33 
Hans Christian Öersted, 1777-1851 16, 17, 39 
Georg Simon Ohm, 1789-1854 105, 106, 135, 138, 

143, 163 
Ostrogradsky - 
Михаил Васильевич Остроградский, 1801-1862 

 
92 

Hippolyte Pixii, 1808-1835 121 
Siméon Denis Poisson, 1781-1840 59, 91, 93 
Giovanni Battista Della Porta, 1538-1615 15 
John Henry Poynting , 1852-1914 155 
Michel Rolle, 1652-1719 49 
Henry Augustus Rowland, 1848-1901 104 
Félix Savart, 1791-1841 21, 42, 64, 161 
Otto Stern, 1888-1969 27 
Sir George Gabriel Stokes, 1819-1903 23, 37, 59 
George Johnstone Stoney, 1826-1911 28 
Brook Taylor, 1685-1731 55, 66, 127 
Nikola Tesla, 1856-1943 19, 59, 143 
Sir Joseph John Thomson, 1856-1940 28 
Vilhelm Eduard Weber, 1804-1891 34 
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